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The Prehistory of Modal Logic

C. I. Lewis, Ruth Marcus, W.V.O. Quine

1.	 Logic and Logical Truth: Frege, Russell, and Tarski
2.	 C. I. Lewis: A Logic of Necessity and Possibility?
3.	 Quantified Modal Logic: Marcus, Quine, Smullyan, Fitch, 

and Church
3.1.	Marcus: The First Systems of Quantified Modal Logic
3.2.	Quine: Quantifying into Modal Contexts
3.3.	Smullyan, Fitch, and Church: Response to Quine

Every philosophical problem, when it is subjected to the necessary 
analysis and purification, is found to be not really philosophical at 
all, or else to be, in the sense in which we are using the word, logical.
—Russell (1914a), p. 33

Philosophical propositions . . . ​must be a priori. A philosophical proposition 
must be such as can neither be proved or disproved by empirical evidence. . . . ​
Philosophy is the science of the possible. . . . ​Philosophy, if what has been said 
is correct, becomes indistinguishable from logic.
—Russell (1914b)

1 .  LOGIC AND LOGICAL TRUTH:  

FREGE, RUSSELL, AND TARSKI

These two passages were written by Russell thirty-five years after Frege’s inven-
tion of modern symbolic logic in the service of reducing first arithmetic, and 
then mathematics in general, to logic, and four years after Russell and White-
head attempted a similar reduction. Although those attempts failed to 
achieve their ambitious goals, they did bring logic, the philosophy of mathe
matics, and the practice of logical analysis to the forefront of philosophical 



4 	 •  Chapter   1  •

inquiry. By 1914, the practice was advancing in broad areas of epistemology 
and metaphysics.

The first of Russell’s two remarks suggests that all true answers to philosoph-
ical questions are, in some sense, truths of logic. The second adds that these 
answers are knowable a priori. Russell adds that philosophy’s job is to explore 
the limits of the possible, which requires distinguishing it from the impossible, 
from which the necessary is definable. Like logical truths, Russell seemed to 
think that philosophical truths must be both necessary and knowable a priori, 
if knowable at all. In suggesting this, he was trafficking in logical, epistemic, 
and metaphysical modalities without clearly distinguishing them. A central task 
of this and parts of the next two volumes will be to trace the struggle in mid- to 
late twentieth-century philosophy to understand and distinguish these 
modalities.

We may begin by comparing Frege’s conception of logic to the now stan-
dard Tarskian conception, which is a mixture of formalized linguistic ele
ments—sentences, formulas, and their constituents—plus constraints on their 
interpretations. These contrast with Fregean concepts and propositions, made 
up of intuitively understood epistemic and metaphysical elements. The rules 
of logic were, for Frege, rules of guaranteed truth preservation, some of which 
were more cognitively fundamental than others. The truths of logic were said 
to be entirely general in the sense that our knowledge of them doesn’t depend 
on any special subject matter.

Logic was, for Frege, our most powerful tool for deriving new knowledge 
from prior knowledge.

I became aware of the need for a Begriffsschrift [concept script] when I was look-
ing for the fundamental principles or axioms upon which the whole of mathe
matics rests. Only after this question is answered can it be hoped to treat success-
fully the springs of knowledge upon which this science thrives.1

The firmest proof is obviously the purely logical kind, which, prescinding from 
the particularity of things, is based solely on the laws on which all knowledge rests. 
Accordingly, we divide all truths that require justification into two kinds: those 
whose proof can be given purely logically and those whose proof must be grounded 
on empirical facts.2

Here Frege suggests (i) that all knowledge rests to some degree on knowledge 
of fundamental logical laws and principles; (ii) that knowledge of them and 
their logical consequences isn’t grounded in empirical facts, and so, presum-
ably, is a priori; and (iii) that all other knowledge is a posteriori.

In volume 1 of Basic Laws of Arithmetic he adds:

Now the question of why and with what right we acknowledge a logical law to be true, logic 
can only answer by reducing it to another logical law. Where that is not possible, logic 
can give no answer. Leaving aside logic, we may say: we are forced to make judg-

1.	 Frege (1897–91), p. 3.
2.	 Frege (1964), preface, section 3, p. 48, my emphasis.
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ments by our nature and external circumstances; and if we make judgments, we 
cannot reject this law—of identity, for example; we must recognize it if we are 
not to throw our thought to confusion and in the end renounce judgment alto-
gether. I do not wish to either dispute or endorse this view and only remark that 
what we have here is not a logical implication. What is given is not a ground [rea-
son] for [something’s] being true, but of our holding [it] as true.3

Here Frege acknowledges an epistemic hierarchy of logical laws and principles. 
Those on higher levels are justified by deriving them from those on lower 
levels, culminating in the most fundamental logical laws, for which no further 
justifying reason can be given, but without which we can scarcely reason at all. 
Because he took arithmetic to be derivable from the most fundamental logical 
laws, he claimed that the same is true of “the fundamental propositions of the 
science of number.” He says, “We have only to deny any one of them and com-
plete confusion ensues. Even to think at all seems no longer possible.”4

These passages suggest that Frege was an epistemic foundationalist about 
logical truths, the most basic of which we know with a priori certainty, which, 
he thought, could be extended to arithmetic and most mathematics.5 Although 
he doesn’t talk explicitly about metaphysical necessity or possibility, he takes 
fundamental logical laws to be true, while recognizing that any logical conse-
quence of a truth must be true, seeming, thereby, to implicitly recognize the ne-
cessity of certain conditionals. Since he also thinks that fundamental logical 
truths must be true, he seems to accept their necessity. For Frege, it is not sen-
tences but thoughts (propositions) that are logical truths, all of which are both 
necessary and a priori. Whether or not the converse holds is less clear. Like 
Russell in 1914, he intermingled logical, epistemic, and metaphysical 
modalities.6

The conception of logical truth and logical consequence descending from 
Tarski (1935, 1936) is different. Rather than propositions, logical truths are 
sentences of a formalized language (e.g., of the first-order predicate calculus) 
that are true in all models—where a model is a nonempty domain D of objects 
the language is used to talk about plus an assignment of objects, sets of objects, 
and functions from objects to objects as denotations of its nonlogical symbols. 
Names denote individual objects, n-place predicates denote sets of n-tuples of 
objects, and n-place function symbols designate n-place functions from n-tuples 
of objects to individual objects. The denotation of ⎡f (t1 . . . ​tn)⎤ is the object 
that the function denoted by f assigns to the denotations of t1 . . . ​tn. Logical 
truths are sentences the truth of which survives all reinterpretations of its non-
logical symbols over domains of any size.

3.	 Frege (1997), preface, section xvii, p. 204, my emphasis.
4.	 Frege (1884 [1950]), section 14, p. 21, my emphasis.
5.	 Frege made a special exception for Euclidian geometry, about which he was a Kantian. See 

p. 41 of volume 1 of this work.
6.	 A fuller discussion can be found in section 4 of chapter 1 of volume 1 of this work.



6 	 •  Chapter   1  •

Truth in a model M is then defined as follows.7

An atomic formula ⎡Pt1 . . . ​tn⎤ is true in a model M iff the n-tuple of denotations 
of t1 . . . ​tn in M is a member of the denotation of P in M.

⎡∼ S⎤ is true in M iff S is not true in M.

⎡S & R⎤ is true in M iff S and R are both true in M.

Similar clauses are given for ⎡S v R⎤, ⎡S ⊃ R⎤, and ⎡S ↔ R⎤.

⎡∃v S(v)⎤ is true in M iff there is an object o in the domain of M such that S(v) 
is true in M, when the variable v is temporarily used as a name of o. ⎡∀v S⎤ is true 
in M iff for every object o in the domain of M, S(v) is true in M no matter which 
o of the domain is temporarily assigned to v as referent.

A logical truth is a sentence that is true in all models, and a logical consequence of 
a set P of sentences is a sentence that is true in every model in which all mem-
bers of P are true.

These definitions don’t mention what is provable or derivable, which varies 
with the richness of the underlying language and the associated proof theory. 
For standard first-order logic there are proof theories that allow one to derive 
(in finitely many steps) every logical truth and no others from the rules plus 
the designated axioms of the system. Which sound and complete proof the-
ory one uses isn’t a matter of logic itself. Thus, no Fregean epistemic hierar-
chy of justification and knowledge is presupposed. We do, however, get laws of 
guaranteed truth preservation that encode many of our argumentative com-
mitments (thought of as propositions one is committed to by accepting or as-
serting other propositions).

This claim rests on three Frege-friendly assumptions: (i) sentences express 
propositions we assert when we assertively utter sentences; (ii) the propositions 
that S and that S is true are necessary, a priori consequences of one another; 
and (iii) any warrant for believing one of those propositions is warrant for be-
lieving the other. Suppose I assert propositions p1, p2, p3 in an argument by 
assertively uttering sentences S1, S2, S3—knowing that the S’s express the p’s 
and that my audience also knows this. In so doing, I commit myself to p1, p2, 
p3. By (ii) and (iii), I also commit myself to the truth of each, plus the truth of 
S1–S3. Since I am committed to anything trivially inferable from what I explic
itly assert, I am also committed to the conjunction of p1, p2, and p3 and to the 
claim that it is true. Similarly for the sentence ⎡S1&S2&S3⎤. Finally, suppose 
S+, which expresses p+, is a logical consequence of my (sentential) premises, and 
hence of their conjunction. Then, since my premises can’t be true unless S+ is 
too, I can’t deny the truth of S+ without undermining my warrant for the truth of 
the conjunction of p1, p2, p3 and for the conjunction itself. Since I under-

7.	 The definition is a simplification in which variables are allowed (under certain conditions) 
to function as temporary names. For Tarski’s original formalization, see section 4 of chap-
ter 9 of volume 2 of this work. For interpretation of the ⎡ . . . ​⎤ notation, see “A Word about 
Notation” preceding chapter 1.
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stand that S+ expresses p+, I am implicitly committed to the truth of p+ and to 
p+ itself (whether I recognize it or not).

In short, our post-Tarskian conception of logical consequence can be used to 
track many (though not all) propositions to which we commit ourselves in rea-
soned argument. This isn’t a claim of post-Tarskian logic, which, because it is 
fully formalized, is a meta-mathematical discipline. It is a claim about why, de-
spite making no cognitive claims about what we believe, assert, or know, that 
discipline retains a recognizably logical role in guiding proper reasoning. This 
is not to say that other, nonlogical, relations between propositions based on 
the objects and concepts they concern are not needed to more fully account 
for proper reasoning. They are. These include nonlogical but a priori connec-
tions, necessary connections, and probabilistic connections. However, it would 
be many decades before these would be fleshed out in useful detail.

This brings us back to Frege and Russell. Do first-order logical truths like 
S ⊃ S and ∼ (S & ∼S) express propositions that are necessary a priori truths? Do 
their negations express impossibilities? Special complications aside—involving 
vagueness and/or partially defined predicates/properties—the natural an-
swer to both questions is ‘Yes’.8 With this we return to the mixture of logical 
and seemingly nonlogical modalities found in Frege and Russell. What exactly 
are these modalities, and how do they bear on one another? This will be one of 
the main questions underlying most of this chapter, most of this volume, and 
some of the next two.

2. C.   I .  LEWIS:  A LOGIC OF NECESSITY AND POSSIBILITY?

Lewis was concerned with logical implication. Before illustrating his concern, 
it will be helpful to summarize how we understand logical implication today. Let 
P and Q be sentences of the propositional or first-order predicate calculus. To 
say that P logically implies Q is to say that Q is a (Tarskian) logical consequence 
of P, which is a metalogical remark about a logical system, rather than a remark 
expressible in it. The fact that the system contains no 2-place sentential con-
nective holding between sentences (and no 2-place predicate true of them) if 
and only if the second is a logical consequence of the first is no defect, because 
formal logic doesn’t require any such connective (or predicate) in order to play 
its role in guiding reasoning when we use its sentences. The fact that the non-
logical vocabulary is fully formalized and capable of varying interpretations, 
while the logical vocabulary is fixed, makes it possible to define appropriately 
general definitions of logical truth and logical consequence while investigat-
ing them mathematically.

These points are relevant to Lewis’s “Implication and the Algebra of Logic” 
published in 1912, in which he comments on the logic of Principia Mathematica, 

8.	 For some discussion of these complications, see the interchange between Tim Williamson 
and me in the symposium including Soames (2002b). See also Soames (2009c, 2018b).
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volume 1, published two years earlier. In his article, he focuses on what Prin-
cipia calls ‘implication’—namely, any instance of the schema ‘P ⊃ Q’, defined 
as ‘∼P v Q’, taking a disjunction to be true whenever either disjunct is true. 
Since this makes every sentence Q an “implication” of any falsehood P, Lewis’s 
determination to read ‘⊃’ as implies led him, via the trivial theorem schema 
[∼P ⊃ (P ⊃ Q)], to characterize Principia as committed to the “absurd” conclu-
sion that “a false proposition implies anything.”9 Although what Lewis sug-
gests by this is absurd, it is tempting to suppose that his criticism is simply 
the result of confusing what is standardly called “material implication” with 
logical implication. That is just a confusion. Still, Lewis may have had some-
thing more in mind.

The following paragraph gives us an inkling of what it may have been. It 
starts out this way.

The existence of these two theorems [that “a false proposition implies anything” 
and that “a true proposition is implied by any proposition”] in the algebra [of 
Principia] brings to light the most severe limitation of the algebraic or material 
implication. One of the important practical uses of implication is the testing of 
hypotheses whose truth or falsity is problematic [or uncertain]. The algebraic im-
plication [material implication] has no application here. If the hypothesis hap-
pens to be false, it implies anything you please. If one finds facts, x, y, z, otherwise 
unexpected but suggested by the hypothesis, the truth of these facts is implied 
by the hypothesis, whether that hypothesis is true or not—since any true propo-
sition is implied by all others. In other words, no proposition could be verified 
by its logical consequences. If the proposition happens to be false, it has these 
consequences anyway.10

This seems to embody a confusion, or an oversight, or both. Of course, one 
must not confuse logical implication (the converse of logical consequence) 
with the relation between P and Q when the former materially implies the 
latter. As I pointed out earlier, logical consequence can be used to track our 
argumentative commitments, including those confirming or falsifying a hypoth-
esis. Lewis may have wished for a clear and mathematically tractable definition 
of logical implication/consequence of this sort that would not be available until 
the advent of model theory, while wrongly imagining that the relevant impli-
cation relation must itself be expressible in the language of the hypothesis being tested. 
If so, he was wrong. But that isn’t the end of the matter.

The paragraph quoted above continues as follows:

Similarly, no contrary-to-fact supposition could have logical significance, whether 
one happens to know that it is contrary to fact or not. For if the fact is otherwise, 
the proposition which states the supposition [materially] implies everything. In 
the ordinary and “proper” use of implies certain conclusions can validly be in-
ferred from contrary to fact suppositions, while certain others cannot. Hypothe-

9.	 Lewis (1912), p. 529.
10.	 Ibid., my emphasis.
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ses whose truth is problematic [unknown] have consequences which are independent 
of their truth or falsity.11

Apart from beating a dead horse, Lewis is here setting the stage for the in-
troduction of a new notion of implication. To illustrate the idea, let’s start with 
a contemporary philosophical conception of metaphysical necessity according to 
which Necessarily water is H2O is widely regarded to be true. With this in mind, 
consider the contrary-to-fact supposition, Suppose the bottle was/were/had been filled 
with water, and the inference, then it would have contained H2O. The related coun-
terfactual conditional could be tested by looking for chemical residue. The 
idea is that the conditional if the bottle was/were/had been filled with water, then it 
would have contained H2O expresses a useful “intensional” sense of implication, 
distinct from material implication, in which the antecedent implies the conse-
quent. Presumably, Lewis didn’t have this example in mind, but he may have 
imagined something similar.

Next consider a notion of logical necessity according to which S is logically 
necessary iff it is a Tarskian logical truth or it can be turned into one by put-
ting synonyms for synonyms. (We leave open how synonymy is defined.) Lewis’s 
point may be that some such notion of strict implication—It is (logically) necessary 
that if P, then Q—is more useful than anything we are given in Principia Mathe-
matica.12 As we will see in the next few chapters, there was something right about 
this, even though it is questionable how much of what we need is a stronger 
logic. The important point here is the initial steps he took in what we can, in 
retrospect, see to have been in a positive direction.

Lewis’s disappointment with the logic of Principia Mathematica leads him to 
suggest a new “intensional” sense of disjunction, ‘ori’, in which a disjunction is 
true if and only if the ordinary “extensional” disjunction is a necessary truth. 
Strict implication—P ⇒ Q—is then defined as an intensional disjunction, ∼P 
or Q, which amounts to It is (logically) necessary that (P ⊃ Q). Thus, we get a sense 
of implication in which Q cannot be false when P is true. Let’s not quibble over 
the fact that we could, in principle, construct a strong implication relation in 
the metalanguage using the ordinary Tarskian notion of logical consequence plus 
names of object-language sentences. Lewis’s project of including necessary con-
ditionals in the object-language was more ambitious.

Perhaps too ambitious. He closes his 1912 article by suggesting a system con-
taining both intensional and extensional disjunctions, including all Principia 
theorems plus new ones involving the strict conditional. He says:

The primary advantage [of the new system] over any present system lies in the 
fact that its meaning of implication [strict implication] is precisely that of ordi-
nary inference and proof.13

11.	 Ibid., my emphasis.
12.	 Ibid., p. 530.
13.	 Ibid., p. 531.
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Not quite. It is no part of our ordinary practices of reasoning or constructing 
proofs to infer any truth Q that happens to be (logically) necessary given any 
arbitrary premise P. Still, one gets the general idea.

Lewis (1918, 1923) continue the attempt to provide more powerful logics 
than Principia Mathematica. The idea was to embed the extensional logic of 
Principia in a broader intensional system built around a notion of strict impli-
cation designed to capture what he took to be the proper ordinary notion im-
plies. This, he believed, could be defined equally well as □ (P ⊃ Q) or ∼◊ (P & 
∼Q)—where ‘□’ is read necessarily, or it is a necessary truth that while ‘◊’ is read 
possibly or it could be, or have been, true that. In this sense of implication, neces-
sary falsehoods imply every proposition and necessary truths are implied by every 
proposition. Although one might doubt that this sense of implication captures 
any notion of inference commonly employed in ordinary reasoning, Lewis 
thought otherwise. In Lewis and Langford (1932, p. 250) he argues that nec-
essary falsehoods are contradictory, and that any conclusion can be derived 
from, and hence is implied by, a contradiction.

The appendix to that work contains five modal systems of the propositional 
calculus in ascending order of strength, which have become well-known. Sys-
tems S1–S3 draw from three possible rules of modal inference and four possi
ble modal axioms.

Rules

R1	 Weak Necessitation. This allows one to derive □ Φ from any 
theorem Φ of the nonmodal propositional calculus.

R2	 Derive □(□Φ⊃□Ψ) from □(Φ⊃Ψ).
R3	 Substitutivity of Strict Equivalents, which allows one to 

derive Φ from any theorem strictly equivalent to it. (P, Q 
are strictly equivalent if each strictly implies the other.)

Axioms

T.	 □ P ⊃ P
K.	 □ (P ⊃ Q) ⊃ (□P ⊃ □Q)
A1.	 □ (P ⊃ Q) ⊃ □(□P ⊃ □Q).
A2.	 [□ (P ⊃ Q) & □ (Q ⊃ R)] ⊃ □ (P ⊃ R).

Lewis’s system S1 can be formalized using R1 and R3 plus axioms T and A2. S2 
is formalizable using R1 and R2 plus axioms T and K. Adopting R1 plus T and 
A1 gives us S3.

The next group of systems, which have received the most attention, employ 
Strong Necessitation, which allows one to derive □Φ from any theorem Φ. The 
weakest of these new systems (system K) adopts K as its only modal axiom, while 
the system T adds axiom T to K. S4 adds A3 to system T. S5 adds a new axiom, 
B, to S4.

A3.	 □ P ⊃ □ □ P
B.	 P ⊃ □ ◊ P
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Are any of these systems correct? Given that these were supposed to be sys-
tems of logic, one wonders which (if any) is the correct system of logic. Answer-
ing this question requires some prior notion of what logic amounts to. To begin, 
we note that logic provides norms of correct reasoning that apply to all subject 
matters. Following those norms must guarantee that whatever we derive from 
truths must themselves be true. Thus, in the case of the standard nonmodal 
propositional or predicate calculi, we look to logic for fully general rules guar-
anteeing truth preservation—rules that are sound in the sense of deriving only 
Tarskian model-theoretic logical consequences from the premises of any argu-
ment. In the propositional and first-order predicate calculi we can provide rules 
that are also complete, in allowing every logical consequence of any premises 
to be derived.

Next, suppose we add □, understood as it is logically true that, to these stan-
dard Tarskian systems, taking it to be a new logical symbol the interpretation of 
which does not vary from model to model. With this, we may argue, following Bur-
gess (2009, section 3.8), that the system will have at least the power of S4. The 
argument requires understanding logical truth in the propositional and first-
order predicate calculus in the way just sketched—as truth in all models. First 
consider axiom T, □ P ⊃ P. Since its antecedent says that P is true in all models, 
for the antecedent to be true P must also be true. Hence T is true. Next con-
sider axiom K, □ (P ⊃ Q) ⊃ (□P ⊃ □ Q). By the same reasoning, for the anteced-
ent of K to be true is for (P ⊃ Q) to be true under all interpretations of P, Q. 
Next, for the antecedent of the consequent of K to be true is for P to be true 
under all interpretations. It then follows that Q is true under all interpretations, 
which means that the consequent of K, and so K itself, must be true. Next con-
sider the characteristic axiom of S4, □ P ⊃ □ □ P. Since the box—it is a logical 
truth that—is a logical symbol with a fixed interpretation which doesn’t vary 
from model to model, the truth of all reinterpretations of P guarantees both 
the truth of the antecedent and the truth of the consequent, which come to the 
same thing. We might put this by saying that the logic of it is a logical truth that 
must be at least as strong as S4.

What about S5, which comes from S4 by adding axiom B, P ⊃ □ ◊ P ? If the 
antecedent of B is true, then ∼P isn’t a logical truth, which gives us ∼ □ ∼ P and 
hence ◊ P. Since this holds for all interpretations of P, and all interpretations 
of ◊ P, it holds for all interpretations of □ ◊ P, thus giving us axiom B. So, we may 
conclude, that the logic of it is a logical truth that must be at least as strong as 
S5. In the case of the modal propositional calculus a further argument can be 
given that for any formula A of the calculus that isn’t a theorem of S5, there 
will be interpretations in which A is not true. Since this means that A is not a 
logical truth of the calculus, it suggests that S5 is the strongest acceptable sys-
tem in which the box is interpreted as truth in all models/interpretations.14 How-
ever, it is not clear that we learn very much from this.

14.	 Burgess (2009), pp. 65–66.
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One worry concerns what we take the operator □—it is logically true that—to 
operate on. Because the presence of that in English standardly signals indirect 
discourse, this puts the operator in a class with the following, which are natu-
rally taken to operate on propositions, rather than sentences or truth values.

it is knowable a priori that
it is a necessary truth that
it is a logical truth that
it is universally believed that
it is true that

There is nothing comparable in standard, nonmodal first-order logic, where 
all the operators are defined on sentences or formulas. Consider what it would 
mean to add to standard logic it is a logical truth that. There is something trou-
bling about this right off the bat. Consider For all x, x is a square iff x is a rectan-
gle with 4 equal sides. This is not a logical truth in the standard Tarskian sense—
one which would turn out true in all domains under all interpretations of its 
nonlogical constants. However, it can (we may suppose) be turned into one by 
putting synonyms for synonyms.

With this in mind, consider two interpretations of it is a logical truth that S. 
According to the first it is true if and only if S is true under all reinterpreta-
tions of its nonlogical vocabulary. What is declared to have this property is 
sentence S itself. Under the second interpretation both S and any sentence 
resulting from putting synonyms for words or phrases of S count as logically 
true. Both interpretations make sense. But what is the point in adding extra 
synonymous sentences to standard Tarskian logical truth? The answer, I sup-
pose, is that the extra sentences all (are used to) say the same thing as the original 
logical truth they are synonymous with. They all express the same proposi-
tion, where propositions are the things said, asserted, believed, and known. 
Consequently, if we think it is a central task of anything we properly call “logic” 
that it encode our argumentative commitments, extending the notion of a 
logical truth to apply to propositions may fall under a defensible conception 
of what logic is. Under this conception, we take the common locution, that S, 
of indirect discourse, to refer to the proposition commonly expressed by all sen-
tences (in whatever language) that are strictly translatable into S. In so doing 
we, in effect, extend the notion logical truth to apply to propositions (in the 
manner sketched above) as well as sentences.

Let S be some standard Tarskian logical truth—one that comes out true 
under any interpretation of its nonlogical symbols. Then, it is logically true that 
S will be true. Will it is logically true that S be logically true? Presuming that the 
operator is a logical symbol, the interpretation of which doesn’t vary from 
model to model, it will. So, we can iterate necessity operators as much as we 
want. But nothing interesting is going on. No new claim is made. The same is 
true if we substitute ∼ Possible ∼ for any such operator. Finally, the notion of 
logical implication—it is logically true that (P ⊃ Q)—we get is no advance over one 
that simply notes that Q is a logical consequence of P.
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Although these results involving S4 and S5 are, in themselves, not very in
teresting, the possibility of interpreting other modal systems as in some way log-
ical in our now modern sense is illustrated in The Unprovability of Consistency: 
An Essay in Modal Logic, published by George Boolos in 1979. There, formal 
proofs in a certain modal system called ‘G’, after Gödel, are used to prove sig-
nificant extensions of his two incompleteness theorems.15 This illustrates that 
there are ways of understanding modal systems in which they can be sources 
of significant metalogical results for standard nonmodal logical systems. Like 
the weak systems, K and T, G is normal—i.e., it incorporates both Strong Ne-
cessitation and axiom K. However, very much unlike other well-known normal 
systems it doesn’t incorporate axiom T, which indicates that, in G, the box isn’t an 
attempt to explicate any ordinary sense of necessity, logical or otherwise. Still, it may 
encode provability (in a given system of proof). In other words, the box can co-
herently be read it is provable (in such and such system) that. The other axioms of 
G are sentences of the form □ (□P ⊃ P) ⊃ □ P, from which it follows that axiom 
T can’t, on pain of inconsistency, be a theorem of G.16

Having come this far, we have moved well beyond the initial ideas of C. I. 
Lewis. In doing so, I hope to have shed some light on his conviction that in-
tensional object-language operators may contribute to the norms governing 
our reasoning about various subjects, while leaving it open how much, or in 
what ways, the development of systems containing such operators track what 
we feel comfortable calling ‘logic’. I will return to this topic after the model 
theory of modal logic has been presented more fully.

3.  QUANTIFIED MODAL LOGIC: MARCUS, QUINE, 

SMULLYAN, FITCH, AND CHURCH

3.1. Marcus: The First Systems of Quantified Modal Logic

The first systems of quantified modal logic to receive serious attention in the 
period after World War II were presented in three papers published in 1946 
and 1947 by Ruth Barcan Marcus.17 Although no semantic theory interpreting 
its formulas was given, axiomatic proof-theoretic systems were specified, and 
interesting theorems were proved. The system in Marcus (1946a) is a quanti-
fied version of Lewis’s S2, encompassing rules R1 and R2 plus axioms T and K. 
The 1947 paper, which employs a version of Lewis’s S4 system, builds on 
Marcus (1946a), purporting to prove the necessity of identity,∀y [x = y ⊃ □ 
x = y]. This turned out to be more challenging than one might imagine in the 
absence non-proof-theoretic semantic principles for understanding modal 

15.	 These theorems are explained in chapter 8 of volume 2 of this work.
16.	 Boolos (1979). T can’t be provable because of Gödel’s second incompleteness theorem, 

the unprovability of consistency. If □(□P ⊃ P) were a theorem—i.e., if we could prove that 
the theorems of a first-order theory T formulated in the predicate calculus were true—
then we could prove that T was consistent, which, Gödel showed, cannot be.

17.	 Barcan (1946a, 1946b, 1947).
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logics. The key idea employed in the now standard semantics is that variables 
are treated as temporary names for objects in the domain of quantification at a 
given world-state. Quantified sentences are assigned truth conditions relative 
to assignments of objects as values of the relevant variables. So, if ‘x’ and ‘y’ are 
assigned the same object—making the semantic content of x = y relative to an 
assignment the same as that of x = x—then, of course, x = y will be true, relative 
to that assignment, at all world-states possible from the original world-state, 
thus validating Necessarily x = y (assuming that variables are rigid designa-
tors). Because the Marcus systems were merely proof-theoretic, this semantic 
explanation was unavailable.

The proof of the necessity of identity offered in Marcus (1947) employs a 
pair of 2-place identity predicates Im and I. The former is called “material iden-
tity” (relating all and only pairs consisting of an object and itself) and one is 
called “strict identity” (which necessarily relates all and only such pairs). The-
orem 2.33 of Marcus (1947) establishes the strict—i.e., necessary equivalence—of 
the two. Marcus establishes this proof-theoretically using three decidedly non-
trivial assumptions: (i) that □□ S is strictly equivalent to □S, (ii) the (2nd order) 
Barcan Formula, and (iii) the (2nd order) Converse Barcan Formula. The version 
of the Barcan formula in question is that □∃Φ(. . .) strictly (i.e., necessarily) 
implies ∃Φ □ ( . . .). The converse formula reverses the order.

These formulas arise in her systems due to the interaction of the rule of 
strong necessitation (which generates the necessitation of any theorem) with 
a proof theory that allows open formulas (understood as equivalent to the re-
sult of adding universal quantifiers binding the variables) to be generated as 
theorems. Thus, whenever we can derive Φx in Marcus’s systems, we can de-
rive □ Φx, ∀x Φx, □ ∀x Φx, and ∀x □ Φx. However, the question “Should these 
formulas be derivable?” can’t be seriously addressed prior to giving model-
theoretic semantic systems for interpreting modal logic. Because the Marcus 
proof-theoretic derivation of the necessity of identity implicitly relies on unex-
amined semantic elements, it can at most be regarded as suggestive.

Early exponents of modal logic including Marcus, Carnap, and others were, 
of course, guided by the idea that □ expresses some notion of necessary truth. 
Typically, the targeted truths were said to be analytic—i.e., sentences thought to be 
true solely in virtue of meaning and capable of being known to be true simply by under-
standing and reasoning a priori them. These were often taken to include, but not 
be limited to, ordinary logical truths. Unfortunately, which sentences fall under 
this heading was far from clear. In addition, this rough-and-ready characteri-
zation leaves the interpretation of formulas in which the box operates not on 
(closed) sentences but on formulas containing free variables—like the Barcan 
and converse Barcan formulas and the theorem expressing the necessity of 
identity—unexplained.

To achieve a modicum of understanding, I will begin with the idea that sen-
tences of modal languages are evaluated for truth or falsity at indices called 
‘world-states’, which are candidates for being actual (i.e., as being a state the 
universe is really in). Sentences and formulas relative to assignments of values 
to variables are evaluated at world-states at which singular terms denote objects 
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of which predicates are true or false. We may begin by keeping an open mind 
about whether the domains of quantification can differ from world-state to 
world-state. If we provisionally assume that the domains of objects at differ
ent world-states are always the same, making the range of quantifiers used at 
any world-state the same as their range at other world-states, then the two fa-
mous Barcan formulas will be correct, and the proof that she offers of a ver-
sion of the necessity of identity will be sound. If, on the other hand, different 
possible objects can exist at different world-states, the offered proof won’t 
go through. Whether or not we should want it to go through depends on 
what we take modal sentences—containing the necessity and possibility op-
erators—to say.

3.2. Quine: Quantifying into Modal Contexts

The problem of interpreting quantified modal logic was taken up by Willard 
van Orman Quine in two classic papers, “Notes on Existence and Necessity” in 
1943 and “The Problem of Interpreting Modal Logic” in 1947. Always skepti-
cal of apriority and necessity, he was particularly opposed to quantified modal 
logic, as espoused by Marcus and Carnap. Since both seemed to equate neces-
sity with analyticity, Quine was willing (for the sake of argument) to take ana-
lyticity for granted—defining it as a sentence that can be turned into a logical 
truth by replacing synonyms with synonyms. Interpreting necessity as analyti-
city and taking S to be possible if and only if its negation isn’t analytic, he could 
make provisional sense of claims like (1) and (2), as instances of what he called 
the first-grade of modal involvement.

	 1.	 ‘9 is an odd number’ is necessary.
	 2.	 ‘The number of planets is even’ is possible.

His second grade was illustrated by (3) and (4).

	 3.	 It is necessary that 9 is an odd number.
	 4.	 It is possible that the number of planets is even.

The strategy was to reduce the second grade of modal involvement to the 
first. Thus, Quine tried to reduce the truth conditions of (3) and (4) to those 
of (1) and (2). When modal operators are iterated, Quine assigned sentences 
to a hierarchy, depending on how many modal operators are embedded under 
such operators. Each level is governed by a definition of logical truth and an-
alyticity, with the truth conditions of ⎡It is necessary that S⎤—which is of level 
n + 1 when S is of level n—being given in terms of the definitions of logical 
truth and analyticity at level n.18

At the third grade of modal involvement ‘□’ and ‘◊’ are operators (express-
ing necessity and possibility) that can be prefixed to open formulas, allowing 
quantifying into the scope of the operator, as in (5) and (6).

18.	 Quine (1947), section 2.
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	 5.	 ∃x (x is the number of planets in the solar system & □x is odd).
	 6.	 ∃x (x is an even number & ◊ x is the number of planets in the solar 

system).

Quine rightly points out that understanding both analyticity and objectual 
quantification doesn’t guarantee that we can assign intelligible truth conditions 
to sentences like these. If necessity is analyticity, it is a property of sentences. To 
make sense of (5) and (6) we must decide whether an open formula relative to 
an assignment of an object to a variable is a logically true sentence or one that can 
be turned into a logical truth by replacing synonyms with synonyms. Since open 
formulas are not sentences and variables relative to assignments are not terms 
with meanings or definitions, it is puzzling what the truth conditions of (5) and 
(6) are supposed to be. It is tempting to think that this was a problem of Quine’s 
own making. But it wasn’t. It arose precisely because early modal logicians like 
Marcus and Carnap did take necessity to be analyticity—i.e., truth in virtue of 
meaning. What Quine showed was that if quantified modal logic was to pro
gress, then it had to either solve this puzzle or develop nonlinguistic under-
standings of necessity and possibility.

His next move was to close both escape routes. His most interesting argu-
ment purported to show that, the interpretation of necessity aside, quantified 
modal logic violates fundamental logical and semantic principles, and so must 
be rejected. In addition to definitions D1–D3, Quine’s argument for this de-
pended on A1, which is true, plus A2 and A3, which, unfortunately for him, 
turned out to be false.19

	 A1.	 The modal operators ‘□’ and ‘◊’ are referentially opaque.
	 A2.	 Occurrences of objectual variables in the scope of referentially 

opaque operators are not purely referential.
	 A3.	 Bindable occurrences of objectual variables must be purely 

referential.
	 D1.	 An occurrence of a term in a formula or sentence S is purely 

referential if and only if what it contributes to the truth or falsity 
of S (relative to an assignment) is simply what it designates or 
denotes (relative to the assignment).

	 D2.	 A position in a sentence S is referentially transparent if and only if 
for any pair of terms t and t*, the results S(t) and S(t*) of substi-
tuting these terms into that position in a sentence will have the 
same truth values (relative to an appropriate assignment) if and 
only if ⎡t = t*⎤ is true (relative to that assignment). A position is 
referentially opaque if and only if it is not referentially transparent.

	 D3.	 A sentential operator is referentially transparent if and only if any 
referentially transparent position in a sentence remains so when 

19.	 The explication given below is of reasoning in Quine (1943, 1953b). The category of “terms” 
in D1, D2 includes singular definite descriptions.
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the operator is prefixed to the sentence. A sentential operator is 
referentially opaque if and only if it is not referentially transparent.

The idea behind A2 is this: Let ‘O’ be a referentially opaque operator, 
let ⎡O F(x)⎤ be a formula in which a variable ‘x’ occurs free (in position p), 
and let ⎡O F(t)⎤ and ⎡O F(t*)⎤ be sentences that differ in truth value which 
arise from substituting distinct terms t and t* designating the same object o 
for ‘x’ (at p). There must be such terms if ‘O’ is referentially opaque. The truth 
value of ⎡O F(x)⎤ relative to an assignment A of o to ‘x’ differs from the truth 
value of one these two sentences even though ⎡t = t* = x⎤ is true relative to A. Sup-
pose ⎡O F(t*)⎤ differs in truth value from ⎡O F(x)⎤ (relative to A). Then, Quine 
concludes, occurrences of t* in the former and ‘x’ in the latter both fail to be 
purely referential, verifying A2.20

As noted in section III of Kaplan (1986) and Kazmi (1987), this argument 
is fallacious. From the fact that ⎡O F(t*)⎤ differs in truth value from ⎡O F(x)⎤, 
we can conclude that either the occurrence of t* in the former or the occur-
rence of ‘x’ in the latter is not purely referential, but we cannot conclude that 
both aren’t, or that the occurrence of ‘x’ isn’t. Furthermore, one can con-
struct opaque operators, as Kaplan does in sections IV, VII, and VIII–XIII, for 
which occurrences of variables in their scope are purely referential, while being 
coherently bindable from outside by objectual quantifiers. So A2 is false.

Quine (1947) uses different reasoning in attempting to establish A3. He 
notes that if O is a referentially opaque operator, there will be truths ⎡t = t* & 
O (S(t) & ∼ O S(t*)⎤. If t and t* occupy positions open to objectual quantifi-
cation, and if existential generalization is universally truth preserving, 
then ⎡∃x ∃y (x = y & O Sx & ∼O Sy⎤ must also be true. Since this violates what 
Quine calls “the law of the substitutivity of identity for variables” and requires 
some occurrences of variables to be non-purely referential, he thinks it is im-
possible. As we will see in a moment, Quine was (understandably) wrong about 
this. The other flaw was his incorrect assumption that existential generaliza-
tion is fundamental to objectual quantification. Although it is always truth pre-
serving in certain contexts, it fails to be so in others.

In Kaplan’s insightful discussion of Quine, he introduces the notion of the 
valuated sentence associated with F(x) relative to an assignment of object o to 
‘x’. It is what one gets by substituting the object o itself for ‘x’ in the syntactic struc-
ture F(x). Given this, one can define referentially opaque operators that allow 
quantifying in while being truth preserving in both ordinary and valuated sen-
tences. For example, we might define an operator O1 that maps an ordinary 
sentence S onto truth iff Ralph utters or accepts S, while mapping a valuated 
sentence VS onto truth if and only if he utters or accepts any complete sen-
tence that results from replacing an occurrence of an object o in VS with any 
occurrence of any proper name of o. So understood, occurrences of variables 

20.	 For interpretation of the ⎡ . . . ​⎤ notation, see “A Word about Notation” preceding 
chapter 1.
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under O1 are purely referential, and the standard “law” (7) of quantification the-
ory is retained.21

	 7.	 ∀x,y [x = y ⊃ (O1 (Fx) ⊃ O1 (Fy))]

Although this argument is sound, it goes beyond what is needed. Nothing in 
the nature of quantification requires (7) to be true. Let a finely valuated sentence 
be just like a valuated sentence except that instead of replacing the variable 
‘x’ with an object o, we replace ‘x’ with <‘x’,o>. Now we stipulate that O2 maps 
a finely valuated sentence FVS onto truth if and only if Ralph utters or accepts 
any complete sentence that results from replacing all occurrences of each vari-
able/object pair < ‘v’, o> in FVS with occurrences of a proper name of o, pro-
vided that different occurrences of the same pair are replaced by occurrences of the same 
name. Quantification into contexts governed by O2 is as intelligible as quanti-
fication into contexts governed by O1, even though (7) fails when O2 replaces 
O1. So (7) isn’t really a law of quantification, and bindable occurrences of vari-
ables need not always be purely referential.

To understand this one must not confuse schema (8a) with the indiscern-
ibility principle that may be formulated by (8b) or (8c).22

	 8a.	 ∀x,y [x = y ⊃ (S(x) ⊃ S(y))]
	 8b.	 ∀x,y (x = y ⊃ every property of x is a property of y)
	 8c.	 ∀x,y [x = y ⊃ ∀P(Px ⊃ Py)]

For some opaque operators ‘O’, instances of (8a) that arise from replacing 
‘S(x) ⊃ S(y)’ with ‘O(x≠y) ⊃ O(y≠y)’ are false, if Ralph utters or accepts 
‘Hesperus ≠ Phosphorus’ but doesn’t utter or accept ⎡n≠n⎤ for any name desig-
nating Venus. This is consistent with the truth of (8b) and (8c), since the 
property Venus must have iff ‘O(x≠y)’ is true (relative to an assignment A of 
Venus to ‘x’, ‘y’) is being designated by some pair of names t1 and t2 such that Ralph 
utters or accepts ⎡t1 ≠ t2⎤, while the property Venus must have iff ‘O(x≠x)’ is true 
(relative to A) is being designated by some name t such that Ralph utters or accepts ⎡t≠t⎤. 
In short, the failure of Quine’s principle A3 does not, in and of itself, threaten 
the indiscernibility of identicals.23

Nevertheless, the failure of Quine’s argument A1–D2—that quantifying into 
referentially opaque constructions violates fundamental semantic and logical 
principles—doesn’t finally put to rest his worries about the quantified modal 
logic of his day. To do that, one must make sense of quantifying into modal 
contexts when necessity is identified with analyticity. Quine argues in (1947, 1953) 
that this is impossible because the truth conditions of sentences of the third 

21.	 ‘F’ is a schematic letter in (10).
22.	 See Kazmi (1992).
23.	 Two interesting analyses of propositional attitude verbs that lead to violations of (8a) are 

Mark Richard (1987) and Kit Fine (2007). These are critically discussed in Soames (1987b, 
2012) and chapter 7 of Soames (2002a). See Soames (2015) for a conception of proposi-
tions as objects of attitudes like belief that also allows for violations of (8a).
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grade of modal involvement can’t be specified in terms of the truth conditions 
of those of the second grade.

As he notes, it is natural to appeal to (i) and (ii) in attempting to do so.

	 (i)	 ∃x . . . ​x . . . ​is true only if . . . ​a . . . ​is true for some term a.
	 (ii)	 ∃x . . . ​x . . . ​is true if . . . ​a . . . ​is true for some term a.

Principle (i) is potentially problematic because there will often be no guaran-
tee that unnamed, or even unnamable, objects (if such there be) might be the 
only ones underwriting the truth of an existence claim. Principle (ii) is also 
problematic. Suppose there are two names, ‘a’ and ‘b’, such that (9a) and (10a) 
are both true when R can be any reflexive relation (including identity). Then, 
by (ii), (9b) and (10b) must also be true. (Remember that in 1947 necessity 
was standardly equated with analyticity.)

	 9a.	 a = b & □aRa
	 b.	 ∃x [x = b & □xRa]
	 10a.	 b = b & ∼□bRa
	 b.	 ∃x [x = b & ∼□xRa]

Since (9b) and (10b) are contraries, they can’t both be true. So, to prevent 
(ii) from being falsified, one must restrict the terms used to specify the truth 
conditions of quantified sentences to members of a class T of terms coreferen-
tial members of which are analytically equivalent—where analytically equivalent 
terms are those substitution of which always preserves analyticity. Call this re-
striction principle (iii). If (iii) is observed, (9a) and (10a) can’t be jointly true, 
which will block the erroneous characterization of (9b) and (10b) as jointly 
true.

However, to adopt (iii) as the means of specifying the truth conditions of 
third-grade modal sentences in terms of second-grade sentences drastically lim-
its the domain of objects and the class of terms designating them. Since it 
seems obvious that one can understand both the name ‘Hesperus’ and the 
name ‘Phosphorus’, or the name ‘Cicero’ and the name ‘Tully’, without hav-
ing any basis to conclude that they name the same thing, examples like these 
seem to show that ordinary proper names of empirically given objects must be 
excluded. That’s not all. As Quine notes in (1947, 1953b), the severity of the 
needed restrictions would undercut any significant philosophical interest in 
quantified modal logic. Nor does there seem to be another way of specifying 
truth conditions of the third grade in terms of those of the second. Thus, Quine 
was right to this extent: if necessity is nothing more than analyticity (and a sentence 
is analytic iff understanding what it means and reflecting on it is sufficient to 
come to know that it is true), then quantified modal logic is of little, if any, 
interest. His error was in taking it for granted, along with most of those against 
whom he argued, that if there is such a thing as necessity, it must be 
analyticity.24

24.	 Thanks to Ali Kazmi for useful discussions of this material.
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3.3. Smullyan, Fitch, and Church: Response to Quine

Despite the understandable, but ultimately unfounded, skepticism of Quine 
(1947), one of its virtues was that it attracted responses from three leading 
philosophers of his day—Arthur Smullyan, Frederic Fitch (who was Ruth Mar-
cus’s dissertation advisor), and Alonzo Church, who edited the Journal of Sym-
bolic Logic. The responses to Quine in Smullyan (1947, 1948) and Fitch (1949) 
focused on the difference between proper names and singular definite descrip-
tions (which Quine had ignored). Their idea can be illustrated by contrasting 
‘Hesperus’ and ‘Phosphorus’, thought of as genuine proper names, with a pair 
of descriptions, the planet visible in the evening sky (from certain places at certain times) 
and the planet visible in the morning sky (from other places at other times). Assume, 
for the sake of argument, that the semantic content of a genuine name is its 
referent so that coreferential names have the same semantic content, making 
them substitutable in sentences in modal sentences without changing truth 
value. Assume, by contrast, that the semantic contents of the singular definite 
descriptions corresponding to the names are, respectively, the property being 
unique in being visible in the evening sky (from certain places at certain times) and the 
property being unique in being visible in the morning sky (from certain places at cer-
tain times). Under these assumptions, they will embed differently than names 
do under modal operators.

Now think again about Quine’s examples (9) and (10), taking the two names 
to be ‘Hesperus’ and ‘Phosphorus’ and the relation R to be identity.

	9a*.	 Hesperus = Phosphorus and it is a necessary truth that Hesperus 
is Hesperus

	b*.	 ∃x [x = Phosphorus and it is a necessary truth that x = Hesperus]
	10a*.	 Phosphorus = Phosphorus and it’s not a necessary truth that 

Phosphorus = Hesperus
	b*.	 ∃x [x = Phosphorus and it’s not a necessary truth that 

x = Hesperus]

If, as we may assume, necessarily Hesperus = Hesperus is true, then (given our as-
sumption that coreferential names have the same semantic content) we will 
conclude that necessarily Hesperus is Phosphorus is also true. Hence (9*a,b) will be 
true, while (10*a,b) will be unproblematically false, and underivable from 
(9*a,b), thus undermining Quine’s argument. When we substitute correspond-
ing descriptions for ‘a’ and ‘b’, even (9a*) will fail since it won’t be a necessary 
truth that any planet is visible, either morning or evening.

The common thread in the response of Smullyan and Fitch to Quine is their 
focus on the need to distinguish proper names, which they thought of as 
contributing merely their referents to the modal truth conditions of sen-
tences, from descriptions, which contribute properties presumed to be 
uniquely instantiated, while often picking out different objects at different pos
sible circumstances. Whether or not the descriptions are analyzed as Fregean 
complex singular terms or are eliminated via Russell’s theory of descriptions 
(which Smullyan and Fitch favored) doesn’t materially affect their responses. 
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The weaknesses of their responses were (i) their silence about what, other than 
analyticity, necessity might be; and (ii) their failure to note that merely under-
standing coreferential proper names is not sufficient to allow one to recognize 
that they make the same contributions to the semantic contents of sentences 
containing them. They were not in a position to see this because their concep-
tion of meaning/semantic content, and of a sentence being true in virtue of 
meaning as one that can be known to be true simply by understanding it, pre-
supposed that sameness of meaning is cognitively transparent to competent 
speakers. The fact that ordinary proper names don’t conform to this presup-
position was thus at odds with their linguistic notion of necessity.

Alonzo Church was sensitive to these problems in his 1950 review of Fitch’s 
article. Church says that Fitch holds

(with Smullyan) that two proper names of the same individual must be synony-
mous. It would seem to the reviewer [Church] that, as ordinarily used, ‘the Morn-
ing Star’ and ‘the Evening Star’ cannot be taken to be proper names in this 
sense; for it is possible to understand the meaning of both phrases without know-
ing that the Morning Star and the Evening Star are the same planet. Indeed, for 
the same reasons, it is hard to find any clear example of a proper name in this sense. 
(my emphasis)25

Although Church had a good point, which threatened the attempt by Smul-
lyan and Fitch to disarm Quine’s attack on quantified modal logic, it took two 
more decades before the beginning of a systematic response to Church began 
to be constructed, during which time the problem of interpreting quantified 
modal logic remained pressing.

For now, one may notice that Church’s point could have been made with 
examples like ‘Hesperus’ and ‘Phosphorus’, which have the ordinary syntax of 
proper names, without appealing directly to special cases like ‘the Evening Star’ 
and ‘the Morning Star’, which might appear to be abbreviated descriptions. 
Suppose (i) that the semantic contents of ‘Hesperus’ and ‘Phosphorus’ (like 
that of ordinary names in general) are their referents, (ii) that substitution of 
nonlogical constants with the same semantic contents in sentences doesn’t 
change semantic content, and (iii) that modal operators on sentences operate 
on the semantic contents of those sentences. Given all this, substitution of one 
of the two names for the other under a modal operator will preserve semantic 
content, and hence, truth value. This may be so, even if understanding the two 
names typically involves associating them with nontrivially different informa-
tion. Generally, anyone who uses these two names is expected to know that uses 
of one typically presuppose that it stands for something visible in the evening 
while uses of the other presuppose that it stands for something visible in the 
morning. In ordinary life, one who mixes this up would be taken to misunder-
stand the names.

25.	 Church (1950), p. 63.
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With this in mind, consider A’s use of sentence (11), addressing B, each pre-
supposing they understand the names.

11.	 Hesperus is Phosphorus.

Suppose that in so doing A asserts that o = o, where o =Venus. Nevertheless, this 
would standardly not be taken to be all that A asserts. Taking it for granted that 
A presupposes that they both understand the names, B reasons that A knows 
that A will be taken to be committed to the claim that the unique object that is 
both Hesperus and visible in the evening is the unique object that is both Phosphorus 
and visible in the morning. Knowing that A expects B to so reason, B correctly con-
cludes that A did assert the descriptively enriched proposition, which is contin-
gent, even though A also asserted the necessary truth which, by assumption, is 
the semantic content of (11).

On this analysis, the extra representational content carried by A’s utterance 
arises from the semantic content of the sentence A assertively uttered, the pre-
supposition that A and B understand the names, and the information that 
comes with that. What does understanding ‘Hesperus’ and ‘Phosphorus’ re-
quire? Presumably, it requires knowing that most agents who use them take, 
and expect others to take, ‘Hesperus’ to stand for something seen in the evening 
and ‘Phosphorus’ to stand for something seen in the morning. Presupposing 
that A and B understand the names (in this sense), both add descriptive con-
tent to what A asserts by uttering (11).

What if, at some later point, A were to make the further comment (12)?

12.	 Necessarily Hesperus is Phosphorus.

Since taking the names to refer to things actually seen at certain times tells one 
nothing about when they are seen at other possible world-states, speaker-hearers 
don’t descriptively enrich under the modal operator, making the proposition as-
serted by A’s use of (12) true, even though the asserted content of A’s original 
use of (11) is contingent.26

These complications involving semantic content, presupposition, under-
standing, and assertion are the tip of an iceberg that was invisible to the pio-
neers of modal logic after World War II. Thus, it is not surprising that initial 
investigators, who were trying to forge the semantic and logical ideas needed 
by sophisticated modal systems, found themselves pulled in different 
directions.

26.	 See Soames (2015), pp. 84–88. This distinction between semantic content, conditions of 
understanding, and how they contribute to asserted content can be used to improve on 
the account of “partially descriptive names” given in chapter 5 of Soames (2002a)—e.g., 
names like Professor Saul Kripke, Mr. Terry Thomas, Miss Ruth Barcan, Mrs. Ruth Barcan Mar-
cus, Princeton University, New York City, Park Avenue, Woodland Park, Mount Rainier, Lake Cres-
cent, Puget Sound, The Columbia River, Whidbey Island, The Empire State Building, The Eiffel Tower, 
Yankee Stadium, Fort McHenry, Seattle Washington, Princeton Township, Princeton Borough, etc.
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