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1CHAPTER ONE

Newtonian Physics: Geometric Viewpoint
Geometry postulates the solution of these problems from mechanics and teaches the use of the

problems thus solved. And geometry can boast that with so few principles obtained from other fields,
it can do so much.

ISAAC NEWTON, 1687

1.11.1 Introduction

1.1.11.1.1 The Geometric Viewpoint on the Laws of Physics

In this book, we adopt a different viewpoint on the laws of physics than that in many
elementary and intermediate texts. In most textbooks, physical laws are expressed in
terms of quantities (locations in space, momenta of particles, etc.) that are measured in
some coordinate system. For example, Newtonian vectorial quantities are expressed as
triplets of numbers [e.g., p= (px , py , pz)= (1, 9,−4)], representing the components
of a particle’s momentum on the axes of a Cartesian coordinate system; and tensors
are expressed as arrays of numbers (e.g.,

I=
⎡⎢⎣ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤⎥⎦ (1.1)

for the moment of inertia tensor).
By contrast, in this book we express all physical quantities and laws in geometric

forms, i.e., in forms that are independent of any coordinate system or basis vectors.
For example, a particle’s velocity v and the electric and magnetic fields E and B that
it encounters will be vectors described as arrows that live in the 3-dimensional, flat
Euclidean space of everyday experience.1 They require no coordinate system or basis
vectors for their existence or description—though often coordinates will be useful. In
other words, v represents the vector itself and is not just shorthand for an ordered list
of numbers.

1. This interpretation of a vector is close to the ideas of Newton and Faraday. Lagrange, Hamilton, Maxwell,
and many others saw vectors in terms of Cartesian components. The vector notation was streamlined by
Gibbs, Heaviside, and others, but the underlying coordinate system was still implicit, and v was usually
regarded as shorthand for (vx , vy , vz).

5
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BOX 1.1. READERS’ GUIDE

. This chapter is a foundation for almost all of this book.

. Many readers already know the material in this chapter, but from
a viewpoint different from our geometric one. Such readers will be
able to understand almost all of Parts II–VI of this book without
learning our viewpoint. Nevertheless, that geometric viewpoint has
such power that we encourage them to learn it by browsing this
chapter and focusing especially on Secs. 1.1.1, 1.2, 1.3, 1.5, 1.7, and
1.8.

. The stress tensor, introduced and discussed in Sec. 1.9, plays an
important role in kinetic theory (Chap. 3) and a crucial role in
elasticity (Part IV), fluid dynamics (Part V), and plasma physics
(Part VI).

. The integral and differential conservation laws derived and discussed
in Secs. 1.8 and 1.9 play major roles throughout this book.

. The Box labeled is advanced material (Track Two) that can be
skipped in a time-limited course or on a first reading of this book.

We insist that the Newtonian laws of physics all obey a Geometric Principle: they are
all geometric relationships among geometric objects (primarily scalars, vectors, and
tensors), expressible without the aid of any coordinates or bases. An example is the
Lorentz force lawmdv/dt = q(E+ v × B)—a (coordinate-free) relationship between
the geometric (coordinate-independent) vectors v, E, and B and the particle’s scalar
mass m and charge q . As another example, a body’s moment of inertia tensor I can
be viewed as a vector-valued linear function of vectors (a coordinate-independent,
basis-independent geometric object). Insert into the tensor I the body’s angular ve-
locity vector �, and you get out the body’s angular momentum vector: J= I(�). No
coordinates or basis vectors are needed for this law of physics, nor is any description
of I as a matrix-like entity with components Iij required. Components are secondary;
they only exist after one has chosen a set of basis vectors. Components (we claim)
are an impediment to a clear and deep understanding of the laws of classical physics.
The coordinate-free, component-free description is deeper, and—once one becomes
accustomed to it—much more clear and understandable.2

2. This philosophy is also appropriate for quantum mechanics (see Box 1.2) and, especially, quantum field
theory, where it is the invariance of the description under gauge and other symmetry operations that
is the powerful principle. However, its implementation there is less direct, simply because the spaces in
which these symmetries lie are more abstract and harder to conceptualize.

6 Chapter 1. Newtonian Physics: Geometric Viewpoint
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By adopting this geometric viewpoint, we gain great conceptual power and often
also computational power. For example, when we ignore experiment and simply ask
what forms the laws of physics can possibly take (what forms are allowed by the
requirement that the laws be geometric), we shall find that there is remarkably little
freedom. Coordinate independence and basis independence strongly constrain the
laws of physics.3

This power, together with the elegance of the geometric formulation, suggests that
in some deep sense, Nature’s physical laws are geometric and have nothing whatsoever
to do with coordinates or components or vector bases.

1.1.21.1.2 Purposes of This Chapter

The principal purpose of this foundational chapter is to teach the reader this geometric
viewpoint.

The mathematical foundation for our geometric viewpoint is differential geometry
(also called “tensor analysis” by physicists). Differential geometry can be thought of as
an extension of the vector analysis with which all readers should be familiar. A second
purpose of this chapter is to develop key parts of differential geometry in a simple form
well adapted to Newtonian physics.

1.1.31.1.3 Overview of This Chapter

In this chapter, we lay the geometric foundations for the Newtonian laws of physics in
flat Euclidean space. We begin in Sec. 1.2 by introducing some foundational geometric
concepts: points, scalars, vectors, inner products of vectors, and the distance between
points. Then in Sec. 1.3, we introduce the concept of a tensor as a linear function
of vectors, and we develop a number of geometric tools: the tools of coordinate-free
tensor algebra. In Sec. 1.4, we illustrate our tensor-algebra tools by using them to
describe—without any coordinate system—the kinematics of a charged point particle
that moves through Euclidean space, driven by electric and magnetic forces.

In Sec. 1.5, we introduce, for the first time, Cartesian coordinate systems and their
basis vectors, and also the components of vectors and tensors on those basis vectors;
and we explore how to express geometric relationships in the language of components.
In Sec. 1.6, we deduce how the components of vectors and tensors transform when
one rotates the chosen Cartesian coordinate axes. (These are the transformation laws
that most physics textbooks use to define vectors and tensors.)

In Sec. 1.7, we introduce directional derivatives and gradients of vectors and ten-
sors, thereby moving from tensor algebra to true differential geometry (in Euclidean
space). We also introduce the Levi-Civita tensor and use it to define curls and cross

3. Examples are the equation of elastodynamics (12.4b) and the Navier-Stokes equation of fluid mechanics
(13.69), which are both dictated by momentum conservation plus the form of the stress tensor [Eqs.
(11.18), (13.43), and (13.68)]—forms that are dictated by the irreducible tensorial parts (Box 11.2) of
the strain and rate of strain.

1.1 Introduction 7
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products, and we learn how to use index gymnastics to derive, quickly, formulas for
multiple cross products. In Sec. 1.8, we use the Levi-Civita tensor to define vectorial
areas, scalar volumes, and integration over surfaces. These concepts then enable us to
formulate, in geometric, coordinate-free ways, integral and differential conservation
laws. In Sec. 1.9, we discuss, in particular, the law of momentum conservation, formu-
lating it in a geometric way with the aid of a geometric object called the stress tensor.
As important examples, we use this geometric conservation law to derive and discuss
the equations of Newtonian fluid dynamics, and the interaction between a charged
medium and an electromagnetic field. We conclude in Sec. 1.10 with some concepts
from special relativity that we shall need in our discussions of Newtonian physics.

1.2 1.2 Foundational Concepts

In this section, we sketch the foundational concepts of Newtonian physics without
using any coordinate system or basis vectors. This is the geometric viewpoint that we
advocate.

space and time The arena for the Newtonian laws of physics is a spacetime composed of the
familiar 3-dimensional Euclidean space of everyday experience (which we call 3-
space) and a universal time t . We denote points (locations) in 3-space by capital script
letters, such as P and Q. These points and the 3-space in which they live require no
coordinates for their definition.

scalar A scalar is a single number. We are most interested in scalars that directly represent
physical quantities (e.g., temperature T ). As such, they are real numbers, and when
they are functions of location P in space [e.g., T (P)], we call them scalar fields.
However, sometimes we will work with complex numbers—most importantly in
quantum mechanics, but also in various Fourier representations of classical physics.

vector A vector in Euclidean 3-space can be thought of as a straight arrow (or more
formally a directed line segment) that reaches from one point, P, to another, Q (e.g.,
the arrow�x in Fig. 1.1a). Equivalently,�x can be thought of as a direction at P and
a number, the vector’s length. Sometimes we shall select one point O in 3-space as an
“origin” and identify all other points, say, Q and P, by their vectorial separations xQ
and xP from that origin.

The Euclidean distance�σ between two points P and Q in 3-space can be mea-distance and length
sured with a ruler and so, of course, requires no coordinate system for its definition.
(If one does have a Cartesian coordinate system, then�σ can be computed by the Py-
thagorean formula, a precursor to the invariant interval of flat spacetime; Sec. 2.2.3.)
This distance �σ is also the length |�x| of the vector �x that reaches from P to Q,
and the square of that length is denoted

|�x|2 ≡ (�x)2 ≡ (�σ)2. (1.2)

Of particular importance is the case when P and Q are neighboring points and
�x is a differential (infinitesimal) quantity dx. This infinitesimal displacement is a
more fundamental physical quantity than the finite �x. To create a finite vector out

8 Chapter 1. Newtonian Physics: Geometric Viewpoint
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FIGURE 1.1 (a) A Euclidean 3-space diagram depicting two points P and Q,
their respective vectorial separations xP and xQ from the (arbitrarily chosen)
origin O, and the vector �x = xQ − xP connecting them. (b) A curve P(λ)
generated by laying out a sequence of infinitesimal vectors, tail-to-tip.

of infinitesimal vectors, one has to add several infinitesimal vectors head to tail, head
to tail, and so on, and then take a limit. This involves translating a vector from one
point to the next. There is no ambiguity about doing this in flat Euclidean space using
the geometric notion of parallelism.4 This simple property of Euclidean space enables
us to add (and subtract) vectors at a point. We attach the tail of a second vector to the
head of the first vector and then construct the sum as the vector from the tail of the
first to the head of the second, or vice versa, as should be quite familiar. The point is
that we do not need to add the Cartesian components to sum vectors.

We can also rotate vectors about their tails by pointing them along a different
direction in space. Such a rotation can be specified by two angles. The space that is
defined by all possible changes of length and direction at a point is called that point’s
tangent space. Again, we generally view the rotation as being that of a physical vector tangent space
in space, and not, as it is often useful to imagine, the rotation of some coordinate
system’s basis vectors, with the chosen vector itself kept fixed.

We can also construct a path through space by laying down a sequence of infinites-
curveimal dxs, tail to head, one after another. The resulting path is a curve to which these

dxs are tangent (Fig. 1.1b). The curve can be denoted P(λ), with λ a parameter along
the curve and P(λ) the point on the curve whose parameter value is λ, or x(λ)where
x is the vector separation of P from the arbitrary origin O. The infinitesimal vectors
that map the curve out are dx = (dP/dλ) dλ= (dx/dλ) dλ, and dP/dλ= dx/dλ
is the tangent vector to the curve. tangent vector

If the curve followed is that of a particle, and the parameter λ is time t , then we
have defined the velocity v ≡ dx/dt . In effect we are multiplying the vector dx by the
scalar 1/dt and taking the limit. Performing this operation at every point P in the
space occupied by a fluid defines the fluid’s velocity field v(x). Multiplying a particle’s
velocity v by its scalar mass gives its momentum p=mv. Similarly, the difference dv

4. The statement that there is just one choice of line parallel to a given line, through a point not lying on
the line, is the famous fifth axiom of Euclid.

1.2 Foundational Concepts 9
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of two velocity measurements during a time interval dt , multiplied by 1/dt , generates
the particle’s acceleration a = dv/dt . Multiplying by the particle’s mass gives the force
F=ma that produced the acceleration; dividing an electrically produced force by the
particle’s charge q gives the electric field E = F/q . And so on.

We can define inner products [see Eq. (1.4a) below] and cross products [Eq.
(1.22a)] of pairs of vectors at the same point geometrically; then using those vectors
we can define, for example, the rate that work is done by a force and a particle’s angular
momentum about a point.

These two products can be expressed geometrically as follows. If we allow the two
vectors to define a parallelogram, then their cross product is the vector orthogonal
to the parallelogram with length equal to the parallelogram’s area. If we first rotate
one vector through a right angle in a plane containing the other, and then define the
parallelogram, its area is the vectors’ inner product.

derivatives of scalars and
vectors

We can also define spatial derivatives. We associate the difference of a scalar
between two points separated by dx at the same time with a gradient and, likewise,
go on to define the scalar divergence and the vector curl. The freedom to translate
vectors from one point to the next also underlies the association of a single vector
(e.g., momentum) with a group of particles or an extended body. One simply adds all
the individual momenta, taking a limit when necessary.

In this fashion (which should be familiar to the reader and will be elucidated,
formalized, and generalized below), we can construct all the standard scalars and
vectors of Newtonian physics. What is important is that these physical quantities
require no coordinate system for their definition. They are geometric (coordinate-
independent) objects residing in Euclidean 3-space at a particular time.

Geometric Principle It is a fundamental (though often ignored) principle of physics that the Newtonian
physical laws are all expressible as geometric relationships among these types of geometric
objects, and these relationships do not depend on any coordinate system or orientation
of axes, nor on any reference frame (i.e., on any purported velocity of the Euclidean
space in which the measurements are made).5 We call this the Geometric Principle for
the laws of physics, and we use it throughout this book. It is the Newtonian analog of
Einstein’s Principle of Relativity (Sec. 2.2.2).

1.3 1.3 Tensor Algebra without a Coordinate System

In preparation for developing our geometric view of physical laws, we now intro-
duce, in a coordinate-free way, some fundamental concepts of differential geometry:
tensors, the inner product, the metric tensor, the tensor product, and contraction of
tensors.

We have already defined a vector A as a straight arrow from one point, say P, in our
space to another, say Q. Because our space is flat, there is a unique and obvious way to

5. By changing the velocity of Euclidean space, one adds a constant velocity to all particles, but this leaves
the laws (e.g., Newton’s F=ma) unchanged.

10 Chapter 1. Newtonian Physics: Geometric Viewpoint
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FIGURE 1.2 A rank-3 tensor T.

transport such an arrow from one location to another, keeping its length and direction
unchanged.6 Accordingly, we shall regard vectors as unchanged by such transport.
This enables us to ignore the issue of where in space a vector actually resides; it is
completely determined by its direction and its length.

tensorA rank-n tensor T is, by definition, a real-valued linear function of n vectors.7

Pictorially we regard T as a box (Fig. 1.2) with n slots in its top, into which are inserted
n vectors, and one slot in its end, which prints out a single real number: the value that
the tensor T has when evaluated as a function of the n inserted vectors. Notationally
we denote the tensor by a boldfaced sans-serif character T:

T( , , ,︸ ︷︷ ︸)
↖ n slots in which to put the vectors.

(1.3a)

This definition of a tensor is very different (and far simpler) than the one found in
most standard physics textbooks (e.g., Marion and Thornton, 1995; Jackson, 1999;
Griffiths, 1999). There, a tensor is an array of numbers that transform in a particular
way under rotations. We shall learn the connection between these definitions in
Sec. 1.6 below.

To illustrate this approach, if T is a rank-3 tensor (has 3 slots) as in Fig. 1.2, then
its value on the vectors A, B, C is denoted T(A, B, C). Linearity of this function can
be expressed as

T(eE + f F, B, C)= eT(E, B, C)+ f T(F, B, C), (1.3b)

where e and f are real numbers, and similarly for the second and third slots.
inner productWe have already defined the squared length (A)2≡A2 of a vector A as the squared

distance between the points at its tail and its tip. The inner product (also called the
dot product) A . B of two vectors is defined in terms of this squared length by

A . B≡ 1
4

[
(A+ B)2 − (A− B)2

]
. (1.4a)

In Euclidean space, this is the standard inner product, familiar from elementary
geometry and discussed above in terms of the area of a parallelogram.

6. This is not so in curved spaces, as we shall see in Sec. 24.3.4.
7. This is a different use of the word rank than for a matrix, whose rank is its number of linearly independent

rows or columns.
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One can show that the inner product (1.4a) is a real-valued linear function of each
of its vectors. Therefore, we can regard it as a tensor of rank 2. When so regarded, the
inner product is denoted g( , ) and is called the metric tensor. In other words, themetric tensor

metric tensor g is that linear function of two vectors whose value is given by

g(A, B)≡ A . B. (1.4b)

Notice that, because A . B= B . A, the metric tensor is symmetric in its two slots—
one gets the same real number independently of the order in which one inserts the
two vectors into the slots:

g(A, B)= g(B, A). (1.4c)

With the aid of the inner product, we can regard any vector A as a tensor of rank
one: the real number that is produced when an arbitrary vector C is inserted into A’s
single slot is

A(C)≡ A . C. (1.4d)

In Newtonian physics, we rarely meet tensors of rank higher than two. However,
second-rank tensors appear frequently—often in roles where one sticks a single vector
into the second slot and leaves the first slot empty, thereby producing a single-slotted
entity, a vector. An example that we met in Sec. 1.1.1 is a rigid body’s moment-of-
inertia tensor I( , ), which gives us the body’s angular momentum J( )= I( , �)
when its angular velocity � is inserted into its second slot.8 Another example is the
stress tensor of a solid, a fluid, a plasma, or a field (Sec. 1.9 below).

tensor product From three vectors A, B, C, we can construct a tensor, their tensor product (also
called outer product in contradistinction to the inner product A . B), defined as
follows:

A⊗ B⊗ C(E, F, G)≡ A(E)B(F)C(G)= (A . E)(B . F)(C . G). (1.5a)

Here the first expression is the notation for the value of the new tensor, A⊗ B⊗ C
evaluated on the three vectors E, F, G; the middle expression is the ordinary product
of three real numbers, the value of A on E, the value of B on F, and the value of C
on G; and the third expression is that same product with the three numbers rewritten
as scalar products. Similar definitions can be given (and should be obvious) for the
tensor product of any number of vectors, and of any two or more tensors of any rank;
for example, if T has rank 2 and S has rank 3, then

T⊗ S(E, F, G, H, J)≡ T(E, F)S(G, H, J). (1.5b)

One last geometric (i.e., frame-independent) concept we shall need is contraction.contraction

We illustrate this concept first by a simple example, then give the general definition.

8. Actually, it doesn’t matter which slot, since I is symmetric.
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From two vectors A and B we can construct the tensor product A ⊗ B (a second-
rank tensor), and we can also construct the scalar product A . B (a real number, i.e., a
scalar, also known as a rank-0 tensor). The process of contraction is the construction
of A . B from A⊗ B:

contraction(A⊗ B)≡ A . B. (1.6a)

One can show fairly easily using component techniques (Sec. 1.5 below) that any
second-rank tensor T can be expressed as a sum of tensor products of vectors, T =
A⊗ B+ C⊗D+ . . . . Correspondingly, it is natural to define the contraction of T

to be contraction(T)=A . B+ C . D+ . . . . Note that this contraction process lowers
the rank of the tensor by two, from 2 to 0. Similarly, for a tensor of rank n one can
construct a tensor of rank n − 2 by contraction, but in this case one must specify
which slots are to be contracted. For example, if T is a third-rank tensor, expressible
as T= A⊗ B⊗ C+ E⊗ F⊗G+ . . ., then the contraction of T on its first and third
slots is the rank-1 tensor (vector)

1&3contraction(A⊗ B⊗ C + E ⊗ F⊗ G+ . . .)≡ (A . C)B+ (E . G)F+ . . . .
(1.6b)

Unfortunately, there is no simple index-free notation for contraction in common use.
All the concepts developed in this section (vector, tensor, metric tensor, inner

product, tensor product, and contraction of a tensor) can be carried over, with no
change whatsoever, into any vector space9 that is endowed with a concept of squared
length—for example, to the 4-dimensional spacetime of special relativity (next
chapter).

1.41.4 Particle Kinetics and Lorentz Force in Geometric Language

In this section, we illustrate our geometric viewpoint by formulating Newton’s laws
of motion for particles.

In Newtonian physics, a classical particle moves through Euclidean 3-space as
universal time t passes. At time t it is located at some point x(t) (its position). The

trajectory, velocity,
momentum, acceleration,
and energy

function x(t) represents a curve in 3-space, the particle’s trajectory. The particle’s
velocity v(t) is the time derivative of its position, its momentum p(t) is the product of
its mass m and velocity, its acceleration a(t) is the time derivative of its velocity, and
its kinetic energy E(t) is half its mass times velocity squared:

v(t)= dx
dt

, p(t)=mv(t), a(t)= dv
dt
= d

2x
dt2

, E(t)= 1
2
mv2. (1.7a)

9. Or, more precisely, any vector space over the real numbers. If the vector space’s scalars are complex
numbers, as in quantum mechanics, then slight changes are needed.
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Since points in 3-space are geometric objects (defined independently of any coordi-
nate system), so also are the trajectory x(t), the velocity, the momentum, the acceler-
ation, and the energy. (Physically, of course, the velocity has an ambiguity; it depends
on one’s standard of rest.)

Newton’s second law of motion states that the particle’s momentum can change
only if a force F acts on it, and that its change is given by

dp/dt =ma = F. (1.7b)

If the force is produced by an electric field E and magnetic field B, then this law of
motion in SI units takes the familiar Lorentz-force form

dp/dt = q(E + v × B). (1.7c)

(Here we have used the vector cross product, with which the reader should be familiar,
and which will be discussed formally in Sec. 1.7.)

laws of motion The laws of motion (1.7) are geometric relationships among geometric objects.
Let us illustrate this using something very familiar, planetary motion. Consider a
light planet orbiting a heavy star. If there were no gravitational force, the planet
would continue in a straight line with constant velocity v and speed v = |v|, sweeping
out area A at a rate dA/dt = rvt/2, where r is the radius, and vt is the tangential
speed. Elementary geometry equates this to the constant vb/2, where b is the impact
parameter—the smallest separation from the star. Now add a gravitational force F and
let it cause a small radial impulse. A second application of geometry showed Newton
that the product rvt/2 is unchanged to first order in the impulse, and he recovered
Kepler’s second law (dA/dt = const) without introducing coordinates.10

Contrast this approach with one relying on coordinates. For example, one in-
troduces an (r , φ) coordinate system, constructs a lagrangian and observes that the
coordinate φ is ignorable; then the Euler-Lagrange equations immediately imply the
conservation of angular momentum, which is equivalent to Kepler’s second law. So,
which of these two approaches is preferable? The answer is surely “both!” Newton
wrote the Principia in the language of geometry at least partly for a reason that remains
valid today: it brought him a quick understanding of fundamental laws of physics.
Lagrange followed his coordinate-based path to the function that bears his name,
because he wanted to solve problems in celestial mechanics that would not yield to

10. Continuing in this vein, when the force is inverse square, as it is for gravity and electrostatics, we can
use Kepler’s second law to argue that when the orbit turns through a succession of equal angles dθ ,
its successive changes in velocity dv = adt (with a the gravitational acceleration) all have the same
magnitude |dv| and have the same angles dθ from one to another. So, if we trace the head of the velocity
vector in velocity space, it follows a circle. The circle is not centered on zero velocity when the eccentricity
is nonzero but there exists a reference frame in which the speed of the planet is constant. This graphical
representation is known as a hodograph, and similar geometrical approaches are used in fluid mechanics.
For Richard Feynman’s masterful presentation of these ideas to first-year undergraduates, see Goodstein
and Goodstein (1996).
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Newton’s approach. So it is today. Geometry and analysis are both indispensible. In the
domain of classical physics, the geometry is of greater importance in deriving and un-
derstanding fundamental laws and has arguably been underappreciated; coordinates
hold sway when we apply these laws to solve real problems. Today, both old and new
laws of physics are commonly expressed geometrically, using lagrangians, hamiltoni-
ans, and actions, for example Hamilton’s action principle δ

∫
Ldt = 0 where L is the

coordinate-independent lagrangian. Indeed, being able to do this without introducing
coordinates is a powerful guide to deriving these laws and a tool for comprehending
their implications.

symmetry and
conservation laws

A comment is needed on the famous connection between symmetry and conserva-
tion laws.In our example above, angular momentum conservation followed from axial
symmetry which was embodied in the lagrangian’s independence of the angle φ; but
we also deduced it geometrically. This is usually the case in classical physics; typically,
we do not need to introduce a specific coordinate system to understand symmetry
and to express the associated conservation laws. However, symmetries are sometimes
well hidden, for example with a nutating top, and coordinate transformations are then
usually the best approach to uncover them.

Often in classical physics, real-world factors invalidate or complicate Lagrange’s
and Hamilton’s coordinate-based analytical dynamics, and so one is driven to geo-
metric considerations. As an example, consider a spherical marble rolling on a flat
horizontal table. The analytical dynamics approach is to express the height of the
marble’s center of mass and the angle of its rotation as constraints and align the basis
vectors so there is a single horizontal coordinate defined by the initial condition. It is
then deduced that linear and angular momenta are conserved. Of course that result
is trivial and just as easily gotten without this formalism. However, this model is also
used for many idealized problems where the outcome is far from obvious and the ap-
proach is brilliantly effective. But consider the real world in which tables are warped
and bumpy, marbles are ellipsoidal and scratched, air imposes a resistance, and wood
and glass comprise polymers that attract one another. And so on. When one includes
these factors, it is to geometry that one quickly turns to understand the real marble’s
actual dynamics. Even ignoring these effects and just asking what happens when the
marble rolls off the edge of a table introduces a nonholonomic constraint, and figuring
out where it lands and how fast it is spinning are best addressed not by the methods of
Lagrange and Hamilton, but instead by considering the geometry of the gravitational
and reaction forces. In the following chapters, we shall encounter many examples
where we have to deal with messy complications like these.

EXERCISESExercise 1.1 Practice: Energy Change for Charged Particle
Without introducing any coordinates or basis vectors, show that when a particle with
charge q interacts with electric and magnetic fields, its kinetic energy changes at a rate

dE/dt = q v . E. (1.8)
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Exercise 1.2 Practice: Particle Moving in a Circular Orbit
Consider a particle moving in a circle with uniform speed v = |v| and uniform
magnitude a = |a| of acceleration. Without introducing any coordinates or basis
vectors, do the following.

(a) At any moment of time, let n= v/v be the unit vector pointing along the velocity,
and let s denote distance that the particle travels in its orbit. By drawing a picture,
show that dn/ds is a unit vector that points to the center of the particle’s circular
orbit, divided by the radius of the orbit.

(b) Show that the vector (not unit vector) pointing from the particle’s location to the
center of its orbit is (v/a)2a.

1.5 1.5 Component Representation of Tensor Algebra

Cartesian coordinates and
orthonormal basis vectors

In the Euclidean 3-space of Newtonian physics, there is a unique set of orthonormal
basis vectors {ex , ey , ez} ≡ {e1, e2, e3} associated with any Cartesian coordinate system
{x , y , z} ≡ {x1, x2, x3} ≡ {x1, x2, x3}. (In Cartesian coordinates in Euclidean space,
we usually place indices down, but occasionally we place them up. It doesn’t matter.
By definition, in Cartesian coordinates a quantity is the same whether its index is
down or up.) The basis vector ej points along the xj coordinate direction, which is
orthogonal to all the other coordinate directions, and it has unit length (Fig. 1.3), so

ej . ek = δjk , (1.9a)

where δjk is the Kronecker delta.
Any vector A in 3-space can be expanded in terms of this basis:

A= Ajej . (1.9b)

Here and throughout this book, we adopt the Einstein summation convention: repeatedEinstein summation
convention indices (in this case j ) are to be summed (in this 3-space case over j = 1, 2, 3), unless
Cartesian components of a
vector

otherwise instructed. By virtue of the orthonormality of the basis, the components
Aj of A can be computed as the scalar product

Aj = A . ej . (1.9c)

[The proof of this is straightforward: A . ej = (Akek) . ej = Ak(ek . ej ) = Akδkj =
Aj .]

Any tensor, say, the third-rank tensor T( , , ), can be expanded in terms of
tensor products of the basis vectors:

T = Tijkei ⊗ ej ⊗ ek . (1.9d)
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FIGURE 1.3 The orthonormal basis vectors
ej associated with a Euclidean coordi-
nate system in Euclidean 3-space.

The components Tijk of T can be computed from T and the basis vectors by the Cartesian components of a
tensorgeneralization of Eq. (1.9c):

Tijk = T(ei , ej , ek). (1.9e)

[This equation can be derived using the orthonormality of the basis in the same way
as Eq. (1.9c) was derived.] As an important example, the components of the metric
tensor are gjk = g(ej , ek)= ej . ek = δjk [where the first equality is the method (1.9e)
of computing tensor components, the second is the definition (1.4b) of the metric, and
the third is the orthonormality relation (1.9a)]:

gjk = δjk . (1.9f)

The components of a tensor product [e.g., T( , , )⊗ S( , )] are easily de-
duced by inserting the basis vectors into the slots [Eq. (1.9e)]; they are T(ei , ej , ek)⊗
S(el , em)= TijkSlm [cf. Eq. (1.5a)]. In words, the components of a tensor product are
equal to the ordinary arithmetic product of the components of the individual tensors.

In component notation, the inner product of two vectors and the value of a tensor
when vectors are inserted into its slots are given by

A . B= AjBj , T(A, B, C)= TijkAiBjCk , (1.9g)

as one can easily show using previous equations. Finally, the contraction of a tensor
[say, the fourth-rank tensor R( , , , )] on two of its slots (say, the first and
third) has components that are easily computed from the tensor’s own components:

components of [1&3contraction of R]= Rijik . (1.9h)

Note thatRijik is summed on the i index, so it has only two free indices, j and k, and
thus is the component of a second-rank tensor, as it must be if it is to represent the
contraction of a fourth-rank tensor.

1.5.11.5.1 Slot-Naming Index Notation

We now pause in our development of the component version of tensor algebra to
introduce a very important new viewpoint.
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BOX 1.2. VECTORS AND TENSORS IN QUANTUM THEORY

The laws of quantum theory, like all other laws of Nature, can be expressed as
geometric relationships among geometric objects. Most of quantum theory’s
geometric objects, like those of classical theory, are vectors and tensors: the
quantum state |ψ〉 of a physical system (e.g., a particle in a harmonic-oscillator
potential) is a Hilbert-space vector—a generalization of a Euclidean-space
vector A. There is an inner product, denoted 〈φ|ψ〉, between any two states
|φ〉 and |ψ〉, analogous to B . A; but B . A is a real number, whereas 〈φ|ψ〉 is
a complex number (and we add and subtract quantum states with complex-
number coefficients). The Hermitian operators that represent observables
(e.g., the hamiltonian Ĥ for the particle in the potential) are two-slotted
(second-rank), complex-valued functions of vectors; 〈φ|Ĥ |ψ〉 is the complex
number that one gets when one inserts φ and ψ into the first and second
slots of Ĥ . Just as, in Euclidean space, we get a new vector (first-rank tensor)
T( , A) when we insert the vector A into the second slot of T, so in quantum
theory we get a new vector (physical state) Ĥ |ψ〉 (the result of letting Ĥ “act
on” |ψ〉) when we insert |ψ〉 into the second slot of Ĥ . In these senses, we can
regard T as a linear map of Euclidean vectors into Euclidean vectors and Ĥ as
a linear map of states (Hilbert-space vectors) into states.

For the electron in the hydrogen atom, we can introduce a set of
orthonormal basis vectors {|1〉, |2〉, |3〉, . . .}, that is, the atom’s energy
eigenstates, with 〈m|n〉 = δmn. But by contrast with Newtonian physics,
where we only need three basis vectors (because our Euclidean space is 3-
dimensional), for the particle in a harmonic-oscillator potential, we need an
infinite number of basis vectors (since the Hilbert space of all states is infinite-
dimensional). In the particle’s quantum-state basis, any observable (e.g., the
particle’s position x̂ or momentum p̂) has components computed by inserting
the basis vectors into its two slots: xmn = 〈m|x̂|n〉, and pmn = 〈m|p̂|n〉. In this
basis, the operator x̂p̂ (which maps states into states) has components xjkpkm
(a matrix product), and the noncommutation of position and momentum
[x̂ , p̂]= i� (an important physical law) is expressible in terms of components
as xjkpkm − pjkxkm = i�δjm.

Consider the rank-2 tensor F( , ). We can define a new tensor G( , ) to be
the same as F, but with the slots interchanged: i.e., for any two vectors A and B, it is
true that G(A, B)= F(B, A). We need a simple, compact way to indicate that F and
G are equal except for an interchange of slots. The best way is to give the slots names,
say a and b—i.e., to rewrite F( , ) as F( a , b) or more conveniently as Fab, and
then to write the relationship between G and F as Gab = Fba. “NO!” some readers
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might object. This notation is indistinguishable from our notation for components on
a particular basis. “GOOD!” a more astute reader will exclaim. The relationGab = Fba
in a particular basis is a true statement if and only if “G= F with slots interchanged”
is true, so why not use the same notation to symbolize both? In fact, we shall do
this. We ask our readers to look at any “index equation,” such asGab = Fba, like they
would look at an Escher drawing: momentarily think of it as a relationship between
components of tensors in a specific basis; then do a quick mind-flip and regard it quite
differently, as a relationship between geometric, basis-independent tensors with the
indices playing the roles of slot names. This mind-flip approach to tensor algebra will
pay substantial dividends.

slot-naming index notationAs an example of the power of this slot-naming index notation, consider the con-
traction of the first and third slots of a third-rank tensor T. In any basis the components
of 1&3contraction(T) are Taba; cf. Eq. (1.9h). Correspondingly, in slot-naming index
notation we denote 1&3contraction(T) by the simple expression Taba. We can think
of the first and third slots as annihilating each other by the contraction, leaving free
only the second slot (named b) and therefore producing a rank-1 tensor (a vector).

We should caution that the phrase “slot-naming index notation” is unconventional.
You are unlikely to find it in any other textbooks. However, we like it. It says precisely
what we want it to say.

1.5.21.5.2 Particle Kinetics in Index Notation

As an example of slot-naming index notation, we can rewrite the equations of particle
kinetics (1.7) as follows:

vi = dxi
dt

, pi =mvi , ai = dvi
dt
= d

2xi
dt2

,

E = 1
2
mvjvj , dpi

dt
= q(Ei + εijkvjBk). (1.10)

(In the last equation εijk is the so-called Levi-Civita tensor, which is used to produce
the cross product; we shall learn about it in Sec. 1.7. And note that the scalar energy
E must not be confused with the electric field vector Ei.)

Equations (1.10) can be viewed in either of two ways: (i) as the basis-independent
geometric laws v = dx/dt , p=mv, a = dv/dt = d2x/dt2, E = 1

2mv2, and dp/dt =
q(E + v × B) written in slot-naming index notation; or (ii) as equations for the
components of v, p, a, E, and B in some particular Cartesian coordinate system.

EXERCISESExercise 1.3 Derivation: Component Manipulation Rules
Derive the component manipulation rules (1.9g) and (1.9h).

Exercise 1.4 Example and Practice: Numerics of Component Manipulations
The third-rank tensor S( , , ) and vectors A and B have as their only nonzero
components S123 = S231 = S312 = +1, A1 = 3, B1 = 4, B2 = 5. What are the
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components of the vector C= S(A, B, ), the vector D= S(A, , B), and the tensor
W = A⊗ B?

[Partial solution: In component notation, Ck = SijkAiBj , where (of course) we
sum over the repeated indices i and j . This tells us that C1= S231A2B3, because
S231 is the only component of S whose last index is a 1; this in turn implies that
C1= 0, since A2 = 0. Similarly, C2 = S312A3B1= 0 (because A3= 0). Finally, C3=
S123A1B2 =+1× 3× 5= 15. Also, in component notation Wij = AiBj , so W11=
A1× B1= 3× 4 = 12, and W12 = A1× B2 = 3× 5= 15. Here the × stands for
numerical multiplication, not the vector cross product.]

Exercise 1.5 Practice: Meaning of Slot-Naming Index Notation
(a) The following expressions and equations are written in slot-naming index nota-

tion. Convert them to geometric, index-free notation:AiBjk,AiBji, Sijk = Skji,
AiBi = AiBjgij .

(b) The following expressions are written in geometric, index-free notation. Convert
them to slot-naming index notation: T( , , A), T( , S(B, ), ).

1.6 1.6 Orthogonal Transformations of Bases

Consider two different Cartesian coordinate systems {x , y , z} ≡ {x1, x2, x3}, and
{x̄ , ȳ , z̄} ≡ {x1̄, x2̄, x3̄}. Denote by {ei} and {ep̄} the corresponding bases. It is possible
to expand the basis vectors of one basis in terms of those of the other. We denote the
expansion coefficients by the letter R and write

ei = ep̄Rp̄i , ep̄ = eiRip̄. (1.11)

The quantities Rp̄i and Rip̄ are not the components of a tensor; rather, they are the
elements of transformation matrices

[Rp̄i]=
⎡⎢⎣ R1̄1 R1̄2 R1̄3

R2̄1 R2̄2 R2̄3

R3̄1 R3̄2 R3̄3

⎤⎥⎦, [Rip̄]=
⎡⎢⎣ R11̄ R12̄ R13̄

R21̄ R22̄ R23̄

R31̄ R32̄ R33̄

⎤⎥⎦. (1.12a)

(Here and throughout this book we use square brackets to denote matrices.) These
two matrices must be the inverse of each other, since one takes us from the barred basis
to the unbarred, and the other in the reverse direction, from unbarred to barred:

Rp̄iRiq̄ = δp̄q̄ , Rip̄Rp̄j = δij . (1.12b)

The orthonormality requirement for the two bases implies that δij = ei . ej =
(ep̄Rp̄i) . (eq̄Rq̄j) = Rp̄iRq̄j(ep̄ . eq̄) = Rp̄iRq̄jδp̄q̄ = Rp̄iRp̄j. This says that the
transpose of [Rp̄i] is its inverse—which we have already denoted by [Rip̄]:

[Rip̄]≡ inverse
(
[Rp̄i]
)= transpose

(
[Rp̄i]
)
. (1.12c)
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This property implies that the transformation matrix is orthogonal, so the transfor- orthogonal transformation
and rotationmation is a reflection or a rotation (see, e.g., Goldstein, Poole, and Safko, 2002). Thus

(as should be obvious and familiar), the bases associated with any two Euclidean co-
ordinate systems are related by a reflection or rotation, and the matrices (1.12a) are
called rotation matrices. Note that Eq. (1.12c) does not say that [Rip̄] is a symmetric
matrix. In fact, most rotation matrices are not symmetric [see, e.g., Eq. (1.14)].

The fact that a vector A is a geometric, basis-independent object implies that
A= Aiei = Ai(ep̄Rp̄i)= (Rp̄iAi)ep̄ = Ap̄ep̄:

Ap̄ = Rp̄iAi , and similarly, Ai = Rip̄Ap̄; (1.13a)

and correspondingly for the components of a tensor:

Tp̄q̄r̄ = Rp̄iRq̄jRr̄kTijk , Tijk = Rip̄Rjq̄Rkr̄Tp̄q̄r̄ . (1.13b)

It is instructive to compare the transformation law (1.13a) for the components of
a vector with Eqs. (1.11) for the bases. To make these laws look natural, we have
placed the transformation matrix on the left in the former and on the right in the
latter. In Minkowski spacetime (Chap. 2), the placement of indices, up or down, will
automatically tell us the order.

If we choose the origins of our two coordinate systems to coincide, then the vector
x reaching from the common origin to some point P, whose coordinates arexj andxp̄,
has components equal to those coordinates; and as a result, the coordinates themselves
obey the same transformation law as any other vector:

xp̄ = Rp̄ixi , xi = Rip̄xp̄ . (1.13c)

The product of two rotation matrices [Rip̄Rp̄ ¯̄s] is another rotation matrix [Ri ¯̄s],
which transforms the Cartesian bases e ¯̄s to ei. Under this product rule, the rotation

rotation groupmatrices form a mathematical group: the rotation group, whose group representations
play an important role in quantum theory.

EXERCISESExercise 1.6 **Example and Practice: Rotation in x-y Plane
Consider two Cartesian coordinate systems rotated with respect to each other in the
x-y plane as shown in Fig. 1.4.
(a) Show that the rotation matrix that takes the barred basis vectors to the unbarred

basis vectors is

[Rp̄i]=
⎡⎢⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤⎥⎦, (1.14)

and show that the inverse of this rotation matrix is, indeed, its transpose, as it
must be if this is to represent a rotation.

(b) Verify that the two coordinate systems are related by Eq. (1.13c).
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FIGURE 1.4 Two Cartesian coordinate systems {x , y , z} and
{x̄ , ȳ , z̄} and their basis vectors in Euclidean space, rotated
by an angle φ relative to each other in the x-y plane. The z- and
z̄-axes point out of the paper or screen and are not shown.

(c) Let Aj be the components of the electromagnetic vector potential that lies in
the x-y plane, so that Az = 0. The two nonzero components Ax and Ay can be
regarded as describing the two polarizations of an electromagnetic wave propa-
gating in the z direction. Show thatAx̄ + iAȳ = (Ax + iAy)e−iφ. One can show
(cf. Sec. 27.3.3) that the factor e−iφ implies that the quantum particle associ-
ated with the wave—the photon—has spin one [i.e., spin angular momentum
� = (Planck’s constant)/2π].

(d) Let hjk be the components of a symmetric tensor that is trace-free (its contraction
hjj vanishes) and is confined to the x-y plane (so hzk = hkz = 0 for all k). Then
the only nonzero components of this tensor are hxx = −hyy and hxy = hyx.
As we shall see in Sec. 27.3.1, this tensor can be regarded as describing the
two polarizations of a gravitational wave propagating in the z direction. Show
that hx̄x̄ + ihx̄ȳ = (hxx + ihxy)e−2iφ. The factor e−2iφ implies that the quantum
particle associated with the gravitational wave (the graviton) has spin two (spin
angular momentum 2�); cf. Eq. (27.31) and Sec. 27.3.3.

1.7 1.7 Differentiation of Scalars, Vectors, and Tensors; Cross Product and Curl

Consider a tensor field T(P) in Euclidean 3-space and a vector A. We define the
directional derivative directional derivative of T along A by the obvious limiting procedure

∇AT ≡ lim
ε→0

1
ε

[T(xP + εA)− T(xP)] (1.15a)

and similarly for the directional derivative of a vector field B(P) and a scalar field
ψ(P). [Here we have denoted points, e.g., P, by the vector xP that reaches from some
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arbitrary origin to the point, and T(xP) denotes the field’s dependence on location in
space; T’s slots and dependence on what goes into the slots are suppressed; and the
units of ε are chosen to ensure that εA has the same units as xP . There is no other
appearance of vectors in this chapter.] In definition (1.15a), the quantity in square
brackets is simply the difference between two linear functions of vectors (two tensors),
so the quantity on the left-hand side is also a tensor with the same rank as T.

It should not be hard to convince oneself that this directional derivative∇AT of any
tensor field T is linear in the vector A along which one differentiates. Correspondingly,
if T has rankn (n slots), then there is another tensor field, denoted∇T, with rankn+ 1,
such that

∇AT =∇T( , , , A). (1.15b)

Here on the right-hand side the first n slots (3 in the case shown) are left empty, and gradient
A is put into the last slot (the “differentiation slot”). The quantity ∇T is called the
gradient of T. In slot-naming index notation, it is conventional to denote this gradient
by Tabc;d , where in general the number of indices preceding the semicolon is the rank
of T. Using this notation, the directional derivative of T along A reads [cf. Eq. (1.15b)]
Tabc;jAj .

It is not hard to show that in any Cartesian coordinate system, the components of
the gradient are nothing but the partial derivatives of the components of the original
tensor, which we denote by a comma:

Tabc;j = ∂Tabc
∂xj

≡ Tabc ,j . (1.15c)

In a non-Cartesian basis (e.g., the spherical and cylindrical bases often used in electro-
magnetic theory), the components of the gradient typically are not obtained by simple
partial differentiation [Eq. (1.15c) fails] because of turning and/or length changes of
the basis vectors as we go from one location to another. In Sec. 11.8, we shall learn
how to deal with this by using objects called connection coefficients. Until then, we
confine ourselves to Cartesian bases, so subscript semicolons and subscript commas
(partial derivatives) can be used interchangeably.

Because the gradient and the directional derivative are defined by the same stan-
dard limiting process as one uses when defining elementary derivatives, they obey the
standard (Leibniz) rule for differentiating products:

∇A(S⊗ T)= (∇AS)⊗ T + S⊗∇AT,
or (SabTcde);jAj = (Sab;jAj)Tcde + Sab(Tcde;jAj); (1.16a)

and

∇A(f T)= (∇Af )T + f∇AT, or (f Tabc);jAj = (f;jAj)Tabc + f Tabc;jAj .

(1.16b)
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In an orthonormal basis these relations should be obvious: they follow from the
Leibniz rule for partial derivatives.

Because the components gab of the metric tensor are constant in any Cartesian
coordinate system, Eq. (1.15c) (which is valid in such coordinates) guarantees that
gab;j = 0; i.e., the metric has vanishing gradient:

∇g= 0, or gab;j = 0. (1.17)

From the gradient of any vector or tensor we can construct several other important
derivatives by contracting on slots:

1. Since the gradient ∇A of a vector field A has two slots, ∇A( , ), we can
contract its slots on each other to obtain a scalar field. That scalar field is the

divergence divergence of A and is denoted

∇ . A≡ (contraction of ∇A)= Aa ;a . (1.18)

2. Similarly, if T is a tensor field of rank 3, then Tabc;c is its divergence on its
third slot, and Tabc;b is its divergence on its second slot.

3. By taking the double gradient and then contracting on the two gradient slots
we obtain, from any tensor field T, a new tensor field with the same rank,

laplacian ∇2T ≡ (∇ . ∇)T , or Tabc;jj . (1.19)

Here and henceforth, all indices following a semicolon (or comma) represent
gradients (or partial derivatives):Tabc;jj ≡ Tabc;j ;j ,Tabc ,jk ≡ ∂2Tabc/∂xj∂xk.
The operator ∇2 is called the laplacian.

The metric tensor is a fundamental property of the space in which it lives; it
embodies the inner product and hence the space’s notion of distance. In addition to
the metric, there is one (and only one) other fundamental tensor that describes a piece
of Euclidean space’s geometry: the Levi-Civita tensor ε, which embodies the space’sLevi-Civita tensor

notion of volume.
In a Euclidean space with dimension n, the Levi-Civita tensor ε is a completely

antisymmetric tensor with rank n (with n slots). A parallelepiped whose edges are the
n vectors A, B, . . . , F is said to have the volume

volume volume= ε(A, B, . . . , F). (1.20)

(We justify this definition in Sec. 1.8.) Notice that this volume can be positive or
negative, and if we exchange the order of the parallelepiped’s legs, the volume’s sign
changes: ε(B, A, . . . , F)=−ε(A, B, . . . , F) by antisymmetry of ε.

It is easy to see (Ex. 1.7) that (i) the volume vanishes unless the legs are all linearly
independent, (ii) once the volume has been specified for one parallelepiped (one
set of linearly independent legs), it is thereby determined for all parallelepipeds,
and therefore, (iii) we require only one number plus antisymmetry to determine ε
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fully. If the chosen parallelepiped has legs that are orthonormal (all are orthogonal
to one another and all have unit length—properties determined by the metric g),
then it must have unit volume, or more precisely volume ±1. This is a compatibility
relation between g and ε. It is easy to see (Ex. 1.7) that (iv) ε is fully determined by its
antisymmetry, compatibility with the metric, and a single sign: the choice of which
parallelepipeds have positive volume and which have negative. It is conventional
in Euclidean 3-space to give right-handed parallelepipeds positive volume and left-
handed ones negative volume: ε(A, B, C) is positive if, when we place our right thumb
along C and the fingers of our right hand along A, then bend our fingers, they sweep
toward B and not−B.

These considerations dictate that in a right-handed orthonormal basis of Eu-
clidean 3-space, the only nonzero components of ε are

ε123=+1,

εabc =

⎧⎪⎨⎪⎩
+1 if a , b, c is an even permutation of 1, 2, 3
−1 if a , b, c is an odd permutation of 1, 2, 3
0 if a , b, c are not all different;

(1.21)

and in a left-handed orthonormal basis, the signs of these components are reversed.
cross product and curlThe Levi-Civita tensor is used to define the cross product and the curl:

A× B≡ ε( , A, B); in slot-naming index notation, εijkAjBk; (1.22a)

∇× A≡ (the vector field whose slot-naming index form is εijkAk;j ). (1.22b)

[Equation (1.22b) is an example of an expression that is complicated if stated in index-
free notation; it says that ∇×A is the double contraction of the rank-5 tensor ε⊗∇A
on its second and fifth slots, and on its third and fourth slots.]

Although Eqs. (1.22a) and (1.22b) look like complicated ways to deal with concepts
that most readers regard as familiar and elementary, they have great power. The power
comes from the following property of the Levi-Civita tensor in Euclidean 3-space
[readily derivable from its components (1.21)]:

εijmεklm = δijkl ≡ δikδjl − δil δjk . (1.23)

Here δi
k

is the Kronecker delta. Examine the 4-index delta function δijkl carefully; it says
that either the indices above and below each other must be the same (i = k and j = l)
with a+ sign, or the diagonally related indices must be the same (i = l and j = k) with
a− sign. [We have put the indices ij of δijkl up solely to facilitate remembering this rule.
Recall (first paragraph of Sec. 1.5) that in Euclidean space and Cartesian coordinates,
it does not matter whether indices are up or down.] With the aid of Eq. (1.23) and the
index-notation expressions for the cross product and curl, one can quickly and easily
derive a wide variety of useful vector identities; see the very important Ex. 1.8.
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EXERCISES Exercise 1.7 Derivation: Properties of the Levi-Civita Tensor
From its complete antisymmetry, derive the four properties of the Levi-Civita tensor,
in n-dimensional Euclidean space, that are claimed in the text following Eq. (1.20).

Exercise 1.8 **Example and Practice: Vectorial Identities for the Cross Product
and Curl
Here is an example of how to use index notation to derive a vector identity for the dou-
ble cross product A× (B× C): in index notation this quantity is εijkAj(εklmBlCm).
By permuting the indices on the second ε and then invoking Eq. (1.23), we can write
this as εijkεlmkAjBlCm = δlmij AjBlCm. By then invoking the meaning of the 4-index
delta function [Eq. (1.23)], we bring this into the form AjBiCj − AjBjCi, which
is the slot-naming index-notation form of (A . C)B− (A . B)C. Thus, it must be that
A× (B× C)= (A . C)B− (A . B)C. Use similar techniques to evaluate the following
quantities.

(a) ∇× (∇× A).
(b) (A× B) . (C×D).
(c) (A× B)× (C×D).

Exercise 1.9 **Example and Practice: Levi-Civita Tensor in 2-Dimensional
Euclidean Space
In Euclidean 2-space, let {e1, e2} be an orthonormal basis with positive volume.

(a) Show that the components of ε in this basis are

ε12 =+1, ε21=−1, ε11= ε22 = 0. (1.24a)

(b) Show that

εikεjk = δij . (1.24b)

1.8 1.8 Volumes, Integration, and Integral Conservation Laws

In Cartesian coordinates of 2-dimensional Euclidean space, the basis vectors are
orthonormal, so (with a conventional choice of sign) the components of the Levi-
Civita tensor are given by Eqs. (1.24a). Correspondingly, the area (i.e., 2-dimensional
volume) of a parallelogram whose sides are A and B is

2-volume= ε(A, B)= εabAaBb = A1B2 − A2B1= det
[
A1 B1

A2 B2

]
, (1.25)

a relation that should be familiar from elementary geometry. Equally familiar should
be the following expression for the 3-dimensional volume of a parallelepiped with legs
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A, B, and C [which follows from the components (1.21) of the Levi-Civita tensor]:

3-volume3-volume= ε(A, B, C)= εijkAiBjCk =A . (B×C)= det

⎡⎢⎣ A1 B1 C1

A2 B2 C2

A3 B3 C3

⎤⎥⎦. (1.26)

Our formal definition (1.20) of volume is justified because it gives rise to these familiar
equations.

Equations (1.25) and (1.26) are foundations from which one can derive the usual
formulas dA = dx dy and dV = dx dy dz for the area and volume of elementary
surface and volume elements with Cartesian side lengths dx, dy, and dz (Ex. 1.10).

In Euclidean 3-space, we define the vectorial surface area of a 2-dimensional
parallelogram with legs A and B to be

�= A× B= ε( , A, B). (1.27)

This vectorial surface area has a magnitude equal to the area of the parallelogram vectorial surface area
and a direction perpendicular to it. Notice that this surface area ε( , A, B) can be
thought of as an object that is waiting for us to insert a third leg, C, so as to compute
a 3-volume ε(C, A, B)—the volume of the parallelepiped with legs C, A, and B.

A parallelogram’s surface has two faces (two sides), called the positive face and the
negative face. If the vector C sticks out of the positive face, then �(C)= ε(C, A, B) is
positive; if C sticks out of the negative face, then �(C) is negative.

1.8.11.8.1 Gauss’s and Stokes’ Theorems

Such vectorial surface areas are the foundation for surface integrals in 3-dimensional Gauss’s and Stokes’
theoremsspace and for the familiar Gauss’s theorem,∫

V3

(∇ . A)dV =
∫
∂V3

A . d� (1.28a)

(where V3 is a compact 3-dimensional region, and ∂V3 is its closed 2-dimensional
boundary) and Stokes’ theorem,∫

V2

∇× A . d�=
∫
∂V2

A . dl (1.28b)

(where V2 is a compact 2-dimensional region, ∂V2 is the 1-dimensional closed curve
that bounds it, and the last integral is a line integral around that curve); see, e.g.,
Arfken, Weber, and Harris (2013).

This mathematics is illustrated by the integral and differential conservation laws
for electric charge and for particles: The total charge and the total number of particles
inside a 3-dimensional region of space V3 are

∫
V3
ρe dV and

∫
V3
ndV , where ρe is

the charge density and n the number density of particles. The rates that charge and
particles flow out of V3 are the integrals of the current density j and the particle flux
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vector S over its boundary ∂V3. Therefore, the integral laws of charge conservation and

integral conservation laws

particle conservation are

d

dt

∫
V3

ρe dV +
∫
∂V3

j . d�= 0, d

dt

∫
V3

ndV +
∫
∂V3

S . d�= 0. (1.29)

Pull the time derivative inside each volume integral (where it becomes a partial
derivative), and apply Gauss’s law to each surface integral; the results are

∫
V3
(∂ρe/∂t +

∇ . j)dV = 0 and similarly for particles. The only way these equations can be true for
all choices of V3 is for the integrands to vanish:

∂ρe/∂t +∇ . j= 0, ∂n/∂t +∇ . S= 0. (1.30)

These are the differential conservation laws for charge and for particles. They have a

differential conservation
laws

standard, universal form: the time derivative of the density of a quantity plus the
divergence of its flux vanishes.

Note that the integral conservation laws (1.29) and the differential conservation
laws (1.30) require no coordinate system or basis for their description, and no coordi-
nate system or basis was used in deriving the differential laws from the integral laws.
This is an example of the fundamental principle that the Newtonian physical laws are
all expressible as geometric relationships among geometric objects.

EXERCISES Exercise 1.10 Derivation and Practice: Volume Elements in Cartesian Coordinates
Use Eqs. (1.25) and (1.26) to derive the usual formulas dA= dxdy and dV = dxdydz
for the 2-dimensional and 3-dimensional integration elements, respectively, in right-
handed Cartesian coordinates. [Hint: Use as the edges of the integration volumes
dx ex, dy ey, and dz ez.]

Exercise 1.11 Example and Practice: Integral of a Vector Field over a Sphere
Integrate the vector field A = zez over a sphere with radius a, centered at the origin
of the Cartesian coordinate system (i.e., compute

∫
A . d�). Hints:

(a) Introduce spherical polar coordinates on the sphere, and construct the vectorial
integration element d� from the two legs adθ e

θ̂
and a sin θdφ e

φ̂
. Here e

θ̂
and

e
φ̂

are unit-length vectors along the θ and φ directions. (Here as in Sec. 1.6 and
throughout this book, we use accents on indices to indicate which basis the index
is associated with: hats here for the spherical orthonormal basis, bars in Sec. 1.6
for the barred Cartesian basis.) Explain the factors adθ and a sin θdφ in the
definitions of the legs. Show that

d�= ε( , e
θ̂

, e
φ̂
)a2 sin θdθdφ . (1.31)

(b) Using z= a cos θ and ez = cos θer̂ − sin θe
θ̂

on the sphere (where er̂ is the unit
vector pointing in the radial direction), show that

A . d�= a cos2 θ ε(er̂ , e
θ̂

, e
φ̂
) a2 sin θdθdφ .
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(c) Explain why ε(er̂ , e
θ̂

, e
φ̂
)= 1.

(d) Perform the integral
∫

A . d�over the sphere’s surface to obtain your final answer
(4π/3)a3. This, of course, is the volume of the sphere. Explain pictorially why this
had to be the answer.

Exercise 1.12 Example: Faraday’s Law of Induction
One of Maxwell’s equations says that ∇× E =−∂B/∂t (in SI units), where E and
B are the electric and magnetic fields. This is a geometric relationship between ge-
ometric objects; it requires no coordinates or basis for its statement. By integrating
this equation over a 2-dimensional surface V2 with boundary curve ∂V2 and applying
Stokes’ theorem, derive Faraday’s law of induction—again, a geometric relationship
between geometric objects.

1.91.9 The Stress Tensor and Momentum Conservation

Press your hands together in the y-z plane and feel the force that one hand exerts
on the other across a tiny area A—say, one square millimeter of your hands’ palms

force vector(Fig. 1.5). That force, of course, is a vector F. It has a normal component (along the
x direction). It also has a tangential component: if you try to slide your hands past
each other, you feel a component of force along their surface, a “shear” force in the
y and z directions. Not only is the force F vectorial; so is the 2-surface across which
it acts, �= A ex. (Here ex is the unit vector orthogonal to the tiny area A, and we
have chosen the negative side of the surface to be the−x side and the positive side to
be +x. With this choice, the force F is that which the negative hand, on the −x side,
exerts on the positive hand.)

Now, it should be obvious that the force F is a linear function of our chosen surface
stress tensor�. Therefore, there must be a tensor, the stress tensor, that reports the force to us when

we insert the surface into its second slot:

F( )= T( , �), or Fi = Tij�j . (1.32)

x y

z

FIGURE 1.5 Hands, pressed
together, exert a force on
each other.
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Newton’s law of action and reaction tells us that the force that the positive hand
exerts on the negative hand must be equal and opposite to that which the negative
hand exerts on the positive. This shows up trivially in Eq. (1.32): by changing the sign
of �, one reverses which hand is regarded as negative and which positive, and since
T is linear in �, one also reverses the sign of the force.

The definition (1.32) of the stress tensor gives rise to the following physical mean-
ing of its components:

meaning of components of
stress tensor

Tjk =
(
j component of force per unit area
across a surface perpendicular to ek

)

=
⎛⎝ j component of momentum that crosses a unit

area that is perpendicular to ek, per unit time,
with the crossing being from−xk to+xk

⎞⎠.
(1.33)

The stresses inside a table with a heavy weight on it are described by the stress
tensor T, as are the stresses in a flowing fluid or plasma, in the electromagnetic field,
and in any other physical medium. Accordingly, we shall use the stress tensor as an
important mathematical tool in our study of force balance in kinetic theory (Chap.
3), elasticity (Part IV), fluid dynamics (Part V), and plasma physics (Part VI).

symmetry of stress tensor It is not obvious from its definition, but the stress tensor T is always symmetric in its
two slots. To see this, consider a small cube with sideL in any medium (or field) (Fig.
1.6). The medium outside the cube exerts forces, and hence also torques, on the cube’s
faces. The z-component of the torque is produced by the shear forces on the front and
back faces and on the left and right. As shown in the figure, the shear forces on the front
and back faces have magnitudes TxyL2 and point in opposite directions, so they exert
identical torques on the cube, Nz = TxyL2(L/2) (where L/2 is the distance of each
face from the cube’s center). Similarly, the shear forces on the left and right faces have
magnitudesTyxL2 and point in opposite directions, thereby exerting identical torques
on the cube,Nz =−TyxL2(L/2). Adding the torques from all four faces and equating
them to the rate of change of angular momentum, 1

6ρL
5d�z/dt (where ρ is the mass

density, 1
6ρL

5 is the cube’s moment of inertia, and�z is the z component of its angular
velocity), we obtain (Txy − Tyx)L3= 1

6ρL
5d�z/dt . Now, let the cube’s edge length

become arbitrarily small, L→ 0. If Txy − Tyx does not vanish, then the cube will be
set into rotation with an infinitely large angular acceleration, d�z/dt ∝ 1/L2→∞—
an obviously unphysical behavior. Therefore, Tyx = Txy, and similarly for all other
components: the stress tensor is always symmetric under interchange of its two slots.

1.9.1 1.9.1 Examples: Electromagnetic Field and Perfect Fluid

Two examples will make the concept of the stress tensor more concrete.

. Electromagnetic field: See Ex. 1.14.
perfect fluid . Perfect fluid: A perfect fluid is a medium that can exert an isotropic pressure

P but no shear stresses, so the only nonzero components of its stress tensor
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FIGURE 1.6 The shear forces exerted on the left, right, front, and
back faces of a vanishingly small cube of side length L. The
resulting torque about the z direction will set the cube into
rotation with an arbitrarily large angular acceleration unless the
stress tensor is symmetric.

in a Cartesian basis are Txx = Tyy = Tzz = P . (Examples of nearly perfect
fluids are air and water, but not molasses.) We can summarize this property
by Tij = Pδij or equivalently, since δij are the components of the Euclidean
metric, Tij = P gij . The frame-independent version of this is

T = Pg or, in slot-naming index notation, Tij = P gij . (1.34)

Note that, as always, the formula in slot-naming index notation looks iden-
tical to the formula Tij = P gij for the components in our chosen Cartesian
coordinate system. To check Eq. (1.34), consider a 2-surface �= An with
area A oriented perpendicular to some arbitrary unit vector n. The vecto-
rial force that the fluid exerts across � is, in index notation, Fj = Tjk�k =
P gjkAnk = PAnj (i.e., it is a normal force with magnitude equal to the fluid
pressure P times the surface area A). This is what it should be.

1.9.21.9.2 Conservation of Momentum

The stress tensor plays a central role in the Newtonian law of momentum conservation
because (by definition) the force acting across a surface is the same as the rate of flow of
momentum, per unit area, across the surface: the stress tensor is the flux of momentum.

Consider the 3-dimensional region of space V3 used above in formulating the
integral laws of charge and particle conservation (1.29). The total momentum in V3
is
∫
V3

GdV , where G is the momentum density. This quantity changes as a result
of momentum flowing into and out of V3. The net rate at which momentum flows
outward is the integral of the stress tensor over the surface ∂V3 of V3. Therefore, by
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analogy with charge and particle conservation (1.29), the integral law of momentum
conservation says

integral conservation of
momentum

d

dt

∫
V3

GdV +
∫
∂V3

T . d�= 0. (1.35)

By pulling the time derivative inside the volume integral (where it becomes a
partial derivative) and applying the vectorial version of Gauss’s law to the surface
integral, we obtain

∫
V3
(∂G/∂t + ∇ . T) dV = 0. This can be true for all choices of

V3 only if the integrand vanishes:

∂G
∂t
+∇ . T = 0, or

∂Gj

∂t
+ Tjk; k = 0. (1.36)

(Because T is symmetric, it does not matter which of its slots the divergence acts on.)
This is the differential law of momentum conservation. It has the standard form for

differential conservation
of momentum

any local conservation law: the time derivative of the density of some quantity (here
momentum), plus the divergence of the flux of that quantity (here the momentum
flux is the stress tensor), is zero. We shall make extensive use of this Newtonian law
of momentum conservation in Part IV (elasticity), Part V (fluid dynamics), and Part
VI (plasma physics).

EXERCISES Exercise 1.13 **Example: Equations of Motion for a Perfect Fluid
(a) Consider a perfect fluid with density ρ, pressure P , and velocity v that vary in

time and space. Explain why the fluid’s momentum density is G= ρv, and explain
why its momentum flux (stress tensor) is

T = Pg+ ρv ⊗ v , or, in slot-naming index notation, Tij = P gij + ρvivj .

(1.37a)

(b) Explain why the law of mass conservation for this fluid is

∂ρ

∂t
+∇ . (ρv)= 0. (1.37b)

(c) Explain why the derivative operator

d

dt
≡ ∂

∂t
+ v . ∇ (1.37c)

describes the rate of change as measured by somebody who moves locally with
the fluid (i.e., with velocity v). This is sometimes called the fluid’s advective time
derivative or convective time derivative or material derivative.
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(d) Show that the fluid’s law of mass conservation (1.37b) can be rewritten as
1
ρ

dρ

dt
=−∇ . v , (1.37d)

which says that the divergence of the fluid’s velocity field is minus the fractional
rate of change of its density, as measured in the fluid’s local rest frame.

(e) Show that the differential law of momentum conservation (1.36) for the fluid can
be written as

dv
dt
=−∇P

ρ
. (1.37e)

This is called the fluid’s Euler equation. Explain why this Euler equation is New-
ton’s second law of motion, F=ma, written on a per unit mass basis.

In Part V of this book, we use Eqs. (1.37) to study the dynamical behaviors of fluids.
For many applications, the Euler equation will need to be augmented by the force per
unit mass exerted by the fluid’s internal viscosity.

Exercise 1.14 **Problem: Electromagnetic Stress Tensor
(a) An electric field E exerts (in SI units) a pressure εoE2/2 orthogonal to itself and

a tension of this same magnitude along itself. Similarly, a magnetic field B exerts
a pressure B2/2μo = εoc2B2/2 orthogonal to itself and a tension of this same
magnitude along itself. Verify that the following stress tensor embodies these
stresses:

T = εo
2

[
(E2 + c2B2)g− 2(E ⊗ E + c2B⊗ B)

]
. (1.38)

(b) Consider an electromagnetic field interacting with a material that has a
charge density ρe and a current density j. Compute the divergence of the electro-
magnetic stress tensor (1.38) and evaluate the derivatives using Maxwell’s
equations. Show that the result is the negative of the force density that the
electromagnetic field exerts on the material. Use momentum conservation to
explain why this has to be so.

1.101.10 Geometrized Units and Relativistic Particles for Newtonian Readers

Readers who are skipping the relativistic parts of this book will need to know two
important pieces of relativity: (i) geometrized units and (ii) the relativistic energy and
momentum of a moving particle.

1.10.11.10.1 Geometrized Units

The speed of light is independent of one’s reference frame (i.e., independent of how
fast one moves). This is a fundamental tenet of special relativity, and in the era before
1983, when the meter and the second were defined independently, it was tested and
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confirmed experimentally with very high precision. By 1983, this constancy had
become so universally accepted that it was used to redefine the meter (which is hard
to measure precisely) in terms of the second (which is much easier to measure with
modern technology).11 The meter is now related to the second in such a way that the
speed of light is precisely c = 299,792,458 m s−1 (i.e., 1 meter is the distance traveled
by light in 1/299,792,458 seconds). Because of this constancy of the light speed, it is
permissible when studying special relativity to set c to unity. Doing so is equivalent
to the relationship

c = 2.99792458× 108 m s−1= 1 (1.39a)

between seconds and centimeters; i.e., equivalent to

1 s= 2.99792458× 108 m. (1.39b)

geometrized units We refer to units in which c= 1 as geometrized units, and we adopt them through-
out this book when dealing with relativistic physics, since they make equations look
much simpler. Occasionally it will be useful to restore the factors of c to an equation,
thereby converting it to ordinary (SI or cgs) units. This restoration is achieved easily
using dimensional considerations. For example, the equivalence of massm and rela-
tivistic energy E is written in geometrized units as E =m. In SI units E has dimensions
of joule = kg m2 s−2, whilem has dimensions of kg, so to make E =m dimensionally
correct we must multiply the right side by a power of c that has dimensions m2 s−2

(i.e., by c2); thereby we obtain E =mc2.

1.10.2 1.10.2 Energy and Momentum of a Moving Particle

A particle with rest massm, moving with velocity v = dx/dt and speed v = |v|, has a
relativistic energy and
momentum

relativistic energy E (including its rest mass), relativistic kinetic energyE (excluding
its rest mass), and relativistic momentum p given by

E = m√
1− v2

≡ m√
1− v2/c2

≡ E +m, p= Ev = mv√
1− v2

;

so E =
√
m2 + p2.

(1.40)

In the low-velocity (Newtonian) limit, the energy E with rest mass removed (kinetic
energy) and the momentum p take their familiar Newtonian forms:

When v� c ≡ 1, E→ 1
2
mv2 and p→mv . (1.41)

11. The second is defined as the duration of 9,192,631,770 periods of the radiation produced by a certain
hyperfine transition in the ground state of a 133Cs atom that is at rest in empty space. Today (2016)
all fundamental physical units except mass units (e.g., the kilogram) are defined similarly in terms of
fundamental constants of Nature.
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A particle with zero rest mass (a photon or a graviton)12 always moves with the speed
of light v = c= 1, and like other particles it has momentum p= Ev, so the magnitude
of its momentum is equal to its energy: |p| = Ev = Ec = E.

When particles interact (e.g., in chemical reactions, nuclear reactions, and
elementary-particle collisions) the sum of the particle energies E is conserved, as
is the sum of the particle momenta p.

For further details and explanations, see Chap. 2.

EXERCISESExercise 1.15 Practice: Geometrized Units
Convert the following equations from the geometrized units in which they are written
to SI units.
(a) The “Planck time” tP expressed in terms of Newton’s gravitation constantG and

Planck’s reduced constant �, tP =
√
G�. What is the numerical value of tP in

seconds? in meters?
(b) The energy E = 2m obtained from the annihilation of an electron and a positron,

each with rest massm.
(c) The Lorentz force lawmdv/dt = e(E + v × B).
(d) The expression p= �ωn for the momentum p of a photon in terms of its angular

frequency ω and direction n of propagation.
How tall are you, in seconds? How old are you, in meters?

Bibliographic Note

Most of the concepts developed in this chapter are treated, though from rather dif-
ferent viewpoints, in intermediate and advanced textbooks on classical mechanics
or electrodynamics, such as Marion and Thornton (1995); Jackson (1999); Griffiths
(1999); Goldstein, Poole, and Safko (2002).

Landau and Lifshitz’s (1976) advanced text Mechanics is famous for its concise
and precise formulations; it lays heavy emphasis on symmetry principles and their
implications. A similar approach is followed in the next volume in their Course of
Theoretical Physics series, The Classical Theory of Fields (Landau and Lifshitz, 1975),
which is rooted in special relativity and goes on to cover general relativity. We refer
to other volumes in this remarkable series in subsequent chapters.

The three-volume Feynman Lectures on Physics (Feynman, Leighton, and Sands,
2013) had a big influence on several generations of physicists, and even more so on
their teachers. Both of us (Blandford and Thorne) are immensely indebted to Richard
Feynman for shaping our own approaches to physics. His insights on the foundations

12. We do not know for sure that photons and gravitons are massless, but the laws of physics as currently
understood require them to be massless, and there are tight experimental limits on their rest masses.
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of classical physics and its relationship to quantum mechanics, and on calculational
techniques, are as relevant today as in 1963, when his course was first delivered.

The geometric viewpoint on the laws of physics, which we present and advocate
in this chapter, is not common (but it should be because of its great power). For ex-
ample, the vast majority of mechanics and electrodynamics textbooks, including all
those listed above, define a tensor as a matrix-like entity whose components trans-
form under rotations in the manner described by Eq. (1.13b). This is a complicated
definition that hides the great simplicity of a tensor as nothing more than a linear
function of vectors; it obscures thinking about tensors geometrically, without the aid
of any coordinate system or basis.

The geometric viewpoint comes to the physics community from mathematicians,
largely by way of relativity theory. By now, most relativity textbooks espouse it. See the
Bibliographic Note to Chap. 2. Fortunately, this viewpoint is gradually seeping into
the nonrelativistic physics curriculum (e.g., Kleppner and Kolenkow, 2013). We hope
this chapter will accelerate that seepage.
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accretion of gas onto neutron star or black hole, 205, 890–891,
1266, 1282–1283
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acoustic horizon radius, χA, 1375
ultrarelativistic, χR, 1375, 1403–1404

acoustic peaks, in CMB anisotropy spectrum, 1413, 1419f,
1421

action principles
Hamilton’s, in analytical mechanics, 15
for geodesic equation, 1203, 1205–1206, 1357
for rays in geometric optics, 371–373
for elastic stress, 584
for eigenfrequencies of normal modes, 980–981

active galactic nuclei, 1379
adaptive optics, 470b–471b, 472
adiabatic index

definition, 243, 724b
polytropic, 878
for ideal gas: ratio of specific heats, 244, 678, 681b, 724b

influence of molecules’ internal degrees of freedom,
879–880

for air, as function of temperature, 880f
in plasma: anisotropic, 1020–1024

adiabatic invariants
accuracy of, 1030
failure of, 1030
for charged particle in magnetic field, 1028–1030
wave action of a classical wave, 365–366

advective (convective) time derivative, 32, 692, 724b, 892
affine parameter, 50–51, 99–100, 133, 136b, 1178b, 1200,

1203, 1206, 1208, 1247, 1303, 1307, 1423
Aichelberg-Sexl ultraboost metric of a light-speed particle,

1231
airplane wing or airfoil, lift on, 743f, 743–744, 824
Airy diffraction pattern for circular aperture, 426–428, 437,

442
Airy disk

for diffraction pattern of a circular aperture, 426–427,
437, 471

for low-pass filter to clean laser beam, 441
in phase-contrast microscopy, 442–443, 442f
in Strehl ratio for a telescope’s performance, 472

Airy function, for diffraction near a caustic, 451–454, 452f
Alcator C-Mod, 963
Alfvén waves, 354, 990–991, 1053f

two-fluid analysis of, 1055–1058
dispersion relation of, 354, 990
phase velocity of, 354, 990
group velocity of, 355f, 356
polarization of, 405
relativistic corrections for, 1055–1056
as plasma-laden, plucked magnetic field lines, 990,

1056–1057
in magnetosphere, 370f

in solar wind, 970–971
generated near shock fronts, 1146f
interaction with cosmic rays. See cosmic rays

Allan variance of clocks, 310f, 320–21
allometry, 587, 609
ALMA (Atacama Large Millimeter Array), 480, 482
Andromeda galaxy, 305, 1365f
angular momentum

and moment of inertia tensor, 6
of fundamental particles (spin), 22
of a Kerr black hole, 204–205, 226n, 1278, 1282–1283,

1285–1286, 1342. See also frame dragging by spinning
bodies

of a relativistic, spinning body, 1218, 1220, 1232–1234,
1237–1238, 1328

in accretion disks, 1287–1292
carried by gravitational waves, 1332–1333, 1335, 1338,

1345
in statistical mechanics, 169, 172–173, 179
in elastodynamics, 644, 661–662
in fluid mechanics, 702, 729, 732, 733, 784, 826, 849

angular momentum conservation, Newtonian, 14–15
in circulating water, 729, 732–733

angular momentum conservation, relativistic
global, for asymptotically flat system, 1237–1238
for geodesic orbits around a black hole, 1274, 1303

angular-diameter distance, dA, 1374, 1378, 1398–1400,
1427

anthropic principle, 1439–1440, 1446
aperture synthesis, in radio astronomy, 480
Appleton-Hartree dispersion relation, 1059–1060
Archimedes law, 675, 684–685, 692
artery, blood flow in, 716–719
astigmatism, 390, 395
astronomical seeing, 425, 464–472, 481, 511
asymptotic rest frame, 1237, 1246–1248

local, 1328, 1331, 1332, 1339–1340
asymptotically flat system in general relativity, 1194, 1238,

1238n
imprint of mass and angular momentum on exterior

metric, 1232–1233, 1238
conservation laws for mass and angular momentum,

1237–1238, 1332, 1338
atmosphere of Earth. See also tornados; winds

structure of, 683–684, 684f
chemical reactions in, 256–258
and greenhouse effect, 138, 748–749
storms in, 768, 769b

excitation of ocean waves by, 783
billow clouds in, 783, 783f
sedimentation in, 748–755
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turbulence of
and astronomical seeing, 425, 464–472, 481, 511
excitation of earth’s normal modes by, 816–817

atomic bomb, 153, 912–914, 1009

B-modes, of CMB polarization, 1420, 1428, 1439
Babinet’s principle, 428–429, 523
bacterium, swimming, 747b–748b, 756–757
baffles, to control scattered light, 448–451
balls, physics of flight, 817, 823–825
bandwidth of a filter, 315–318
barotropic fluid, 681b,724b
baryogenesis, 1442–1443
baryons in universe

origin of: baryogenesis, 1442–1443
evolution of, 1407–1408, 1410–1414
observations today, 1379

basis vectors in Euclidean space
orthogonal transformation of, 20–21
Cartesian, 16–17
spherical and Cartesian, orthonormal, 614

basis vectors in spacetime
dual sets of, 1161
coordinate, 1162–1163, 1167
orthonormal (Lorentz), 54, 1157

Lorentz transformation of, 63–65
nonorthonormal, 1160–1163

transformation between, 1164
baths for statistical-mechanical systems

concept of, 160
general, 172
tables summarizing, 160t, 221t, 251t

BBGKY hierarchy of kinetic equations, 803, 1103–1106, 1109
BD, 530, 531
beam, bent. See bent beam
bending modulus (flexural rigidity), 594
bending torque, 593f, 594, 596, 600, 602, 603, 608, 611, 612
bent beam, elastostatics of, 592–596

elastostatic force-balance equation for, 595
solutions of force-balance equation

for clamped cantilever pulled by gravity, 596–597
for Foucault pendulum, 597–598
for elastica, 600–601, 601f

bent plate, elastostatics of, 609–613
elastostatic force-balance equation: shape equation, 610

Bernoulli function, 698–700, 702, 721, 722, 724b
Bernoulli’s theorem

most general version: for any ideal fluid, 698
for steady flow of an ideal fluid, 698, 700
for irrotational flow of an ideal, isentropic fluid, 701
relativistic, 722

Berry’s phase (geometric phase), 406–409
BGK waves in a plasma, 1100–1101
Bianchi identities, 1223–1224

in Maxwell-like form, 1235b, 1318b
bifurcation of equilibria

formal mathematical foundations for, 384
onset of dynamical instability at bifurcation

in general, in absence of dissipation, 648
for beam under compression, 647–648

for convection, Rayleigh-Bénard, 931
for beam under compression, 603–605
for rapidly spinning star, 607
for rotating Couette flow, 826–827
for Venus fly trap, 607
for whirling shaft, 607

big rip, 1446
biharmonic equation, 589, 610, 754, 756
billow clouds, 783, 783f
binary black holes, 1341–1342, 1342f, 1343f, 1344b–1345b
binary pulsars

Hulse-Taylor: B1913+16, 502, 1310
J0337+715, 1301
J0737+3039, 1303, 1309, 1310
J1614–2230, 1309
observation of gravitational radiation reaction in,

1310–1311
tests of general relativity in, 1301, 1303, 1311

binary star system. See also binary pulsars
gravitational waves from, 1335–1341
tidally locked, shapes of stars, 691

bird flight
V-shaped configuration, 744
wingtip vortices, 734f, 739, 744, 744f

birefringent crystals, 541b–542b, 546, 547, 547n. See also
nonlinear crystals

phase-matching via birefringence, 546–548
three-wave mixing in. See three-wave mixing in nonlinear

crystals
Birkhoff ’s theorem, 1250–1251, 1264
black holes. See also horizon, black-hole event; Kerr metric;

Schwarzschild metric
nonspinning, Schwarzschild, 1272–1276. See also

Schwarzschild metric
geodesic orbits around, 1274–1276, 1275f

spinning, Kerr, 1277–1293. See also Kerr metric
laws of black-hole mechanics and thermodynamics,

205–209, 1284–1287
statistical mechanics of, 204–206
entropy of, 205–209, 1287
irreducible mass of, 1284
inside a box: thermal equilibrium, 206–209
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black holes (continued)
rotational energy and its extraction, 1282–1287, 1291–

1293
evolution of, 1282–1287
quantum thermal atmosphere of, 204–205
Hawking radiation from, 204–205, 1286–1287
accretion of gas onto, 205, 784, 890–891, 969, 1282–1283,

1287–1290
binary, 1341–1342, 1342f, 1343f, 1344b–1345b
collisions of and their gravitational waves, 1341–1342,

1342f, 1343f, 1344b–1345b
in the universe, 1379–1380, 1397

blackbody (Planck) distribution and specific intensity, 113,
128, 132

Blandford-Znajek process, 1285, 1291–1293
Blasius profile for laminar boundary layer, 758–764
blast wave. See explosion and blast wave
blood flow in arteries, 717–719
boat waves, 846–848
boat, stability of, 685–686
Boltzmann distribution (mean occupation number), 113,

177
entropy of, 187

Boltzmann equation, collisionless, 134–135, 167, 169. See
also Vlasov equation

derivation from Hamiltonian, 136b–137b
implies conservation of particles and 4-momentum, 135

Boltzmann transport equation, 135, 139
for photons scattered by thermalized electrons, 144–148
accuracy of solutions, 140–141
order-of-magnitude solution, 143–144
solution via Fokker-Planck equation, 343
solution via Monte Carlo methods, 1415–1418, 1428
solution via two-lengthscale expansion, 145–148

boost, Lorentz, 64–65
Bose-Einstein condensate, 193–201

condensation process, 193, 196, 197f, 198–200
critical temperature, 196
specific heat change, 200
in cubical box, 201

Bose-Einstein ensemble
probabilistic distribution function for, 176
mean occupation number of, 112–113, 176–177
entropy of, 187

bosons, 110
boundary layers

laminar, 757–766
Blasius profile, 758–764
sublayer of turbulent boundary layer, 818
Ekman, for rotating flow, 772–777
vorticity creation in, 758

diffusion of vorticity in, 741–742, 741f, 758
instability of, 822–823
in a pipe, 766
near curved surface, 764–765
separation from boundary, 764, 793

turbulent, 817–825
profile of, 818–820, 818f
separation from boundary, 821f, 820–821

thermal, 923
influence on flight of sports balls, 823–825

Boussinesq approximation, 923–925
bow shock around Earth, 876f, 957, 1090, 1146–1147, 1146f
bremsstrahlung, 142, 260, 1009, 1017
brightness temperature, 482
Brillouin scattering, 1142
Brownian motion, 296, 309, 313–315. See also random walk

spectral density and correlation function for, 313–314
relaxation time for, 328
fluctuation-dissipation theorem applied to, 327–329

Brunt-Väisälä frequency for internal waves in stratified fluid,
941

bubbles
in water, collapse of, 703
in water, rising, 937
soap, 846

buckling of compressed beam or card, 602
onset of buckling at bifurcation of equilibria, 603–605
onset of elastostatic instability at bifurcation of equilibria,

648
elementary theory of, 602–605, 608–609
free energy for, 604
applications

collapse of World Trade Center buildings, 605–607
mountain building, 609
thermal expansion of pipes, 609

bulk modulus, for elasticity, 581
values of, 586t, 651t
atomic origin of, 649f
relation to equation of state, 650

bump-in-tail instability, 1136–1137, 1138–1139
bunching of bosons, 511, 511n, 1117

canonical ensemble, 160t, 169–172, 221t
distribution function, 171, 173

canonical transformation, 162, 164, 166
cantilever, 566, 592–593, 596–597
capillary waves, 844–848
Cartesian coordinates, 16, 26, 28

local, on curved surface, 1198
catastrophe theory

caustics as examples of catastrophes, 384
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state variables, 385
control parameters, 386
five elementary catastrophes

fold catastrophe, 386–388, 393f
cusp catastrophe, 389, 392, 391f, 393f
swallowtail catastrophe, 390–392, 391f, 393f
hyperbolic umbillic catastrophe, 389–390, 391f, 393f
elliptic umbillic catastrophe, 391f, 392, 393f

applications
to caustics of light propagation, 384–394
to elliptic gravitational lens, 403
to van der Waals equation, 394–395
to buckling of a beam, 606–607

caustics, 351, 384–394. See also catastrophe theory
diffraction near, 451–454
examples

sunlight on bottom of swimming pool, 384, 384n, 385f
sunlight reflected onto bottom of a cup, 385f

cavitation, 702–703
CD, 530, 531
central limit theorem, 292–294

examples and applications of, 261, 294–295, 322, 465, 510
centrifugal acceleration, 689, 767
Cerenkov emission of plasmons by fast electrons in a plasma,

1127–1129, 1131, 1133, 1138
CGL equations of state, 1024
chaos in dynamical systems, 832–834

Lyapunov exponent, 833
Lyapunov time, 832
strange attractors, 833–834
examples of, 832, 1030
quantum chaos, 832

chaos, onset of in dynamical systems, 825–833. See also
turbulence, onset of

in idealized equations and mathematical maps
logistic equation and Feigenbaum sequence, 828–831
Lorenz equations, 834

universality of routes to chaos, 830
Chapman-Kolmogorov equation. See Smoluchowski

equation
characteristics of a dynamical fluid flow, 852, 892–893, 893f,

894–896
charge density

as integral over plasma distribution function, 1072
as time component of charge-current 4–vector, 74

charge-current 4–vector
geometric definition, 78
components: charge and current density, 78
local (differential) conservation law for, 79
global (integral) conservation law for, 79, 79f

evaluation in a Lorentz frame, 81

relation to nonrelativistic conservation of charge, 81
charged-particle motion in electromagnetic field, 1024–1032
chemical free energy (Gibbs potential), 246–249. See also

under fundamental thermodynamic potentials;
fundamental thermodynamic potentials out of
statistical equilibrium

chemical potential, excluding rest mass, μ, 112, 173
chemical potential, including rest mass, μ̃, 112, 172–173
chemical reactions, including nuclear and particle, 256

direction controlled by Gibbs potential (chemical-
potential sum), 256–258

partial statistical equilibrium for, 256
examples

water formation from hydrogen and oxygen, 256–257
electron-positron pair formation, 258–259, 1001
emission and absorption of photons, 115–116
ionization of hydrogen: Saha equation, 259–260,

998–1000
controlled thermonuclear fusion, 959–960, 1141b
nucleosynthesis in nuclear age of early universe,

192–193, 1387–1392
recombination in early universe, 1393–1396
annihilation of dark-matter particles, 1440–1442

Christoffel symbols, 1172
chromatic resolving power, 424, 496
chronology protection, 69
circular polar coordinates, 1163, 1163f, 1165, 1173. See also

cylindrical coordinates
circulation, 729, 733, 734, 739–740

and lift on airplane wing, 743
as flux of vorticity, 739
evolution equations and Kelvin’s theorem, 740

Clausius-Clapeyron equation, 254–255
climate change, 748–749, 755, 958, 1440n. See also

greenhouse effect
clocks

ideal, 39, 39n, 49, 1154n
frequency fluctuations of, 310f, 310n, 320–321

closure phase, in multiple-element interferometry, 481
closure relation, in plasma kinetic theory, 1074, 1105, 1409
clouds, billow, 783, 783f
CMA diagram for waves in cold, magnetized plasma,

1062–1065, 1064f
CMB. See cosmic microwave background
Coanda effect, 809f, 809–810, 820, 821f
coarse graining, 183–185, 184f, 206, 210–211, 1443
COBE (Cosmic Background Explorer), 476
coherence length

longitudinal or temporal, 472–473
spatial or lateral, 462–463
volume of coherence, 477
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coherence of radiation
qualitative description, 437–438
perfect coherence, 459
incoherent superposition of radiation, 460
spatial coherence, 456–464
temporal (longitudinal) coherence, 472–474, 458n
degree of coherence, 461n

lateral, 460–461
spatial, 462
longitudinal (temporal), 472–474, 458n
3-dimensional, 477
applications of, 463–465, 466b–471b, 474

fringe visibility, 461–463, 475
coherent state, quantum mechanical, for light, 518
collective effects in plasmas, 907, 943, 1003–1006, 1016,

1020, 1070, 1146
collisionless shocks, 907, 1145–1147
communication theory, 211–217
commutation coefficients, 1171, 1215
commutator

of two vector fields, 735n, 1167–1169, 1172, 1209, 1214n
comoving coordinates, in cosmology, 1370
component manipulation rules

in Euclidean space, 16–19
in spacetime with orthormal basis, 54–57
in spacetime with arbitrary basis, 1161–1165

components of vectors and tensors. See under vector in
Euclidean space; vector in spacetime; tensor in
Euclidean space; tensor in spacetime

compressible fluid flow
equations for, 877–879
1-dimensional, time-dependent, 891–897

Riemann invariants for, 891–895
nonlinear sound wave, steepening to form shock, 894,

894f
in shock tube. See shock tube, fluid flow in

transonic, quasi-1-dimensional, steady flow, 884f,
880–891

equations in a stream tube, 880–882
properties of, 882–883
relativistic, 890

Compton scattering, 1388, 1392–1393, 1428–1430
conductivity, electrical, κe, 139

in plasmas with Coulomb collisions, 1015, 1018
in magnetized plasma, tensorial, 1022–1023, 1036

conductivity, thermal, κ , 139
energy flux for, 714
for photons scattered by thermalized electrons, 148,
derivation from Boltzmann transport equation, 144–148

conformally related metrics, 1159–1160
congruence of light rays, 1423–1424

connection coefficients
for an arbitrary basis, 1171–1173
for orthonormal bases in Euclidean space, 615

pictorial evaluation of, 616f
used to compute components of gradient, 617
for cylindrical orthonormal basis, 615
for spherical orthonormal basis, 616

conservation laws. See also specific conserved quantities
differential and integral, in Euclidean 3-space, 28
differential and integral, in spacetime, 79
related to symmetries, 1203–1205

contact discontinuity, 953
continental drift, 932b
contraction of tensors

formal definition, 12–13, 48
in slot-naming index notation, 19
component representation, 17, 56

controlled fusion. See fusion, controlled thermonuclear
convection

onset of convection and of convective turbulence,
830–831, 931

Boussinesq approximation for, 924–925
between two horizontal plates at different temperatures:

Rayleigh-Bénard convection, 925–933
Boussinesq-approximation analysis, 925–928, 930
critical Rayleigh number for onset, 930, 930f, 933
pattern of convection cells, 930–931, 931f
toy model, 929

in a room, 931
in Earth’s mantle, 932
in a star, 933–937
in the solar convection zone, 936

convergence of light rays, 1424
convolution theorem, 421–422
coordinate independence. See geometric principle; principle

of relativity
coordinates. See specific names of coordinates
Copernican principle, 1366
Coriolis acceleration, 735, 767–768, 1185

as restoring force for Rossby waves, 858
Cornus spiral, for Fresnel integrals and Fraunhofer

diffraction, 431f
correlation functions

for 1-dimensional random process, 297
correlation (relaxation) time of, 297
value at zero delay is variance, 297

for 2-dimensional random process, 306–308
cross correlation, 307

for 3-dimensional random process
cosmological density fluctuations (galaxy distribution),

304–306, 306f
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for many-particle system, 1104–1106
two-point and three-point, 1104–1106

applications of
Brownian motion, 314
cosmological density fluctuations, 303–306, 1414
distortion of galaxy images due to weak lensing,

1424–1427
angular anisotropy of cosmic microwave background,

1417–1420
correlation (relaxation) time, 297, 298f
Cosmic Background Explorer (COBE), 476
cosmic dawn, 1421–1422
cosmic microwave background (CMB)

evolution of in universe
before recombination, 1384–1387, 1407–1408
during and since recombination, 1415–1422
redshifting as universe expands, 1373

observed properties today, 1381, 1419f
Doppler shift of due to Earth’s motion, 116–117
isotropy of, 1364
map of, by Planck, 1365f

frequency spectrum of, today
measured by COBE, 476
Sunyaev-Zeldovich effect on, 1428–1430

anisotropies of, today
predicted spectrum, 1419f
acoustic peaks, 1413, 1419f, 1421

polarization of, today, 1416, 1417, 1420, 1428
E-mode 1419f, 1420, 1428
B-mode, 1420, 1428, 1439

cosmic rays
spectrum of, 988
ultra-high-energy, 1024
anisotropy of arrival directions, 992–993
acceleration of in strong shock fronts, 1147–1148
interaction with Alfvén waves, 992–993, 1138–1139

Cerenkov emission of Alfvén waves by, 1138–1139
observational evidence for scattering of, 989
scattering of, by Alfvén waves, 992–993, 1138–1139

cosmic shear tensor, 1424, 1427
cosmic strings, 1357, 1432n
cosmic variance, 1411n, 1421
cosmological constant

observational evidence for, 1382–1383
history of ideas about, 1382n, 1444–1445, 1445n
as energy density and negative pressure, 1282–1283, 1445
as a property of the vacuum, 1445
as a “situational” phenomenon, 1446
as an emergent phenomenon, 1445

cosmology, standard, 1383
Coulomb correction to pressure in plasma, 1108

Coulomb logarithm, 1008–1009
Coulomb scattering

Rutherford scattering analysis, 1006–1007
Fokker-Planck analysis of, 1013–1015
deflection times and frequencies, 1008
energy equilibration times, 1010–1012, 1002t

Cowling’s theorem, for dynamos, 984
critical density for universe, 1377
critical point of transonic fluid flow, 883, 886, 891
Crocco’s theorem, 702, 742
Cross correlation, 306–308
cross product, 25–26
Cross spectral density, 307–308
cruise-control system for automobiles, 1097–1098
crystals, nonlinear. See nonlinear crystals
curl, 25–26
current density

as spatial part of charge-current 4–vector, 74
as integral over plasma distribution function, 1072

current moments, gravitational, 1328–1332
curvature coupling in physical laws, 1219–1221
curvature drift, 1026, 1027f
curve, 9, 49, 1154–1155
cutoff, in wave propagation, 1049–1050, 1050f
cyclic symmetry, 1214n
cyclotron frequencies, 1019, 1002t

relativistic, 1024
Cygnus X-1, 111
cylindrical coordinates

related to Cartesian coordinates, 614
orthonormal basis and connection coefficients for,

614–615
expansion and shear tensor in, 617, 618

coordinate basis for, 1163, 1163f

d’Alembertian (wave operator), 71, 1191, 1434
d’Alembert’s paradox, for potential flow around a cylinder,

765
dam, water flow after breaking, 857–858, 897
dark energy, 1363, 1444, 1446. See also cosmological constant
dark matter

observational evidence for, 1380–1381
physical nature of, 1440–1442
searches for dark-matter particles, 1442
evolution of, in early universe, 1406–1407, 1411f

de Broglie waves, 44b
De Laval nozzle, 887
de Sitter universe or expansion, 1398, 1400, 1432, 1437
Debye length, 1002t, 1004
Debye number, 1002t, 1004
Debye shielding, 1003–1004
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decay time for magnetic field, in MHD, 949, 950t
deceleration function q(t) for the universe, 1374, 1378

value today, 1382
decibel, 865
decoherence, quantum, and entropy increase, 185, 186b–

187b, 190–191
deflection of starlight, gravitational, 1304–1307. See also

gravitational lensing
degeneracy, of gas, 122–124, 122f, 1000, 1002

relativistic, 122f, 125, 127
degree of coherence. See under coherence of radiation
density fractions,�k, for cosmology, 1377–1378
density of states (modes)

for free particles, 108–110
in statistical mechanics, 162–163

density operator (matrix), in quantum statistical mechanics,
165b–166b

derivatives of scalars, vectors, and tensors
directional derivatives, 22–23, 70, 1167, 1169
gradients, 23, 70–71, 617, 1170–1171, 1173
Lie derivative, 735n

deuterium formation in early universe, 1389–1392
dielectric tensor, 1036

in nonlinear crystal, 537
in cold, magnetized plasma, 1051–1052

differential forms, 78
one-forms used for 3–volumes and integration, 77n
and Stokes’ theorem, 78

diffraction grating, 422–424, 524–529
diffraction: scalar, Helmholtz-equation formalism for, 413–

436. See also under Fraunhofer diffraction; Fresnel
diffraction

propagator through an aperture, 416–417
Fresnel and Fraunhofer regions defined, 417–419, 418f
Fraunhofer diffraction, 420–429
Fresnel diffraction, 429–436
failure near edges of apertures, 415
application to weak sound waves in a homogenous

medium, 413
application to electromagnetic waves in vacuum or a

homogeneous dielectric medium, 413
failure due to polarization effects, 413, 413n, 416n

diffusion. See also Boltzmann transport equation; diffusion
coefficient; diffusion equation

approximation: criteria for validity, 140
conditional probability for, 291–292
of neutrons in a nuclear reactor, 151–153

diffusion coefficient
defined, 139
for particle diffusion through thermalized scatterers,

150–151

for temperature, in thermally conducting fluid, 142,
920

for vorticity, in viscous fluid, 741
for electrons interacting with electrostatic waves in

plasma, 1118–1119, 1123
for magnetic field, in MHD, 948

diffusion equation, 140
solution in infinite, homogenous medium, 141, 291
and random walk, 140, 140n
Fokker-Planck equation as, 339
for temperature in homogenous medium, 142, 920
for vorticity, in viscous fluid, 741
for magnetic field, in MHD, 948
in nonlinear plasma physics, 1118–1119, 1135, 1148

dimensional analysis for functional form of a fluid flow,
790–791

dimensional reduction in elasticity theory, 590b
for bent beam, 592–595
for bent plate, 609–613

Dirac equation, 44b
energy eigenstates (modes) of, 175n

directional derivative, 22–23, 70, 1167, 1169
dispersion relation, 353. See also under geometric optics;

specific types of wave
as Hamiltonian for rays, 361, 367

displacement vector, in elasticity, 570
gradient of, decomposed into expansion, shear, and

rotation, 570–571
Navier-Cauchy equation for, 587. See also Navier-Cauchy

equation for elastostatic equilibrium
dissipation, 724b. See also fluctuation-dissipation theorem
distortion of images, 1424
distribution function. See also under specific ensembles

as a geometrical object, 162
Newtonian number density in phase space, 99
relativistic number density in phase space, 104
statistical mechanical, number density of systems in phase

space, 163
statistical mechanical, probabilistic, ρ, 161

in statistical equilibrium, general, 173
normalization, 163

mean occupation number, 108–110. See also occupation
number, mean

N-particle, 1102–1103
isotropic, 120–121
integrals over momentum space, 117–121
evolution of. See Boltzmann equation, collisionless;

Boltzmann transport equation; Vlasov equation
for photons, 106–108

in terms of specific intensity, 107
for particles with range of rest masses, 104–105
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for particles in a plasma, 105–106, 1071
N-particle, 1102–1103

divergence, 24, 71
DNA molecule, elastostatics of, 599–600
domain walls, 1432n
Doob’s theorem, 295–296

proof of, 298–299
Doppler shift, 62

of temperature of CMB, 116–117
double diffusion, 937–940
drag force and drag coefficient, 792

at low Reynolds number (Stokes flow), 753–754
influence of turbulence on, 792f, 794, 820–821
on a flat plate, 763–764
on a cylinder, 792–794, 792f
on an airplane wing, 820–821
on sports balls, 825
on fish of various shapes, 797–798

drift velocities
for charged particles in electromagnetic field, 1025–1027
for electron and ion fluids, 1038–1039

drift waves, 1067–1068
DVD, 530, 531
dynamos, 984–988

E-modes, of CMB polarization, 1419f, 1420, 1428
Earth. See also atmosphere of Earth; elastodynamic waves in

Earth
internal structure of, 651t
pressure at center of, 649
Moho discontinuity, 650
mantle viscosity, 755–756
mantle convection, 932
continental drift, 932
normal modes excited by atmospheric turbulence, 816

eddies
in flow past a cylinder, 791f, 793–794
in turbulence, 798–800, 802, 804–807, 811–814

eikonal approximation. See geometric optics
Einstein curvature tensor, 1223

contracted Bianchi identity for, 1223
components in specific metrics

static, spherical metric, 1258
linearized metric, 1228
Robertson-Walker metric for universe, 1371–1372
perturbations of Robertson-Walker metric, 1401–1402

Einstein field equation, 1223, 1224
derivation of, 1221–1223
Newtonian limit of, 1223, 1226–1227
linearized, 1229
cosmological perturbations of, 1402

solutions of, for specific systems. See under spacetime
metrics for specific systems

Einstein summation convention, 16, 55
Einstein–de Sitter universe, 1378, 1398, 1399f
Ekman boundary layer, 772–777
Ekman number, 768
Ekman pumping, 773
elastic energy density, 583–584

elastic physical free energy density, 584
elastic limit, 580, 581f
elastic moduli, 580–582

physical origin of, and magnitudes, 585–586, 586t
for anisotropic solid, 580
for isotropic solid

shear and bulk, 581–582
Young’s, 591
numerical values, 586t

in Earth, 651t
elastodynamic waves in a homogeneous, isotropic medium,

630–642
influence of gravity at ultralow frequencies, 639
wave equation, 635–636
energy density, energy flux, and Lagrangian for, 641–642
decomposition into longitudinal and transverse, 636, 637f,

640
Heaviside Green’s functions for, 658–660
longitudinal waves, 637–638

displacement is gradient of scalar, 637, 639–640
sound speed, dispersion relation, group and phase

velocities, 637–638
transverse waves, 638–639

displacement is curl of a vector, 637, 639–640
sound speed, dispersion relation, group and phase

velocities, 638–639
Rayleigh waves at surface, 654–657

elastodynamic waves in Earth
body waves, 650–654

P-modes and S-modes, 650
wave speeds at different depths, 651t
geometric optics ray equation, 652
junction conditions and mixing of, at discontinuities,

651–654, 651f, 653f
rays inside Earth, 653f

edge waves, 654
Rayleigh wave at Earth’s surface, 654–657
Love waves at Earth’s surface, 658
internal waves, 941

elastodynamic waves in rods, strings, and beams, 642–648
waves on a string under tension, 644–645
flexural waves in a stretched or compressed beam, 645–646
torsion waves in a circular rod, 643–644
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elastodynamics. See also elastodynamic waves in Earth;
elastodynamic waves in a homogeneous, isotropic
medium; elastodynamic waves in rods, strings, and
beams

force density, 587
in cylindrical coordinates, 624

when gravity can be ignored, 631
momentum conservation, 631
wave equation for displacement vector, 635–636
quantization of, 667–670

elastostatic force balance. See Navier-Cauchy equation for
elastostatic equilibrium

electric charge. See charge density
electromagnetic field. See also electromagnetic waves;

Maxwell’s equations
electromagnetic field tensor, 52, 53, 72
electric and magnetic fields, 72

as 4–vectors living in observer’s slice of simultaneity,
72–73, 73f

4–vector potential, 74–75
scalar and 3–vector potentials, 75

electric displacement vector, 536, 1036
stress tensor, 33
stress-energy tensor. See under stress-energy tensor

electromagnetic waves
vacuum wave equation for vector potential, 75, 1219–1220
in curved spacetime: curvature coupling, 1219–1220
in nonlinear dielectric medium, 536–564. See also wave-

wave mixing; three-wave mixing in nonlinear
crystals; four-wave mixing in isotropic, nonlinear
media

wave equation, 537
in anisotropic, linear dielectric medium, 551, 1035–1037

wave equation and dispersion relation, 551, 1037
in cold plasma, 1035–1068

electron microscope, 444–445
electron motion in electromagnetic field, 1024–1032
electro-optic effects, 539
electrostatic waves. See also Langmuir waves; ion-acoustic

waves; Landau damping
dispersion relation for, 1083–1084

for weakly damped or growing modes, 1085–1086
kinetic-theory analysis of, 1077–1079
stability analysis of, 1090–1092, 1095–1098
quasilinear theory of, 1113–1135
nonlinear: BGK waves, 1100–1101

embedding diagram, 1261–1263, 1276–1277, 1321f
emission

spontaneous, 115
in lasers, 515
of plasmons, in a plasma, 1126–1128

stimulated, 115
in lasers, 496, 515–516, 516f
of plasmons, in a plasma, 1134

energy conservation, Newtonian, 359, 695
energy conservation, relativistic

differential, 85, 1176
integral (global) in flat spacetime, 84, 86
global, in curved, asymptotically flat spacetime, 1237–1238
global, in generic curved spacetime: fails!, 1177, 1218

energy density, Newtonian, U
deduced from lagrangian, 365
as integral over distribution function, 121
for prototypical wave equation, 365

energy density, relativistic
as component of stress-energy tensor, 83
as integral over distribution function, 120, 126

energy flux, Newtonian, F,
deduced from lagrangian, 365
in diffusion approximation, 147–148
for prototypical wave equation, 365

energy flux, relativistic
as integral over distribution function, 120
as component of stress-energy tensor, 83

energy potential. See under fundamental thermodynamic
potentials

energy principle for perturbations of magnetostatic
equilibria, 980–982

energy, relativistic, 34, 59
as inner product of 4-momentum and observer’s

4–velocity, 60–61
for zero-rest-mass particle, 60, 106
kinetic, 34, 59
Newtonian limit, 34, 112

engine, adiabatic, 241
engine, isothermal, 241
ensemble average

in statistical mechanics, 163–164
in theory of random processes, 287

ensemble of systems, 160. See also specific ensembles
in statistical equilibrium, 160–161, 172–177

general, 172–173
tables summarizing, 160t, 221t

out of statistical equilibrium, 248–270
table summarizing, 251t

enthalpy ensemble, 221t, 245
enthalpy, 174
entrainment of one fluid by another

laminar, 796–797
turbulent, 806, 809–810

entropy, 181
additivity of, derived, 185
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estimates of, 185
maximized in statistical equilibrium, 183
per particle, 187, 191–192
increase of. See thermodynamics, second law of
of specific entities

general ensemble, 181
microcanonical ensemble, 182
thermalized mode, 187
thermalized radiation, 188
classical, nonrelativistic, perfect gas, 188–190
mixing of two different gases, 190
black hole, 206
black hole and radiation inside a box, 206–209
the universe, 209–210
information, 211–217

Eötvös experiment, 1300
equations of state

computed from kinetic theory, 121
polytropic, 681b, 687, 726b, 878

thermodynamic quantities in terms of sound speed,
878–879

for ideal or perfect gas, 228, 675n
for fluids, 680b–681b, 725b
for nonrelativistic hydrogen gas, 122–125
for van der Waals gas, 234
for thermalized radiation, 128–129

equipartition theorem, 177–178
equivalence principle

weak, 1300–1301
Einstein’s, 1196, 1217

delicacies of, 1218–1221
used to lift laws of physics into curved spacetime,

1217–1218
ergodic hypothesis,

in statistical mechanics, 180–181
in theory of random processes, 288–289

ergodic theory, 181n
ergosphere of black hole, 1283–1284
eschatology of universe, 1400–1401
etalon, 483–486, 489

reflection and transmission coefficients, 484, 485, 486–488
power reflectivity and transmissivity, 486

Euler equation of fluid dynamics, 697, 725b
Euler’s equation (relation) in thermodynamics, 226–227,

231, 240, 247, 256–257
Eulerian changes, 725b
Eulerian perturbations, 971–972
evanescent wave, 654
event, 40
expansion, in elasticity theory,�, 571, 572b, 574, 577

temperature change during, 585

expansion rate of fluid, θ , 693, 725b
expansion rate of universe,H(t), 1374
explosions and blast waves

in atmosphere or interstellar space, 908–914
into stellar wind, 915–916
underwater, 914–915

extensive variables, 169, 172, 221
complete set of, for a closed system, 222

extraordinary waves
in nonlinear crystals, 546–548, 551
in a cold, magnetized plasma, 1057–1058, 1060, 1063,

1064f

Fabry-Perot interferometer (cavity), 490, 491–502
with spherical mirrors: modes of, 491b–492b
finesse, 493
free spectral range, 493
Gouy phase, 493
reflection and transmission coefficients, 490
power transmissivity and reflectivity, 494f
resonance FWHM, 493
Bose-Einstein behavior on resonance, 495
applications of

laser stabilization, 497–498, 501
lasers, 496
mode cleaner for laser beam, 496–497
reshaping light beam, 497
spectrometer, 496
optical frequency comb, 498–501

factor ordering in correspondence principle, 1219–
1220

Faraday rotation, 1053–1054, 1060–1061
feedback-control system, 1093b

stability analysis of, 1093b–1095b, 1098
Feigenbaum sequence and number, 828–831
Fermat’s principle, 371

for dispersionless waves, 372–373
and Feynman sum over paths, 372
for general relativistic light rays, 1306–1307. See also

gravitational lensing
Fermi momentum, 124
Fermi-Dirac distribution

probabilistic distribution function for, 176
mean occupation number of, 112–113, 176

near-degenerate, 124f, 125
entropy of, 187

Fermi-Walker transport, 1184
fermion, 110
Ferraro’s law of isorotation for magnetosphere,

970
filtering of images. See image processing
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filtering of random processes (noise), 311–313
types of filters

differentiation and integration, 311
averaging, 317–318
band-pass, 315–317
high-pass, 441
low-pass, 441
notch, 441
finite-Fourier-transform, 317–318
Wiener’s optimal, 318–320

finesse, of a Fabry-Perot interferometer, 493
finite-element methods, 565, 590b, 606f
fish

streamlining and drag coefficients, 797–798
swimming, 744, 747b–748b

flexural rigidity (bending modulus), 594
flexural waves on a beam or rod, 353, 355f, 356, 645–646
flows, fluid. See fluid flows
fluctuation-dissipation theorem

Langevin equation, 324–325
physics underlying, 323–325
elementary version of, 325–326

derivation of, 326–327
generalized version of, 331–334

derivation of, 334–335
applications of

Johnson noise in a resistor, 327
thermal noise in an oscillator, 329–330. See also noise,

thermal
laser-beam measurement of mirror position, 331–334

fluctuations away from statistical equilibrium. See under
statistical equilibrium

fluid, 677. See also fluid dynamics, fundamental equations;
fluid dynamics, relativistic; fluid flows; fluid-flow
instabilities

thermodynamics for, 679b–681b
perfect (ideal), 675, 675n
Newtonian, 712, 726b
non-Newtonian, 712f

fluid dynamics, fundamental equations. See also fluid
dynamics, relativistic

terminology, 724b–726b
mass density and flux, 708t
mass conservation, 32–33, 692–693
for ideal fluid in external gravitational field

momentum density and flux, 708t
Euler equation (momentum conservation), 696–697
energy density and flux, 704, 708t
energy conservation, 707
entropy conservation, 697, 707

for self-gravitating ideal fluid, 705b–707b, 709

for viscous, heat-conducting fluid in external gravitational
field, 710–719, 919–920

momentum and energy densities and stress tensor,
715t

viscous stress tensor, 712
Navier-Stokes equation (momentum conservation),

712–713. See also Navier-Stokes equation
total energy flux, 715t
viscous and thermal-conductive energy flux, 714
entropy evolution (dissipative heating), 715–716

for viscous, heat-conducting, incompressible flow with
negligible dissipation, 919–920

Boussinesq approximation, 924–925. See also
convection

in rotating reference frame, 767–768, 770
fluid dynamics, relativistic, 719–724

fundamental equations, 719–720
nonrelativistic limit, 723–724
relativistic Bernoulli equation and theorem, 721–722
application to steady, relativistic jet, 721–722
application to relativistic shock wave, 902–903

fluid flows. See also fluid-flow instabilities; fluid dynamics,
fundamental equations; fluid dynamics, relativistic

between two plates, steady, 718
through a pipe

laminar, 716–717, 766
onset of turbulence, 787

around a body at low Reynolds number: Stokes flow,
749–754, 749f

around a cylinder: high-Reynolds-number, potential flow,
765, 789–794

types of
barotropic, inviscid, 736–738, 740
viscous, 710–716.
high-Reynolds-number, 757–766
low-Reynolds-number, 746–757. See also low-

Reynolds-number flow
irrotational (potential), 701
irrotational, incompressible, 837
incompressible, 709–710
compressible, 875–916. See also compressible fluid flow
laminar, 716–717. See also under boundary layers;

wakes; jets
turbulent, 787–834. See also under boundary layers;

wakes; jets
nearly rigidly rotating, 766–768
geostrophic, 770–777
self-similar, 759. See self-similar flows

fluid-flow instabilities. See also fluid flows
convective. See convection
density inversion: Rayleigh-Taylor instability, 783–784
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shear flows
Kelvin-Helmholtz instability, 778–782
influence of gravity and density stratification, 782–783,

784–786
laminar boundary layer, 822–823

rotating Couette flow, 784, 785f, 825–828
flute instability for toroidal�-pinch, 978–979, 978f
Fokker-Planck equation

in one dimension, 335–337
as a conservation law for probability, 339
derivation of, 337–338
for a Gaussian, Markov process, 338–339
for detailed-balance processes, 339–340
time-independent, 338

in multiple dimensions, 343
for Coulomb collisions, 1013–1016, 1032
for Doppler cooling of atoms by laser beams, 340–343,

341f
for electrons interacting with plasmons, 1123, 1130–1131
solutions of

for Brownian motion of a dust particle, 340
for Doppler cooling of atoms by laser beams, 340–343,

341f
for photon propagation through intergalactic gas

(Sunyaev-Zel’dovich effect), 1428–1430
for thermal noise in an oscillator, 344

force density, as divergence of stress tensor, 578
force-free magnetic field, 964
Foucault pendulum, 407, 597–598
Fourier transform, conventions for

in theory of random processes, 299
in theory of diffraction, 420
in plasma physics, 1115

Fourier-transform spectroscopy, 474–476
four-wave mixing in isotropic, nonlinear media, 540,

558–564
specific nonlinear materials used, 559t
fully degenerate, evolution equations for, 561
resonance conditions, 560, 562
phase conjugation via, 559–562, 560f
squeezing via, 562
optical Kerr effect in an optical fiber, 562–564

fracture, criterion for safety against, 621
frame dragging by spinning bodies, 1233–1236, 1279–1282,

1295b–1296b, 1342
frame-drag field, 1235b–1236b
frame-drag vortex lines, 1235b–1236b

around a linearized, spinning particle, 1236b
around a Kerr black hole, 1295b–1296b
around colliding black holes, 1344b–1345b
in a gravitational wave, 1318b, 1345b

Fraunhofer diffraction, 420–429
diffracted field as Fourier transform of aperture’s

transmission function, 420
convolution theorem applied to, 422, 423f
Babinet’s principle for, 428–429
specific diffraction patterns

slit, 421, 434
diffraction grating, 422, 423f, 424
circular aperture: Airy pattern, 425–427

free energy, 241n
chemical (Gibbs) free energy. See under fundamental

thermodynamic potentials
physical (Helmholtz) free energy, 241–246

physical meaning of, 241, 241f
for elastic medium, 584, 603–604

free spectral range, of a Fabry-Perot interferometer, 493
free-fall motion and geodesics, 1200–1203
frequency and time standards, 310f, 310n
frequency doubling in nonlinear optics, 545–546, 553–555
Fresnel diffraction, 429–436. See also paraxial Fourier optics

Fresnel integrals for, 430–431
Cornu spiral, 431f

specific diffraction patterns
unobscured plane wave, 432
straight edge, 432–434
aperture with arbitrary shape, 430, 433–434, 434f
rectangular aperture, 430–431
circular aperture: Fresnel zones and zone plates,

434–436
near a caustic, 451–454, 452f

Fresnel integrals, 430–431
Fresnel length, 418
Fresnel zones and zone plates, 435–436
Fried parameter, 468b
Friedmann equations for expansion of the universe,

1376–1377
fringe visibility, 461–463
fringes, interference. See interference fringes
fundamental observers (FOs), in cosmology, 1366–1367
fundamental thermodynamic potentials. See also under

thermodynamics
energy potential

for energy representation of thermodynamics, 222–223
for nonrelativistic, classical, perfect gas, 227

Gibbs potential, 246–247
physical interpretation as chemical free energy, 247–248
computed by a statistical sum, 246, 248

grand potential, 229–230
computed by a statistical sum, 230, 232–238
for relativistic, perfect gas, 238–239
for van der Waals gas, 234

Subject Index 1489

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



fundamental thermodynamic potentials (continued)
physical-free-energy potential, 239–240

computed by a statistical sum, 239, 242–243
for ideal gas with internal degrees of freedom, 243
for elastic medium, 584, 603–604

enthalpy potential, 244–245
fundamental thermodynamic potentials out of statistical

equilibrium
Gibbs potential, 248–250, 251t

minimum principle for, 249, 251t
other potentials and their extremum principles, 250, 251t
used to analyze fluctuations away from statistical

equilibrium, 260–270
fusion, controlled thermonuclear, 959–964, 999f, 1001,

1002t, 1140–1142
motivation for, 958–959
Lawson criterion for, 960
d, t fusion reaction, 959
magnetic confinement for, 960–964.
laser fusion, 1140–1142

g modes of sun, 837, 849–850
gain margin, for stability of control system, 1095b, 1098
galaxies

structures of, 201–202
observed properties of, 1364, 1365f, 1412–1413
distortion of images by gravitational lensing, 1424–1427
spatial distribution of, 1364

power spectrum for, 1412–1415, 1414f
correlation function for, 306f

statistical mechanics of, 202–204
formation of in early universe, 210–211, 1401–1406
dark matter in, 201–204, 1076n, 1364, 1365f, 1381
mergers of, 1413

galaxy clusters
dark matter in, 1380–1381
hot gas in, and Sunyaev-Zel’dovich effect, 1428–1430
merging, image of, 1365f

gas, 678, 725b
perfect gas, nonrelativistic, 121, 188–189, 726b
perfect, relativistic, 127, 238–239
ideal, 242–244, 725b
hydrogen, 122–123, 122f, 127, 999f
degenerate, 127–128

gas discharge, in laboratory, 999f, 1001, 1002t
gauge transformations and choices

in linearized theory of gravity, 1228–1229, 1312
in cosmological perturbations, 1401n

Gauss’s theorem
in Euclidean 3-space, 27
in spacetime, 78

Gaussian beams, 445–448
in Fabry-Perot cavity with spherical mirrors, 491b–

492b
in interferometric gravitational wave detectors (LIGO),

447–448
manipulation of, 447, 448

Gaussian random process, 292–294. See also Markov,
Gaussian random process

general relativity, 1191–1224
some history of, 1191–1193
linearized approximation to, 1227–1231
Newtonian limit of, 1225–1227
experimental tests of, 1299–1311

geodesic deviation, equation of, 1210
for light rays, 1423
on surface of a sphere, 1217

geodesic equation
geometric form, 1201–1202
in coordinate system, 1203
conserved rest mass, 1202
super-hamiltonian for, 1206, 1357
action principles for

stationary proper time, 1203, 1205–1206
super-Hamiltonian, 1357

conserved quantities associated with symmetries,
1203–1205

geodetic precession, 1290–1291, 1309–1310
geometric object, 1, 5, 41
geometric optics, 357–375, 1174. See also Fermat’s principle;

paraxial ray optics
as two-lengthscale expansion for a wave, 357, 359, 360
limitations (failure) of, 369–371
for a completely general wave, 366–368
for prototypical wave equation, 358–366
eikonal approximation, 359
connection to quantum theory, 362–365
rays and Hamilton’s equations for them, 361
dispersion relation as Hamiltonian, 361, 367
amplitude and its propagation, 359, 361, 364–365, 368
phase and its propagation, 359, 362, 367
angular frequency and wave vector, 359
energy density, U , 359
energy flux, F, 359
quanta, 363

conservation of, 364, 365, 368
Hamiltonian, energy, momentum, number density, and

flux of, 363
polarization vector, for electromagnetic waves, 405–406

propagation of: parallel transport along rays, 406–409
geometric phase, 406–409

eikonal equation (Hamilton-Jacobi equation), 362
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for dispersionless waves in time-independent medium
index of refraction, 372
ray equation, 373
Fermat’s principle: rays have extremal time, 372
Snell’s law, 373, 374f

examples
light propagating through lens, 370f,
light rays in an optical fiber, 374–375
flexural waves in a tapering rod, 368–369
spherical sound waves, 368, 369
Alfvén waves in Earth’s magnetosphere, 370f
gravitational waves, 1320–1324, 1338–1341

geometric phase, 406–409
geometric principle, 1, 6–7, 10

examples, 28, 29
geometrized units, 33–34, 35, 1157, 1224

numerical values of quantities in, 1225t
geometrodynamics, 1344b–1345b
geostrophic flow, 770–777
Gibbs ensemble, 160t, 173–174, 221t. See also under

fundamental thermodynamic potentials;
thermodynamics

distribution function, 174
Gibbs potential. See under fundamental thermodynamic

potentials; fundamental thermodynamic potentials
out of statistical equilibrium

global positioning system, 1301–1302
global warming, 748–749, 755, 958, 1440n
globular star cluster, energy equilibration time for, 1012–

1013. See also stellar dynamics
Gouy phase

for freely propagating Gaussian beam, 446
for mode of a Fabry-Perot interferometer, 493

gradient drift, 1027, 1027f
gradient operator, 23, 70–71, 617, 1170–1171, 1173
Gran Telescopio Canarias, 609
grand canonical ensemble, 160t, 174, 221t, 229–239. See

also under fundamental thermodynamic potentials;
thermodynamics

distribution function, 174
grand partition function. See also fundamental

thermodynamic potentials, grand potential
as log of grand potential, 229–230

grand potential. See under fundamental thermodynamic
potentials

gravitation theories
general relativity, 1191–1224
Newtonian theory. See gravity, Newtonian
relativistic scalar theory, 53, 1194–1195

gravitational drift of charged particle in magnetic field,
1026

gravitational fields of relativistic systems. See spacetime
metrics for specific systems

gravitational lensing, 396–404, 1305–1307, 1422–1427. See
also deflection of starlight, gravitational

refractive index models for, 396–397
derivation of, 1305–1307

Fermat’s principle for, 396–397, 1306–1307
microlensing by a point mass, 398–401

Einstein ring, 399, 400f
time delay in, 401

lensing by galaxies, 401–404, 404f
lensing of gravitational waves, 1323–1324
weak lensing, 1422–1427

gravitational waves, 1321f. See also gravitons
speed of, same as light, 45b
stress-energy tensor of, 1324–1326
energy and momentum carried by, 1324–1326
dispersion relation for, 354
generation of, 1327–1345

multipole-moment expansion, 1328–1329
quadrupole-moment formalism, 1330–1335
radiation reaction in source, 1333, 1338
numerical relativity simulations, 1341–1342
energy, momentum, and angular momentum emitted,

1332, 1334–1335
mean occupation number of modes, 1326–

1327
propagation through flat spacetime, 1229, 1311–

1320
h+ and h×, 1315–1316
behavior under rotations and boosts, 1317, 1319
TT gauge, 1312–1315
projecting out TT-gauge field, 1314b
Riemann tensor and tidal fields, 1312–1313
deformations, stretches and squeezes, 1315–1317
tidal tendex and frame-drag vortex lines for, 1318b

propagation through curved spacetime (geometric optics),
1320–1327, 1338–1341

same propagation phenomena as electromagnetic
waves, 1323

gravitational lensing of, 1323–1324
penetrating power, 1311
frequency bands for: ELF, VLF, LF, and HF, 1345–1347
sources of

human arm waving, 1333
linear oscillator, 1338
supernovae, 111
binary star systems, 1335–1342
binary pulsars in elliptical orbits, 1342–1345
binary black holes, 1341–1342, 1342f, 1343f, 1344b–

1345b
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gravitational waves (continued)
sources of (continued)

stochastic background from binary black holes,
1356–1358,

cosmic strings, 1357
detection of, 1345–1357

gravitational wave interferometers, 1347–1355. See
also LIGO; laser interferometer gravitational wave
detector

pulsar timing arrays, 1355–1357
gravitons

speed of, same as light, 45b, 1319
spin and rest mass, 1319–1320

gravity, Newtonian
gravitational potential,�, 682
field equation for�, 682
gravitational acceleration g, 682
gravitational stress tensor, 705b
gravitational energy density, 706b
gravitational energy flux, 706b
total gravitational energy, 709

gravity probe A, 1301
gravity probe B, 1309
gravity waves on water, 353, 355f, 356, 837–843

arbitrary depth, 837–840
shallow water, 840–843

dam breaking: water flow after, 857
nonlinear, 840–841, 843, 850–858, 897
solitary waves (solitons) and KdV equation, 850–

858
deep water, 353, 355f, 356, 840

viscous damping of, 842
capillary (with surface tension), 844–848

Green’s functions
for wave diffraction, 417

in paraxial optics, 438
for elasticity theory, 590b
for elastostatic displacement, 626–627
for elastodynamic waves, 658–661, 660f
in Fokker-Planck theory, 343

greenhouse effect, 135, 137–138, 748, 958. See also climate
change

group velocity, 355
guide star, for adaptive optics, 470–471
guiding-center approximation for charged-particle motion,

1025–1030, 1055
gyre, 773, 775–776, 805
gyro frequencies. See cyclotron frequencies
gyroscope, propagation of spin

in absence of tidal gravity
parallel transport if freely falling, 1218–1219
Fermi-Walker transport if accelerated, 1184

precession due to tidal gravity (curvature coupling),
1219–1221

gyroscopes
inertial-guidance, 1182
used to construct reference frames, 39, 1156, 1180–1182,

1195
precession of due to frame-dragging by spinning body,

1232–1236, 1279, 1296b, 1309, 1318
laser, 501, 502f, 520
on Martian rover, 409

Hamilton-Jacobi equation, 362, 375
Hamilton’s equations

for particle motion, 136b
for particle motion in curved spacetime, 1206, 1275, 1291
for rays in geometric optics, 361–363, 367
for plasmons, 1124
in statistical mechanics, 158

Hamilton’s principal function, 362, 375
hamiltonian, constructed from lagrangian, 1433
hamiltonian for specific systems

harmonic oscillator, 159
L-C circuit, 332
crystal

fundamental mode, 159
all modes, weakly coupled, 159

damped system, 159n
star moving in galaxy, 159
particle motion in curved spacetime. See also geodesic

equation
super-hamiltonian, 1206, 1357

Hanbury Brown and Twiss intensity interferometer, 509–511
harmonic generation by nonlinear medium, 537, 545–546,

553–55
harmonic oscillator

hamiltonian for, 159
complex amplitude for, 344
thermal noise in, 344

Harriet delay line, 381
Hartmann flow, 965–969
Hartmann number, 968
Hawking radiation

from black holes, 204–205, 1286–1287
from cosmological horizon, 1437

heat conduction, diffusive. See also conductivity, thermal;
diffusion; diffusion equation; random walk

in a stationary, homogeneous medium, 141–142
in a star, 142–148
in the sun, 937
in a flowing fluid, 920

fluid flow equations with heat conduction. See under
fluid dynamics, fundamental equations
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Heaviside Green’s functions, 658–660, 660f
helicity

hydrodynamic, 985
magnetic, 965

helioseismology, 848–850
helium formation in early universe, 192–193, 1387–

1392
Helmholtz equation, 413
Helmholtz free energy. See under free energy
Helmholtz-Kirkhoff integral for diffraction, 414, 415f
high-Reynolds-number flow, 757–766

boundary layers in. See boundary layers
Hilbert space, 18b
hologram, 522–531. See also holography
holography, 521–531

recording hologram, 522–525, 530
reconstructing 3-dimensional image from hologram,

525–527, 530
secondary (phase conjugated) wave and image, 525f, 527,

535
types of

simple (standard) holography, 521–528
reflection holography, 528, 530
white-light holography, 528
full-color holography, 528–529
phase holography, 528
volume holography, 528

applications of
holographic interferometry, 529, 529f
holographic lenses, 529, 530–531

homogeneity of the universe, 1364–1366
homogeneous spaces

2-dimensional, 1367–1370
3-dimensional, 1370, 1372

Hooke’s law, 568f, 591
realm of validity and breakdown of, 580, 581f

horizon problem in cosmology, 1387, 1388f, 1431–1432
horizon radius of universe, χH , 1375
horizon, black-hole event

nonrotating (Schwarzschild), 1272
formation of, in imploding star, 1273, 1273f
surface gravity of, 1274

rotating (Kerr), 1279–1280
generators of, 1280, 1281f, 1282
angular velocity of, 1280
surface gravity of, 1286
surface area of, 1284, 1285

horizon, cosmological, 1375
horizon radius, χH , 1375
horizon problem, 1387, 1388f, 1431–1432
and theory of inflation, 1437–1438
acoustic horizon and radius, χA, 1375

Hubble constant,H0, 1374
measurements of, 1375

Hubble law for expansion of universe, 1374
Hubble Space Telescope

images from, 400, 404, 1365
spherical aberration in, and its repair, 426–427

Huygen’s model for wave propagation, 411, 417
hydraulic jump, 903–904, 904f
hydrogen gas. See gas, hydrogen
hydromagnetic flows, 965–971
hydrostatic equilibrium

in uniform gravitational field
equation of, 681
theorems about, 682–683

of nonrotating stars and planets, 686–689
of rotating stars and planets, 689–691

barotropic: von Zeipel’s theorem, 702
centrifugal flattening, 690, 691

of spherical, relativistic star, 1258
hydrostatics, 681–691

ideal fluid. See perfect fluid
ideal gas. See gas, ideal
image processing

via paraxial Fourier optics, 436–437, 441–445
low-pass filter: cleaning laser beam, 441
high-pass filter, accentuating features, 441
notch filter: removing pixellation, 441
convolution of two images or functions, 443–

444
phase-contrast microscopy, 442–443
transmission electron microscope, 444–445

speckle, 470b, 472
impedance

acoustic, 654
complex, for fluctuation-dissipation theorem, 332

incompressible approximation for fluid dynamics, 709–710,
725b

index gymnastics. See component manipulation rules
index of refraction, 372

numerical values, 541b–542b, 547f, 559t
for axisymmetric optical systems, 377
for optical elements, 483, 486–489, 497n
for optical fiber, 374, 447, 534
for anisotropic crystals, 546
for plasma waves, 1052, 1057, 1058f
for Earth’s atmosphere, 466b–469b, 814–815
for seismic waves in Earth, 652
for model of gravitational lensing, 396, 1307

induction zone, 1327f
inertial (Lorentz) coordinates, 41, 54, 1157
inertial-guidance system, 1182b
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inertial mass density (tensorial)
definition, 87
for perfect fluid, 87

inertial reference frame. See Lorentz reference frame
inflation, cosmological, 1431–1440

motivation for, 1431–1432
theory of, 1434–1438
particle production at end of, 1435, 1437
tests of, 1438–1439

inflaton field, 1433
potential for, 1435, 1436f
energy density and pressure of, 1435
evolution of, 1435, 1436f, 1437
dissipation of, produces particles, 1437

information
definition of, 212
properties of, 216
statistical mechanics of, 211–218
per symbol in a message, 214, 215
gain defined by entropy decrease, 211–212

inner product
in Euclidean space, 10–12, 17
in spacetime, 48, 56
in quantum theory, 18b

instabilities in fluid flows. See fluid-flow instabilities
integrals in Euclidean space

over 2-surface, 27
over 3–volume, 27
Gauss’s theorem, 27, 1176

integrals in spacetime, 75–78, 1174–1176
over 3-surface, 77, 80–81, 1175
over 4–volume, 75, 1175
Gauss’s theorem, 27, 78
not well defined in curved spacetime unless infinitesimal

contributions are scalars, 1175
intensive variables, 172, 221–222
interference by division of the amplitude, 473
interference by division of the wavefront, 458
interference fringes

for two-beam interference, 457f, 458, 458n
for perfectly coherent waves, 459
for waves from an extended source, 460
fringe visibility, 460–463, 475
in Fresnel diffraction, 419f,
near a caustic, 452f, 453

interferogram, 475, 476
interferometer

Fabry-Perot, 490–495. See also Fabry-Perot interferometer
gravitational wave. See LIGO; laser interferometer

gravitational wave detector
Michelson, 474, 475f

Michelson stellar,464, 465f
Sagnac, 501–502
radio-telescope, 479–483
very long baseline (VLBI), 482
intensity, 509–511
stellar intensity, 511

interferometric gravitational wave detector. See laser
interferometer gravitational wave detector; LIGO

interferometry, multiple-beam, 483–486
intergalactic medium, 999f, 1002, 1002t
intermittency in turbulence, 798–799, 807
internal waves in a stratified fluid, 941
international pulsar timing array (IPTA), 1356
interstellar medium, 891, 914–916, 950t, 989, 992, 999f, 1001,

1002t, 1012, 1060–1061, 1138–1139, 1146–1147
interval

defined, 45, 1159
invariance of, 45–48, 1159–1160
spacelike, timelike, and null (lightlike), 45

inviscid, 725b
ion-acoustic waves. See also electrostatic waves; plasmons

in two-fluid formalism, 1046–1050
in kinetic theory, 1088–1090
Landau damping of, 1088
nonlinear interaction with Langmuir waves, 1132–1135
solitons, 1142–1146

ionosphere, 999f, 1001, 1002t, 1059
radio waves in, 1058–1062

irreducible mass of black hole, 1284–1287
irreducible tensorial parts of second-rank tensor, 572b–574b,

577, 711
irrotational flow (vorticity-free), 701, 725b, 837
isentropic, 725b
Ising model for ferromagnetic phase transition, 272–282

1-dimensional Ising model, 278–279
2-dimensional Ising model, 272–273

solved by Monte Carlo methods, 279–282
solved by renormalization group methods, 273–278

isobar, 725b
isothermal engine, 241
isotropy of the universe, 1364–1366
ITER (International Thermonuclear Experimental Reactor),

963

James Webb Space Telescope, 427
Jeans’ theorem, 169, 1074–1077, 1100, 1407
jerk function j (t) for universe, 1374, 1378

value today, 1382
JET (Joint European Torus), 963
jets

laminar, 796–797
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turbulent, 809f, 810
Johnson noise in a resistor, 327
Joukowski’s (Kutta-Joukowski’s) theorem, 743
Joule-Kelvin cooling, 708, 708f
junction conditions

elastodynamic, 588–589, 651, 654
hydraulic jump, 903–904
MHD, 953–956
shock front. See Rankine-Hugoniot relations for a shock

wave
Jupiter, 455, 687, 689, 702, 801b, 1100
JVLA (Jansky Very Large Array), 480

Kármán vortex street, 791f, 794
KDP nonlinear crystal, 541b, 546–548, 1141b
Keck telescopes, 609–611
Kelvin-Helmholtz instability in shear flow, 778–782

influence of gravity on, 782–783
onset of turbulence in, 801b

Kelvin’s theorem for circulation, 740, 746, 824
Kepler’s laws, 14, 691, 784, 1232–1233, 1247, 1304, 1335,

1344
kernel of a filter, in theory of random processes (noise),

311–313
Kerr metric. See also black holes; horizon, black-hole event

in Boyer-Lindquist coordinates, 1277–1279
in (ingoing) Kerr coordinates, 1281–1282, 1281n
geodesic orbits in, 1291
dragging of inertial frames in, 1279, 1290–1291
precession of gyroscope in orbit around, 1290–1291
tidal tendex lines and frame-drag vortex lines in,

1295b–1296b
light-cone structure of, 1279–1282
event horizon of, 1280
Cauchy horizon of and its instability, 1282n

Killing vector field, 1203–1205
kink instability, of magnetostatic equilibria, 977–978
Knudsen number, 755n
Kolmogorov spectrum for turbulence, 467, 810–815

phenomena missed by, 814
derivation of, 810–812
for transported quantities, 467, 814–816
in Earth’s atmosphere, 466b–471b

Kompaneets equation, 1429
Korteweg–de Vries equation and soliton solutions, 850–856,

858, 1048–1049
KTP nonlinear crystal, 542b, 554–555
Kutta-Joukowski’s theorem, 743

Lagrange multiplier, 183
Lagrangian changes, 725b

lagrangian methods for dynamics, 1433
lagrangian density

energy density and flux in terms of, 365, 642, 1434
for prototypical wave equation, 365
for scalar field, 1434
for electrodynamics, 1433–1434
for elastodynamic waves, 642

Lagrangian perturbations, 971–972
Lamé coefficients, 582
laminar flow, 716–717. See also under boundary layers; jets;

wakes
Landau contour, 1082f, 1083
Landau damping

physics of: particle surfing, 1046, 1069–1070, 1098–1099
for ion-acoustic waves, 1088–1090
for Langmuir waves, 1086–1088
in quantum language, 1127–1129

Landauer’s theorem in communication theory, 217–218
Langmuir waves. See also electrostatic waves; plasmons

in two-fluid formalism, 1044–1047
in kinetic theory, 1086–1088, 1090
in quasilinear theory, 1115–1123

summary of, in one dimension, 1120
evolution of electron distribution, 1118–1120
evolution of wave spectral density, 1118
in three dimensions, 1122–1123

Landau damping of, 1086–1088, 1098–1099
particle trapping in, 1098–1100
nonlinear interaction with ion-acoustic waves, 1132–

1135
Laplace transform, 1081, 1084

used to evolve initial data, 1081
laplacian, 24, 402, 665
Larmor radius, 1019, 1002t
laser

principles of, 515–519
light in quantum coherent state, 518
pump mechanisms, 519
types of

continuous wave, 517, 519
pulsed, 517, 519
Nd:YAG, 553
mode-locked, 520–521. See also optical frequency

comb
free electron, 521
nuclear powered X-ray, 521

laser frequency stabilization
locking to atomic transition, 519
locking to mode of an optical cavity: PDH locking,

497–498, 501, 519
laser gyroscope, 501, 502f, 520
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laser interferometer gravitational wave detector. See also
LIGO

spectral density of noise, 302
in initial LIGO detectors, 302f

sensitivity: weakest detectable signal, 505
order-of-magnitude analysis of, 503–505
general relativistic analyses of

in proper reference frame of beam splitter, 1347–1349,
1352–1355

in TT gauge, 1347–1352
for more realistic interferometer, 1355

Gaussian beams in, 447–448
power recycling in, 505
signal recycling in, 506
phase shift in arm, 506–507
photon shot noise in, 507–509
scattered light in, 448–451
experimental challenges, 505

laser pointer, 554–555
latent heat, 252, 254, 255, 270
Lawson criterion for controlled fusion, 960
least action, principle of, 371, 371n
left modes, for plasma electromagnetic waves parallel to

magnetic field, 1052–1056
lens, thin: light propagation through

geometric optics description of, 378–379, 379f
paraxial Fourier optics description of (Abbé’s theory),

439–441
and optical Fourier transforms, 439–441

Lense-Thirring precession, 1233, 1290–1291, 1309–1310
Lenz’s law, 945
Levi-Civita tensor in Euclidean space, 24–26

product of two, 25
Levi-Civita tensor in spacetime, 71, 1174–1175
Lie derivative, 735n
light cones, 1155–1156, 1155f, 1159, 1186–1187, 1230, 1230f

near Schwarzschild black hole, 1264–1265, 1269, 1272
near Kerr black hole, 1279–1283

LIGO (Laser Interferometer Gravitational-Wave
Observatory). See also laser interferometer
gravitational wave detector

discovery of gravitational waves, 506, 1326, 1346
initial LIGO detectors (interferometers), 447–448, 503

noise in, 302f, 323, 334, 448–451, 507–509, 626
order-of-magnitude analysis of, 503–506
schematic design of, 503f

advanced LIGO detectors (interferometers), 448, 503, 506,
1346–1347

signal recycling in, 506
Gaussian beams in, 447–448
laser frequency stabilization in, 519

signal processing for, 320, 329–330, 1341
squeezed states of light in, 557

LINAC Coherent Light Source (LCLS), 521
line element, 57, 1163–1164
linearized theory (approximation to general relativity),

1227–1231
Liouville equation, in statistical mechanics, 167

quantum analog of, 165b–166b
Liouville’s theorem

in kinetic theory, 132–134, 133f
in statistical mechanics, 166, 168f

liquid, 678, 726b
bulk modulus for, 678

liquid crystals and LCDs, 539, 712
Lithium formation in early universe, 1392
local Lorentz reference frame and coordinates, 1195–1196,

1195f
connection coefficients in, 1199–1200

influence of spacetime curvature on, 1213
metric components in, 1196–1200

influence of spacetime curvature on, 1213
Riemann tensor components in, 1214
nonmeshing of neighboring frames in curved spacetime,

1197–1199, 1197f
logistic equation, 828–831
Lorentz contraction

of length, 66–67
of volume, 99
of rest-mass density, 81, 723

Lorentz coordinates, 41, 54, 1157
Lorentz factor, 58
Lorentz force

in terms of electromagnetic field tensor, 53, 71,
1156

in terms of electric and magnetic fields, 6, 14, 72
geometric derivation of, 52–53

Lorentz group, 64
Lorentz reference frame, 39, 39f, 1156–1157. See also local

Lorentz reference frame and coordinates
slice of simultaneity (3-space) in, 58, 59f

Lorentz transformation, 63–65, 1158
boost, 64, 65f
rotation, 65

Lorenz equations for chaotic dynamics, 834
Lorenz gauge

electromagnetic, 75, 760, 1219–1220
gravitational, 1229–1230

low-pass filter, optical, 441
low-Reynolds-number flow, 746–757

nearly reversible, 746
pressure gradient balances viscous stress, 746
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regimes of: small-scale flow, or very viscous large-scale
flow, 746

luminosity distance, dL, 1375–1376
Lyapunov time and exponent, 832–833
Lyman alpha spectral line, 1373, 1393–1396

Mach number, 882
magnetic bottle, 1028, 1029f
magnetic confinement of plasma, for controlled fusion,

960–964
magnetic field diffusion in MHD, 948–950, 950t, 956
magnetic field interaction with vorticity, 957–958, 958f
magnetic field-line reconnection, 950, 986–988, 987f
magnetic force density on fluid, in MHD, 951–952
magnetic lenses for charged particles, 381–383
magnetic materials, 270–282

paramagnetism and Curie’s law, 271–272
ferromagnetism, 272–282

phase transition into, 272–273. See also Ising model for
ferromagnetic phase transition

magnetic Reynolds number, 950, 950t
magnetization

in magnetic materials, 270
in magnetized plasma, 1039

magnetohydrodynamics (MHD), 943–993
conditions for validity, 1020
fundamental equations of

electric field, charge, and current density in terms of
magnetic field, 947–948

magnetic-field evolution equation, 948
freezing-in of magnetic field, 948
magnetic field diffusion, 948
fluid equation of motion, 951
magnetic force density on fluid, 951–952
boundary conditions and junction conditions, 953–956
momentum conservation, 951
energy conservation, 952
entropy evolution, 953
ohm’s law, 947

generalizations of, 1020–1022
magnetoionic theory, for radio waves in ionosphere,

1058–1062
magnetosonic waves, 988–992

Alfvén waves (intermediate magnetosonic mode),
354–355, 990–991, 1053f. See also Alfvén waves

fast magnetosonic mode, 990–992
slow magnetosonic mode, 990–992

magnetosphere, 999f, 1001, 1002t
rotating, 969–970
in binary pulsars, 1310
Alfvén waves in, 370f

interaction of solar wind with Earth’s, 950, 957, 987–988,
1090, 1146–1147, 1146f

magnetostatic equilibria, 958–965, 971, 1030–1031
equations of, 960, 962
perturbations and stability of, 971–984

dynamical equation, 973
boundary conditions, 974
energy principle, 980–982
virial theorems, 982–984

magnification of images
by thin lens, 379
near a caustic, 390
in gravitational microlensing, 399, 400f, 401

Maple, 129, 132, 431, 619, 647, 691, 858, 1172
Markov random process, 289–291
Markov, Gaussian random process

probabilities for (Doob’s theorem), 295–296, 298–299
spectral density for, 303, 304f
correlation function for, 297, 304f
and fluctuation-dissipation theorem, 325
Fokker-Planck equation for, 336–338, 343

mass conservation, 32–33, 80, 692–693
mass density

rest-mass density, 81
as integral over distribution function, 121

mass hyperboloid, 100–101, 100f
mass moments, gravitational, 1328–1332
mass-energy density, relativistic

as component of stress-energy tensor, 83, 85
as integral over distribution function, 126

matched asymptotic expansions, 874
in Stokes flow, 753–754
in theory of radiation reaction, 869–871, 872f

Mathematica, 129, 132, 431, 619, 647, 691, 858, 1172
Matlab, 129, 132, 431, 619, 647, 691, 858, 1172
Maxwell relations, thermodynamic, 227–228, 232, 240, 247

as equality of mixed partial derivatives of fundamental
thermodynamic potential, 227–228

Maxwell velocity distribution for nonrelativistic thermalized
particles, 113–114, 114f

Maxwell-Jüttner velocity distribution for relativistic
thermalized particles, 114–115, 114f

Maxwell’s equations
in terms of electromagnetic field tensor, 73–74
in terms of electric and magnetic fields, 74, 946
in linear, polarizable (dielectric) medium, 1036
in nonlinear, polarizable (dielectric) medium, 536–537

mean free path, 140, 143–145, 146b, 149
mean molecular weight, 680b, 726b
Mercury, perihelion advance of, 1302–1304
method of moments. See moments, method of
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metric perturbation and trace-reversed metric perturbation,
1227–1228, 1311

metric tensor
in Euclidean space

geometric definition, 11–12
components in orthonormal basis, 17

in spacetime, 48, 1155
geometric definition, 48, 1155
components in orthonormal basis, 55, 1157

metrics for specific systems. See spacetime metrics for
specific systems

Metropolis rule in Monte Carlo computations, 280
MHD electromagnetic brake, 966, 967f
MHD electromagnetic pump, 966–968, 967f
MHD flow meter, 966, 967f
MHD power generator, 966, 967f
Michelson interferometer, 474, 475f, 476

application to Fourier-transform spectroscopy, 475–476
Michelson stellar interferometer, 464, 465f
Michelson-Morley experiment, 474, 483
microcanonical ensemble, 160t, 178–180, 221–228, 221t

correlations of subensembles in, 179
distribution function for, 179
and energy representation of thermodynamics, 221–

228
microcantilever, 597
microscope

simple, 380f
rays traveling through, 380, 380f

phase-contrast, 442–443, 442f
transmission electron, 444–445

Minkowski spacetime, 1–2
mirror machine for confining plasma, 963, 1030–1031
mirror point for particle motion in magnetic field, 1027f,

1028–1029, 1029f
mixing length for convection in a star, 935–936
modes (single-particle quantum states), 174–176

for Bose-Einstein condensate, 194–195
Moho discontinuity, 648, 650
moments, method of: applications

solving Boltzmann transport equation, 147n
dimensional reduction in elasticity theory, 594–595,

612–613
constructing fluid models from kinetic theory, 1074

momentum, relativistic, 34, 59
relation to 4-momentum and observer, 59, 61
of a zero-rest-mass particle, 60, 106
Newtonian limit, 34

momentum conservation, Newtonian
differential, 32, 694–695
integral, 32

momentum conservation, relativistic
for particles, 60
differential, 85, 1176–1177
global, for asymptotically flat system, 1237–1238
global, fails in generic curved spacetime, 1177, 1218

momentum density
as component of stress-energy tensor, 83
as integral over distribution function, 118

momentum space
Newtonian, 98, 98f
relativistic, 100–101, 100f

monopoles, 1432n
Monte Carlo methods

origin of name, 279n
for 2-dimensional Ising model of ferromagnetism,

279–282
for radiative transfer, 1415–1419, 1428

Morse theory, 384
multiplicity factor for states in phase space, M, 163
multiplicity for particle’s spin states, gs , 109
multipole moments

in sound generation, 865–867
gravitational, 1232, 1328–1334
of CMB anisotropy, 1418, 1419f
method of moments. See moments, method of

National Ignition Facility, 519, 664, 1141b
Navier-Cauchy equation for elastostatic equilibrium, 588

in cylindrical coordinates, 624
displacement is biharmonic, 589
boundary conditions for, 588–589
methods for solving, 590b

simple methods, 619–622
separation of variables, 624–626
Green’s function, 626–627

Navier-Stokes equation
general form, 712
for incompressible flow, 713, 726b
in rotating reference frame, 767

Nd:YAG crystal and laser, 447, 553–554, 561
Nd:YVO4 crystal, 554
near zone, 1327f
nephroid, 384n
neutral surface, in elasticity theory, 592–593
neutrinos

chirality of, 109n
spin of, deduced from return angle, 1319–1320
spin-state multiplicity, 109
from supernovae, 914
in universe today, 1380t, 1382
in universe, evolution of, 1384, 1385f
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temperature and number density compared to photons,
1385, 1385n

decoupling in early universe, 1384, 1385f, 1406n
thermodynamically isolated after decouping, 192, 209,

1384
influence of rest mass, 1385n, 1410
free streaming through dark matter potentials,

1407–1409
neutron stars. See also binary pulsars; pulsars; stars, spherical,

in general relativity
birth in supernovae, 111, 914
equation of state, 125, 1257
structures of, 579, 734, 1258–1260
upper limit on mass of, 1260
magnetospheres of, 969–970
r-modes of oscillation, 860
accretion of gas onto, 784, 890–891

neutrons in early universe, 1384, 1387–1392, 1390f
noise. See also fluctuation-dissipation theorem; LIGO;

random process; spectral density
as a random process, 308–313
types of spectra (spectral densities)

flicker noise, 308–310, 323
random-walk noise, 308–310
white noise, 308–310

information missing from spectral density, 310–311
filtering of, 311–313
Johnson noise in a resistor, 327
shot noise, 321–323, 507–509
thermal noise, 302f, 329–330, 334, 343–345, 448, 505,

598, 622–623, 626. See also fluctuation-dissipation
theorem

nonlinear crystals
dielectric tensor for, 537
dielectric susceptibilities of, 536–540

for isotropic crystal, 538, 538n, 539–540
specific crystals and their properties, 541b–542b
wave-wave mixing in. See three-wave mixing in nonlinear

crystals; wave-wave mixing
nonlinear media. See nonlinear crystals; wave-wave mixing;

three-wave mixing; four-wave mixing in isotropic,
nonlinear media

normal modes
Sturm-Liouville, 974–975
of elastic bodies, 661–662, 664–668

quantization of, 668–669
of elastic, homogeneous sphere, 661–662, 664–667

radial, 661, 664–665
ellipsoidal, 662, 666–667
torsional, 661–662, 665–666

of Earth. See under Earth

of sun, 848–850
of magnetostatic equilibria, 975–976, 980–981

nuclear reactions. See chemical reactions, including nuclear
and particle

nuclear reactor
neutron diffusion in, 151–153
cooling of, 922–923
xenon poisoning in, 153

nucleosynthesis, in nuclear age of early universe, 192–193,
1387–1392

number density
as time component of number-flux 4–vector, 79–80
as integral over distribution function, 117, 119, 121, 126

number flux
as spatial part of number-flux 4–vector, 79–80
as integral over distribution function, 117

number-flux 4–vector
geometric definition, 79–80
as integral over distribution function, 118, 119
components: number density and flux, 79–80
conservation laws for, 79–80

Nyquist diagram and method for analyzing stability,
1091–1098, 1092f

observer in spacetime, 41
occupation number, mean

defined, 110
ranges, for fermions, bosons, distinguishable particles,

and classical waves, 110, 111
for plasmon modes in a plasma, 1123–1124
for cosmic X-rays, 111
for astrophysical gravitational waves, 111, 1326–1327

ocean currents
surface currents driven by winds, 775–776
deep currents driven by gyre pressure, 768, 775–776

ocean tides, 1212–1213
ocean waves

generation by atmospheric pressure fluctuations in storms,
783

damping by turbulent viscosity, 842
breaking near shore, 903–904

Ohm’s law, 139. See also conductivity, electrical
in magnetohydrodynamics, 946–947
tensorial in magnetized plasmas, 1036

Ohmic dissipation, 945, 949–950, 953, 957, 966, 987–988
Olber’s paradox, 138–139
Onsager relation, 1018
optical cavity

paraxial (ray) optics of, 380–381, 381f
modes of, 491b–492b

optical depth, 1395
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optical fiber
light rays in, 374
Gaussian beams in, 447, 448
image distortions in, 534, 534f
geometric phase in, 406–409
four-wave mixing in, 562–564
solitons in, 564

optical frequency comb, 310n, 498–501, 512, 520–521
optical Kerr effect, 562–564
optimal filtering, 318–320
ordinary waves

in nonlinear crystals, 546–548, 551
in a cold, magnetized plasma, 1057–1058, 1060, 1063,

1064f
orthogonal transformation, 20–21

p modes of sun, 849–850
pairs, electron-positron

thermal equilibrium of, 258–259, 1001
temperature-density boundary for, 259f, 999f
annihilation of, in early universe, 1384, 1385f

parallel transport
for polarization vector in geometric optics, 406–409
for 4–vectors in curved or flat spacetime, 1169

parametric amplification, 555–558, 1140–1142
parametric instability, 1140–1141
paraxial Fourier optics, 436–451

point spread functions for, 438–439
image processing using. See image processing

paraxial ray optics, 375–384. See also catastrophe theory,
caustics

ray equation, 376
transfer matrices, 377–378

for optical elements: straight section, thin lens,
spherical mirror, 378

conjugate planes, 378
applications

thin lens, 378, 379f
microscope, 380, 380f
refracting telescope, 379f, 379–380
optical cavity, 380–381, 381f
magnetic lenses, 381–383

Parseval’s theorem, 300, 303, 478, 811, 1116–1117
particle conservation law

Newtonian, 28
relativistic, 80
in plasma, 1071

particle density. See number density
particle kinetics

in Euclidean space
geometric form, 13–15
in index notation, 19–20

in flat spacetime
geometric form, 49–52, 1154–1156, 1178b
in index notation, 57–62

in Newtonian phase space, 97–99
partition function, in statistical mechanics. See also

fundamental thermodynamic potentials, physical-
free-energy potential

as log of physical free energy, 239
Pascal, unit of stress, 578
path integrals in quantum mechanics, 371–372, 438n
path of particle (Newtonian analog of world line), 9–10
paths, for visualizing fluid flows, 699b
Péclet number, 921
Penning trap, 1031–1032
Penrose process for black holes, 1283–1285
Penrose stability criterion for electrostatic waves, 1097
perfect fluid (ideal fluid), 30, 675, 675n

Euler equation for, 33, 697
stress tensor for, 30–31, 32

perfect gas. See gas, perfect
perfect MHD, 950
perihelion and periastron advances due to general relativity,

1302–1304
perturbations in expanding universe

origin of, 1437
initial spectrum of, 1410–1412
evolution of, 1401–1422

phase conjugation of an optical wave, 531–535
and time reversal, 535
in holographic secondary image, 527
used to remove wave-front distortions, 532–535, 533f,

534f
produced by phase-conjugating mirror, 532

implemented via four-wave mixing in a nonlinear
medium, 559–562

phase margin, for stability of control system, 1098
phase matching, in nonlinear optics, 543, 548–549
phase mixing in statistical mechanics, 184, 184f, 210–211
phase of a wave. See under geometric optics
phase space

Newtonian, 98–99
relativistic, 101–105
in statistical mechanics, 161–163

phase transitions, 251
governed by Gibbs potential, 251–254
first-order, 252

Clausius-Clapeyron equation for, 254–255
second-order, 253

specific heat discontinuity in, 200, 254
triple point, 254–255, 255f
specific examples

water-ice, 251–252, 254–255
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water vapor–water, 255
van der Waals gas, 266–268
crystal structure change, 253–254
Bose-Einstein condensation, 196–197, 197f, 254
ferromagnetism, 272–282. See also Ising model for

ferromagnetic phase transition
phase velocity, 352
phonons

modes for, 175, 175n
for modes of an elastic solid, mathematical theory of,

667–670
momentum and energy of, 363
specific heat of in an isotropic solid, 131–132

photography, 522, 522f
photon, gravitational field of in linearized theory, 1231
physical laws

frameworks and arenas for, 1–3
geometric formulation of. See geometric principle;

principle of relativity
piezoelectric fields, 586
pipe

stressed, elastostatics of, 619–621
fluid flow in, 716–717, 766, 787

pitch angle, 1028
Pitot tube, 700, 701f
Planck energy, 580, 1438
Planck length, 579, 580, 1287, 1438, 1439
Planck satellite, 1365f
Planck time, 209, 1438, 1439
Planck units, 1438
planets. See also Earth; Jupiter

Mercury, perihelion advance of, 1302–1304
plasma electromagnetic waves

validity of fluid approximation for, 1020, 1392
in unmagnetized plasma, 1042–1044, 1050
in magnetized plasma, parallel to magnetic field: left and

right modes, 1052–1066
plasma frequency, 1005, 1002t, 1041
plasma oscillations

elementary analysis of, 1005
in two-fluid formalism, 1041–1042
in moving reference frame, 1065
two-stream instability for, 1065–1067

plasma waves
in an unmagnetized, cold plasma, 1040–1044. See also

plasma electromagnetic waves; plasma oscillations
in a magnetized, cold plasma, 1050–1065. See also

Alfvén waves; ordinary waves; extraordinary waves;
magnetosonic waves; plasma oscillations; whistler
wave in plasma

in an unmagnetized, warm plasma, 1044–1050. See also
ion-acoustic waves; Langmuir waves

plasmas. See also magnetohydrodynamics; plasma waves;
plasmons

summary in density-temperature plane, 999f
summary of parameter values for, 1002t
electron correlations (antibunching) in, 1106
electron-positron pair production in, 1001
ionization of, 999–1000
degeneracy of, 1000, 1002
examples of, 999f, 1001–1002, 1002t
relativistic, 1000

plasmons. See also ion-acoustic waves; Langmuir waves;
quasilinear theory in plasma physics

mean occupation number for, 1124
master equation for evolution of, 1126

fundamental emission rates, 1127, 1133–1134
interaction with electrons, 1124–1131
nonlinear interaction with each other, 1132–1135

plate, bent. See bent plate, elastosatics of
Pockels cell, 497n, 539
point spread functions for paraxial Fourier optics, 438–

439
pointillist paintings, 427
Poiseuille flow (confined laminar, viscous flow)

between two plates, 718–719
with MHD magnetic field, 965–969

down a pipe, 717, 922
Poiseuille’s law, for laminar fluid flow in a pipe, 717
Poisson distribution, 264, 505n
Poisson’s equation, 686, 705, 1003, 1078
Poisson’s ratio, 591–592, 586t
polarization of charge distribution

in a linear dielectric medium, 1036
in a nonlinear dielectric medium, 536

dielectric tensor, 537
energy density, 538
nonlinear susceptibilities, 536–540. See also

susceptibilities, dielectric; nonlinear crystals
in a plasma, 1035–1036

polarization of electromagnetic waves
for CMB radiation, 1415–1416, 1417, 1419f, 1420–1421,

1428, 1439
Stokes parameters for, 1420–1421
polarization vector in geometric optics, 405–409

polarization of gravitational waves, 1312–1313, 1316–1317
polytrope, 687–689
population inversion, 516

creation of by pumping, 517 517f
and lasing, 513, 518–519

post-Newtonian approximation to general relativity, 1303,
1310, 1341

potential flow (irrotational flow), 701
Prandtl number, 920, 921t
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pressure, 30
as component of stress tensor, 30–31
as component of stress-energy tensor, 85
as integral over distribution function, 121, 126

pressure ratio β in MHD, 959
pressure self-adjustment in fluid dynamics, 742
primordial nucleosynthesis, 192–193, 1387–1392
principle of relativity, 42, 1154, 1158–1159

in presence of gravity, 1196
probability distributions, 286–288

conditional, 287
projection tensors

into Lorentz frame’s 3-space, 61
for TT-gauge gravitational waves, 1314b

proper reference frame of accelerated, rotating observer,
1180–1186, 1181f

metric in, 1183
geodesic equation in, 1185
for observer at rest inside a spherical, relativistic star,

1253–1254
proper time, 49, 1154
proportionality limit, in elasticity, 580, 581f
PSR B1913+16 binary pulsar, 502, 1310. See also binary

pulsars
pulsar. See also binary pulsars; neutron stars

radio waves from, 1060–1061
timing arrays for gravitational wave detection, 1355–

1357

quadratic degree of freedom, 177
quantum state

single-particle (mode), 174–175
for Bose-Einstein condensate, 194–195

many-particle, 175
distribution function for, 175

quantum statistical mechanics, 165b–166b
quasars, 193, 309, 396, 403, 404f, 433, 482, 969, 995, 1233,

1288, 1305, 1379, 1380, 1397, 1430
quasilinear theory in plasma physics. See also ion-acoustic

waves; Langmuir waves
in classical language, 1113–1123

in three dimensions, 1122–1123
in quantum language, 1123–1135

quintessence, 1446

radiation, equation of state for thermalized, 128–129, 132
radiation reaction, gravitational: predictions and

observations
predictions of, 1333, 1335
measurements of, in binary pulsars, 1310
measurements of, in binary black holes, by LIGO, 1311

radiation reaction, theory of
slow-motion approximation, 871
matched asymptotic expansion, 871
radiation-reaction potential, 871, 1333, 1335
damping and energy conservation, 872, 873, 1335
runaway solutions, their origin and invalidity, 872–873
examples

electromagnetic waves from accelerated, charged
particle, 873

sound waves from oscillating ball, 869–874
gravitational waves from any slow-motion, gravitating

system, 1333, 1335
radiative processes. See also under chemical reactions

in statistical equilibrium, 115–116
bremsstrahlung, 142, 260, 1009, 1017
Thomson scattering, 142–144, 937, 1407–1408, 1415,

1416n, 1418, 1428
Compton scattering, 1388, 1392–1393, 1428–1430
Raman scattering, 1140
Rayleigh scattering, 471

radiative transfer, Boltzmann transport analysis of
by two-lengthscale-expansion, 145–148
by Monte Carlo methods, 1415–1418, 1428

radio waves: AM, FM, and SW, 1060
RadioAstron, 482
radius of curvature of spacetime, 1213
Raman scattering, stimulated, 1140
random process, 1-dimensional, 285

stationary, 287–288
ergodic, 288–289
Gaussian, 292–294
Markov, 289–290
Gaussian, Markov. See Markov, Gaussian random process

random process, 3-dimensional
complex, 478–479
cosmological density fluctuations, 304–306

random process, 2-dimensional, 306–308
random variable, 285
random walk, 139, 140, 140n, 141, 286f, 291–292, 294–

295, 309, 310, 314–315, 320, 321, 465, 1007. See also
diffusion

random-number generator, 279n, 294, 294n
random-phase approximation, 1116–1117, 1137
rank of tensor, 11
Rankine-Hugoniot relations for a shock wave, 900

derivation from conservation laws, 898–900
physical implications of, 900–902
for polytropic equation of state, 905
for strong polytropic shock, 905
relativistic, 902–903

rarefaction wave, 895f, 896
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Rayleigh criterion for instability of rotating flows, 784
Rayleigh number, 928
Rayleigh principle, 980. See also action principles
Rayleigh scattering, 471b
Rayleigh waves at surface of a homogeneous solid, 654–657,

659, 661, 839–840, 941
Rayleigh-Bénard convection. See under convection
Rayleigh-Jeans spectrum, 482, 1430
Rayleigh-Taylor instability, 783–784
reciprocity relations for reflection and transmission

coefficients, 485, 486–488
recombination in early universe, 1392–1396
redshift, cosmological, 1373
redshift, gravitational

in proper reference frame of accelerated observer, 1189
from surface of spherical star, to infinity, 1251–1252
influence on GPS, 1301–1302
experimental tests of, 70, 1301

reference beam for holography, 525, 525f
reflection and transmission coefficients

reciprocity relations for, 485, 486–488
for an interface between dielectric media, 489
for a locally planar optical device, 486–488
for an etalon, 484, 485, 486–488
for a Fabry-Perot interferometer, 490
modulus squared: power reflectivity and transmissivity,

486
refractive-index surface, 1062–1063, 1062f
reionizaton of universe, 193, 1386f, 1395f, 1397, 1418, 1431
relaxation (correlation) time, 297, 298f
renormalization group

idea of, 273
applied to 2-dimensional Ising model for ferromagnetism,

273–278
applied to the onset of chaos in the logistic equation,

831
resistance

in electrical circuit, 324
in an oscillator, 326
in Stokes fluid flow, 328, 753
as real part of complex impedance, 332

resonance conditions in wave-wave mixing, 542, 543–544,
1132

rest frame
momentary, 49
local, 85, 86, 366, 677, 719–720
asymptotic, 1237, 1246–1248
local asymptotic, 1327f, 1328, 1331, 1332, 1339–1340

rest mass, 34, 58–59
global and local conservation laws for, 80, 82

rest-mass density, relativistic, 81

rest-mass-flux 4–vector
geometric definition of, 80
components: rest-mass density and flux, 81

Reynolds number, 716, 726b
as ratio of inertial to viscous acceleration, 746
magnetic, 950, 987

Reynolds stress for turbulence, 802
and turbulent viscosity, 804

Ricci (curvature) tensor, 1214–1215
Richardson criterion for instability of shear flows, 785–786
Richardson number, 785–786
Riemann curvature tensor

definition, 1209
symmetries of, 1214
components of

in an arbitrary basis, 1215–1216
in local Lorentz frame, 1214

Bianchi identity for, 1223
decomposition into tidal and frame-drag fields, in

vacuum, 1235b–1236b
components in specific spacetimes or spaces

surface of a sphere, 1216
general linearized metric, 1227
Schwarzschild metric, 1244b, 1267

Newtonian limit of, 1227
magnitude of, 1213
outside Newtonian, gravitating body, 1212–1213

Riemann invariants, 852, 891–897, 901–902
right modes, for plasma electromagnetic waves parallel to

magnetic field, 1052–1056
rigidly rotating disk, relativistic, 1189–1190
Rindler approximation, 1273–1274
Rindler coordinates

in flat spacetime, 1187–1189
near black-hole horizon, 1273–1274

Robertson-Walker metric for a homogeneous, isotropic
universe, 1371

coordinates for, 1370
derivation of, 1366–1372
Einstein tensor for, 1371–1372
perturbations of, and their evolution, 1401–1422

rocket engines, fluid flow through, 887–890
rod. See bent beam, elastostatics of
Rossby number, 768
Rossby waves in rotating fluid, 858–861
rotating disk, relativistic, 1189–1190
rotating reference frame, fluid dynamics in, 766–777
rotation, rate of, in fluid mechanics, 711, 726b

as vorticity in disguise, 711
rotation group, 21, 572b–574b
rotation matrix, 21, 65

Subject Index 1503

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



rotation tensor and vector, in elasticity theory, 571,
573b–574b, 575–576, 577

rupture point, in elasticity, 580, 581f
Rutherford scattering, 1006–1007

Sackur-Tetrode equation for entropy of a perfect gas, 189
Sagnac interferometer, 501–502, 502f
Saha equation for ionization equilibrium, 259–260, 999–1000
Saint-Venant’s principle, for elastostatic equilibrium, 590b
salt fingers due to double diffusion of salt and heat, 937–940
sausage instability, of magnetostatic equilibria, 977
scale factor, in cosmology, 1370

as a function of time, 1387, 1388f, 1390f, 1399f, 1400f
scaling relations in fluid flows

between similar flows, 791–792
for drag force on an object, 765
for Kolmogorov turbulence spectrum, 789, 810–814

scaling relations near a catastrophe (caustic), 392
scattering of light. See also under radiative processes

by large, opaque particle, 429
in LIGO, 448–451

Schrödinger equation
energy eigenstates (modes) of, 175n, 194–195, 848–849
and Coulomb wave functions, 1009
propagation speed of waves, 44b
geometric optics for, 375, 409
nonlinear variant of, and solitons, 856–857

Schwarzschild criterion for onset of convection in a star, 935,
935f

Schwarzschild metric, 1242. See also black holes; horizon,
black-hole event; stars; wormhole

uniqueness of: Birchoff ’s theorem, 1250
in Schwarzschild coordinates, 1242

bases, connection coefficients, and Riemann tensor,
1243b–1244b

Schwarzschild coordinate system and symmetries,
1244–1249

in isotropic coordinate system, 1251
in ingoing Eddington-Finkelstein coordinates, 1269
gravitational (horizon) radius of, 1250
Rindler approximation near horizon, 1273–1274
geodesic orbits in, 1247–1248, 1274–1276
Newtonian limit of, 1246
roles of

exterior metric of static star, 1250–1252
exterior metric of imploding star, 1264–1266, 1269
metric of nonspinning black hole, 1272–1276
metric of wormhole, 1276–1277

second quantization, 175
secondary fluid flows, 775–776
sedimentation, 749, 754–755

Sedov-Taylor blast wave, 909–912
seeing, atmospheric, 425, 465, 466b–471b, 471–472
seismic waves. See elastodynamic waves in Earth
self-gravity, in fluid dynamics, 705b–706b, 709
self-similar flows

boundary layer near flat plate: Blasius profile, 758–763
Sedov-Taylor blast wave, 909–912
underwater blast wave, 914–915
flow in shock tube, 916
stellar wind, 915–916
water flow when dam breaks, 857–858

separation of variables for Navier-Cauchy equation, 590b,
624–625

Shapiro time delay, 1009, 1308–1309
shear, rate of, 711, 726b
shear modulus, for elasticity, 581, 586t, 651t
shear tensor, in elasticity theory, 571, 572b–574b, 574–577

stretch and squeeze along principal axes, 574–575, 575f
shock fronts. See shock waves in various media
shock tube, fluid flow in

analyzed using similarity methods, 916
analyzed using Riemann invariants, 895–896
shock front in, 906

shock waves (shock fronts) in a fluid, adiabatic
terminology for, 898, 900f
inevitability of, 897
Rankine-Hugoniot relations for, 900. See also Rankine-

Hugoniot relations for a shock wave
shock adiabat, 900–901, 901f
properties of, 900–901
internal structure of, 898, 906–907

role of viscosity in, 898
patterns of

around a supersonic aircraft, 876f
bow shock in solar wind around Earth, 876f, 957,

1146–1147, 1146f
Mach cone, 907–908, 907f
Sedov-Taylor blast wave, 909–912

sonic boom, 908, 908f
acceleration of cosmic rays in, 1145–1148

shock waves in an elastic medium, 663–664
shock waves in a plasma, collisionless, 907, 1145–1147, 1146f
shot noise, 321–323, 504–505, 506–509, 557
signal-to-noise ratio

for band-pass filter, 317
for Wiener’s optimal filter, 319–320

similarity methods in fluid mechanics. See self-similar flows
simultaneity in relativity

breakdown of, 66
slices of, 58, 73, 73f, 1181f, 1293–1294, 1293f, 1297

single-particle quantum states (modes), 174–175, 194–195
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singularity, spacetime
at center of Schwarzschild black hole, 1271–1272, 1273f
generic, inside all black holes, 1273, 1282n
for Schwarzschild wormhole, 1277

SLAC National Accelerator Laboratory, 521
slot-naming index notation, 19–20, 23, 25, 56–57, 70, 1156
smoke rings, 744f
Smoluchowski equation, 290

applications of, 291–292, 337
soap film, shapes of, 846
solar dynamo, 985–986
solar furnace, 138–139
solar wind, 875, 876f, 970–971, 988, 999f, 1001, 1002t

two-stream instability in, 1066–1067
collisionless shocks in, 907, 1146
bow shock at interface with Earth, 876f, 957, 1090,

1146–1147, 1146f
termination shock with interstellar medium, 1146–1147

solid-body normal modes. See normal modes, of elastic
bodies

solitons
balance of nonlinearity against dispersion in, 853–854
equations exhibiting, 856–857
Korteweg–de Vries equation and solutions, 852–856,

858
venues for, 856–857

in optical fiber, 564
in ion-acoustic waves in plasma, 1142–1146
in nonlinear gravity waves on water, 852–856, 858

sonic boom, 889b, 907–908
sound speed in elastic solid, CL, 586t, 638
sound waves in a fluid

wave equation, 862
sound speed, 862
analysis of, 862–865
dispersion relation, 353
phase velocity and group velocity, 355
energy density, 864
energy flux, 865
in inhomogeneous fluid: example of prototypical wave

equation, 863
generation of, 865–869

radiation reaction on source, 869–874
attenuation of, 868
nonlinearity of, and shock formation, 894
propagating in a horizontal wind with shear, 366
quanta: phonons, 363. See also phonons

space shuttle, 889b–890b
sonic boom from, 889b, 907–908

space telescope. See Hubble Space Telescope; James Webb
Space Telescope

spacetime diagram, 40–41
for Lorentz boost, 65–67, 65f

spacetime metrics for specific systems
for a spherical star, 1250, 1253, 1258–1260. See also stars,

spherical in general relativity
for a moving particle, linearized, 1230–1231
for a photon: Aichelberg-Sexl ultraboost metric, 1231
for exterior of any weak-gravity stationary system,

1231–1234, 1236
conservation of mass and angular momentum:

influence on, 1237–1238
reading off source’s mass and angular momentum from

exterior metric, 1232–1233
for exterior of any asymptotically flat, strong-gravity,

stationary system, 1238
for gravitational waves in flat spacetime, 1311–1314
Schwarzschild metric for a spherical star, black hole, or

wormhole, 1242. See also Schwarzschild metric
Robertson-Walker metric for a homogeneous, isotropic

universe, 1371n, 1366–1372. See also Robertson-
Walker metric for a homogeneous, isotropic
universe

Bertotti-Robinson metric, for a homogeneous magnetic
universe, 1249

specific heats,Cp, cp,CV , and cV , 244, 678. See also adiabatic
index

for ideal gas with internal degrees of freedom, 879–880
for nonrelativistic, degenerate electrons, 130–131
for phonons in an isotropic solid, 131–132

specific intensity (spectral intensity) of radiation, 107,
107f

speckle image processing, 470b, 472
speckles, in light images, 466bf, 469b–470b
spectral density

for a 1-dimensional random process, 299–300
as mean of square of Fourier transform, 303, 304
double-sided vs single-sided, 300
for sum of two random processes, 308
integral of is variance, 300
physical meaning of, 301–302
rms oscillations in terms of, 301

for a 2-dimensional random process, 307–308
cross spectral density, 307

for a 3-dimensional random process,
cosmological density fluctuations (galaxy distribution),

304–306, 306f
Wiener-Khintchine theorem for. See Wiener-Khintchine

theorem
influence of filtering on, 312. See also filtering of random

process
types of spectral densities. See under noise
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spectral density (continued)
applications of

Brownian motion, 314
light, 301
LIGO gravitational wave detector, 302
noise, 308–311, 321–323, 334. See also noise
cosmological density fluctuations, 304–306

spectral energy density Ek, in quasilinear theory of plasma
waves, 1117

spectral energy flux (or spectrum), Fω, 473, 473n
spectral intensity, Iν or Iω. See specific intensity
spectrometer, Fabry-Perot cavity as, 496
spectroscopy, Fourier-transform using Michelson

interferometer, 474–476
spectrum (spectral energy flux), 473, 473n
spectrum of light related to spectral density, 301
speed of light

constancy of, 34, 42, 1159
measuring without light, 43b
in geometrized units, 34
contrasted with speeds of other waves, 44b

spherical coordinates
related to Cartesian coordinates, 614
orthonormal bases and connection coefficients, 614, 616

expansion and shear tensor in, 617, 618b
spherical triangle, 1372
spheromak, 964
sports, physics of, 823–825
spy satellite, 436
squeezed vacuum and squeezed states of light, 556–558, 558f
stagnation pressure, 700, 792
standard cosmology, 1383
Star Wars (Strategic Defense Initiative), 521
stars. See also neutron stars

formation of first stars in early universe, 1397
observed properties of, 1379
diffusive heat conduction in, 142–148
spherical, in general relativity, 1250–1263

equations of stellar structure, 1258–1259
interior metric, 1253, 1258–1259
exterior spacetime metric: Schwarzschild, 1250
embedding diagram for, 1262–1263, 1263f
star with constant density, full structure, 1260

implosion to form black holes, 1264–1272
in Schwarzschild coordinates, 1264–1267, 1270–1271
in ingoing Eddington-Finkelstein coordinates,

1267–1271
statistical equilibrium, 168–178

ensembles in, 168–177. See also specific ensembles
general, 172–173
tables summarizing, 160t, 221t

fluctuations away from, 260–270
for ensemble of closed systems, 260–261
for particle distribution in a closed box, 262–263
for particle number in an open box, 263–264
for temperature and volume of an ideal gas, 264–265
for van der Waals gas: volume fluctuations, 266–268
for volume of a thermally isolated gas (constant-

pressure balloon), 265–266
statistical equilibrium for fundamental particles

for identical bosons, Bose-Einstein distribution, 112–113
for identical fermions, Fermi-Dirac distribution, 112
for identical classical particles, Boltzmann distribution,

113
statistical independence, 170
steady fluid flow, 726b
stellar dynamics. See also under galaxies

statistical mechanics of galaxies and star clusters, 201–204
Jeans’ theorem in, 1076–1077
evolution of cluster due to ejection of stars, 203–204
equilibration time for stars in cluster, 1012–1013
violent relaxation of star clusters, 113n

stochastic differential equations, 325
Stokes flow, 749–754, 749f, 766

drag force in: Stokes’ law, 753
Stokes parameters for polarization of radiation, 1420–1421
Stokes’ paradox for fluid flow past a cylinder, 754
Stokes’ theorem for integrals, 27
storms, fluid dynamics of, 768, 769b, 842
strain tensor, in elasticity theory, 576
strange attractors, 833–834
Strategic Defense Initiative, 521
stratosphere, 683, 684f, 731, 748, 755, 784–786
streaks, for visualizing fluid flows, 699b
stream function for 2-dimensional incompressible flow

in Cartesian coordinates, 759
in any orthogonal coordinate system, 760b–761b, 766

stream tube, in fluid dynamics, 699–700, 700f, 721–722, 721f
streamlines, for visualizing fluid flows, 698, 699f
stress polishing mirrors, 609–611, 611f, 613
stress tensor

geometric definition of, 29, 577
components, meaning of, 30
symmetry of, 30
as integral over distribution function, 118
as spatial part of relativistic stress-energy tensor, 83
for specific entities

electromagnetic field, 33
perfect fluid, 30–31, 32, 696
strained elastic solid, 581, 584
strained and heated elastic solid, 584

magnitudes of, 578–580
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stress-energy tensor
geometric definition of, 82, 1176
constructed from Lagrangian, 1434
components of, 82–83, 120, 1176
symmetry of, 83–84
as integral over distribution function, 118, 120
and 4-momentum conservation, 84–85, 1176–1177
for electromagnetic field

in terms of electromagnetic field tensor, 86
in terms of electric and magnetic fields, 88
in terms of vector potential, 1434

for perfect fluid, 85, 720, 1177
nonrelativistic limit, 723–724

for point particle, 1178b, 1179
for viscous, heat-conducting fluid, 1179–1180

structure function, for fluctuations, 467b, 815
Sturm-Liouville equation and theory, 974–975, 980–981
subensemble, 170
sun. See also solar dynamo; solar wind

core of, 933f, 937, 999f, 1001, 1002t
convection zone, 933f, 936
disturbances on surface, 1035, 1065
normal modes of, 848–850. See also normal modes

Sunyaev-Zel’dovich effect, 1428–1430
superfluid, rotating, 733–734
supernovae

neutron stars produced in, 111, 914
as gravitational-wave sources, 111
Sedov-Taylor blast wave from, 914–915
observations of reveal acceleration of the universe, 1398,

1400
supersymmetry, 1441
surface tension, 844b–845b

force balance at interface between two fluids, 846
surfing of electrons and protons on electrostatic waves, 1046,

1069–1070, 1098–1099. See also Landau damping
susceptibilities, dielectric

linear, 536–537, 1036
nonlinear, 536–540

isotropic, 538, 538n, 539–540
magnitudes of, 539

swimming mechanisms, 744, 747b–748b, 756–757
symmetries and conservation laws, 1203–1205
system, in statistical mechanics

defined, 157
closed, 158–159
semiclosed, 157–158

tangent space, 9, 1160, 1165–1169, 1166f, 1175, 1218, 1253
tangent vector, 9, 49, 1155, 1155f, 1165–1166

as directional derivative, 1167

Taylor rolls, in rotating Couette flow, 826, 826f
Taylor-Proudman theorem for geostrophic flow, 771
tea cup: circulating flow and Ekman boundary layer, 776–

777
telescopes, optical. See also adaptive optics; astronomical

seeing; Gran Telescopio Canarias; Hubble Space
Telescope; James Webb Space Telescope; Keck
telescopes

simple refracting, and light rays, 379f, 379–380
angular resolution of, 425–427
aberrations in, 395

telescopes, radio, 479–483
angular resolution of, 479, 480, 482

temperature
definition, 168, 168n, 171
measured by idealized thermometer, 223–224

temperature diffusion equation, 142, 920
tensor in Euclidean space

definition and rank, 11
algebra of without coordinates or bases, 11–13
expanded in basis, 16
component representation, 17–19

tensor in quantum theory, 18b
tensor in spacetime. See also component manipulation rules;

specific tensors
definition and rank, 48
bases for, 55
components of, 54–57

contravariant, covariant, and mixed components, 55,
1157–1158, 1161–1162

raising and lowering indices, 55, 1165
algebra of

without coordinates or bases, 48, 61–62
component representation in orthonormal basis,

54–57, 1157–1158
component representation in arbitrary basis, 1162–

1165
tensor product, 12, 48
thermal diffusivity, 920, 921t
thermal equilibrium. See statistical equilibrium
thermal noise. See under noise
thermal plume, 933
thermodynamics. See also equations of state; Euler’s equation;

fundamental thermodynamic potentials; Maxwell
relations, thermodynamic

representations of, summarized, 221t, 228
Legendre transformation between representations,

230–232, 240, 244, 247
energy representation, and microcanonical ensemble,

221–229
enthalpy representation, 244–246
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thermodynamics (continued)
grand-potential representation and grand canonical

ensemble, 229–239
physical-free-energy representation, and canonical

ensemble, 239–244
Gibbs representation and Gibbs ensemble, 246–260
first law of, 225

in all representations, 221t
as mnemonic for deducing other relations, 227–228
for fluid, in fluid dynamics, 679b–680b
for black hole, 205

second law of, 182
underlying physics of: coarse graining and discarding

correlations, 183–185, 184f, 186b–187b
underlying quantum physics of: discarding correlations

(quantum decoherence), 185, 186b–187b, 190–191
in theory of information: when information is erased,

217–218
of black holes, 204–209, 1286–1287

thermoelastic noise in mirrors, 623, 626
thermoelasticity, 584–585
thermoelectric transport coefficients, 1017–1018
Thomson scattering of photons by electrons, 142–144, 937,

1407–1408, 1415, 1416n, 1418, 1428
three-point correlation function, 1105
three-wave mixing in nonlinear crystals, 540–558

polarization for, 540, 542
evolution equations

for birefringent crystal, 546–552
for medium that is linearly dispersion-free and

isotropic, 544–546
phase matching for, 543, 548–549
applications of

frequency doubling, 545–546, 553–555
optical parametric amplification, 555–557
degenerate optical parametric amplification, 556–558
squeezing, 556–558, 558f

three-wave mixing in plasmas
driving term for, in Vlasov equation, 1114
quasilinear theory of, 1132–1135

tidal gravitational field
Newtonian, 1207–1208
relativistic, 1211–1212, 1235b–1236b

tidal gravity
Newtonian description, 1207–1208
relativistic description, 1208–1210
comparison of Newtonian and relativistic descriptions,

1210–1212, 1227
tidal tendex lines, 1235b–1236b

around a linearized, spinning particle, 1236b
around Kerr black hole, 1295b–1296b

around colliding black holes, 1344b–1345b
in a gravitational wave, 1318b, 1345b

time. See also clocks, ideal; simultaneity in relativity, slices of
coordinate, of inertial frame, 39–40
proper, 49
imaginary, 54
in cosmology, 1370
in general relativity: many-fingered nature of, 1293–1294,

1297
time and frequency standards, 310f, 310n
time derivative

advective (convective), 32, 692, 724b, 892
fluid, 736
with respect to proper time, 49, 52

time dilation, 66
observations of, 70

time travel, 67–70
tokamak, 963

MHD stability of, 979
Tollmien-Schlichting waves, 823
tomography, seismic, 663
topological defects, 1432n
tornado, 738, 739f

pressure differential in, 702, 738
torsion pendulum, elastostatics of, 621–622
TOV equation of hydrostatic equilibrium, 1258,

1260
trace-reversed metric perturbation, 1228, 1311
transformation matrices, between bases, 1164

orthogonal, 20–21
Lorentz, 63–65, 65f, 1158

transport coefficients, 139. See also conductivity, electrical;
conductivity, thermal; diffusion coefficient; viscosity

in plasmas, 1015–1018
thermoelectric, 1017–1018

triple point for phase transitions, 254–255, 255f
trumpet, sound generation by, 868
tsunamis, 841b, 843, 922
TT gauge, 1312–1315
turbulence, 787–834

weak and strong, 800
characteristics of

3-dimensional, 794
disorder, 798
irregularly distributed vorticity, 799
wide range of interacting scales, 798–799
eddies, 798–800, 802, 804–807, 811–814
efficient mixing and transport, 799
large dissipation, 799
intermittency, 798–799, 807, 814, 831

onset of. See turbulence, onset of
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vorticity in, 799–800
drives energy from large scales to small, 799f

semiquantitative analysis of, 800–817
Kolmogorov spectrum, 467, 810–813, 813f, 815. See

also Kolmogorov spectrum for turbulence
weak turbulence formalism, 800–810. See also weak

turbulence formalism
generation of sound by, 869

turbulence, 2-dimensional analog of, 801b
inverse cascade of energy, 799n
transition to (3-dimensional) turbulence, 800

turbulence, onset of. See also chaos, onset of in dynamical
systems

critical Reynolds number for, 787, 794, 822, 826
in convection, 830, 831
in flow past a cylinder, 789–794, 800
in rotating Couette flow, 825–828
routes to turbulence

one frequency, two frequencies, turbulence, 825–828
one frequency, two frequencies, phase locking,

turbulence, 831
one frequency, two frequencies, three frequencies,

turbulence, 831
period doubling sequence, 830–831
intermittency, 831

twins paradox, 67–70
two-fluid formalism, for plasma physics, 1037–1068

fundamental equations, 1037–1038
deduced from kinetic theory, 1073–1074

two-lengthscale expansion, 146b
bookkeeping parameter for, 360b
and statistical independence in statistical mechanics,

170n
for solving Boltzmann transport equation, 145
for geometric optics, 357–358, 359–360
for quasi-linear theory in plasma physics, 1113–1114
for gravitational waves in curved spacetime, 1320–1321,

1321f
two-point correlation function, 305, 1104–1107, 1424–1426

for Coulomb corrections to pressure in a plasma,
1107–1108

for electron antibunching in a plasma, 1104–1107
for galaxy clustering, 305, 306f
for weak gravitational lensing, 1424–1426

two-stream instability
in two-fluid formalism, 1065–1068
in kinetic theory, 1079–1080, 1137

ultrasound, 663–664
universe, evolution of

expansion, kinematics of, 1373–1376

evolution of radiation and gas properties during,
1373–1375

expansion, dynamics of, 1376–1378
Friedman equations, 1376–1377

graphical summaries of
entire life: distances as functions of scale factor, 1400f
entire life: energy densities of constituents, 1386f
particle age: temperatures and entropies of particle

constituents, 1385f
nuclear age: reaction rates; nuclear and particle

abundances, 1390f
plasma and atomic ages: ionization fraction and optical

depths, 1395f
gravitational and cosmological ages: scale factor and

deceleration function, 1399f
perturbations, evolution of, 1404f, 1405f, 1411f, 1414f

formation of structure
origin of primordial perturbations, 1437–1440
perturbations, initial spectrum, 1410–1412
evolution of perturbations, 1401–1422
statistical mechanics of, 210–211

seven ages
before the particle age, 1431–1440
particle age, before nucleosynthesis, 1384–1387
nuclear age, primordial nucleosynthesis, 192–193,

1387–1392
photon age, from nucleosynthesis to matter dominance,

1392–1393
plasma age, from matter dominance through

recombination, 1393–1396
atomic age, from recombination through reionization,

193, 1394
gravitational age, from reionization to dark-energy

influence, 1394–1400
cosmological age, the era of dark-energy influence,

1400–1401
galaxy formation, 210–211, 1401–1415

universe, observed properties of
isotropy and homogeneity, 1364–1366
spatial flatness, 1378
parameter values today, 1380t
age of, 1387
volume of, 1398
constituents of

baryons, 1379. See also baryons in universe
neutrinos, 1382
photons: cosmic microwave background, 1381. See also

cosmic microwave background
dark matter, 1380–1381. See also dark matter
dark energy or cosmological constant, 1382–1383,

1444–1447
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universe, observed properties of (continued)
constituents of (continued)

galaxies. See galaxies
black holes, 1379–1380, 1397

acceleration of, 1382, 1398, 1400, 1444
spectral line formation, 1396

universe, statistical mechanics of, 209–211

van Allen belts, 1028, 1029f
van Cittern-Zernike theorem

for lateral coherence, 461, 463
for temporal coherence, 473
3-dimensional, 477–478
relation to Wiener-Khintchine theorem, 478–479

van der Waals gas
equation of state for, 234
grand potential for, 234

derivation of, 232–238
phase transition for, 266–268
volume fluctuations in, 266–268
catastrophe theory applied to, 394–395

variance, 287
vector

as arrow, 8, 40, 1166
as derivative of a point, 9, 49, 1165
as differential operator, 1167–1169

vector in Euclidean space (3–vector): components, 16
vector in quantum theory, 18b
vector in spacetime (4–vector)

contravariant and covariant components of, 55
raising and lowering indices of, 55
timelike, null, and spacelike, 47, 1155–1156

velocity
Newtonian, in Euclidean space, 9
ordinary, in relativity, 58, 59f, 61–62. See also 4–velocity

velocity potential for irrotational flow, 701
in cosmological perturbations, 1403

violent relaxation of star distributions, 210
violin string, sound generation by, 868
virial theorems

for any system obeying momentum conservation, 982–984
for self-gravitating systems, 984
MHD application, 982, 984

virtual image vs real image, 527
viscosity, bulk, coefficient of, 712, 724b
viscosity, molecular origin of, 713–714
viscosity, shear, coefficient of, 139, 712, 726b

dynamic, η, 713, 724b
kinematic, ν, 713, 725b
values of, for various fluids, 713t, 921t
for monatomic gas, 149–150, 714

VLA (Jansky Very Large Array), 480
Vlasov equation, in plasma kinetic theory, 1071–1072

solution via Jeans’ theorem, 1075
VLBI (very long baseline interferometry), 482
volcanic explosions, 748, 755
volume in Euclidean space

2–volume (area), 26
vectorial surface area in 3-space, 27
3–volume, 27
n-volume, 24
differential volume elements, 28

volume in phase space
Newtonian, 98
relativistic, 102–104

Lorentz invariance of, 103–104, 105f
volume in spacetime, 75–77

4–volume, 75
vectorial 3–volume, 76–77, 77f

positive and negative sides and senses, 76
differential volume elements, 77

volume of coherence, 477
von Zeipel’s theorem, 702
vortex. See also vortex lines; vorticity

diffusive expansion of, 742
above a water drain, 729, 732, 777
vortex sheet, 782, 801b
vortex ring, 744
starting vortex, 824, 825f
vortex street, Kármán, 791f, 794
wingtip vortex, 734f, 739, 744, 744f
tornado, 702, 732, 738, 739f
vortex generated by spatula, 745–746
vortex generators, on airplane wing, 821–822, 821f

vortex cores, in superfluid, 733–734
vortex generator on airplane wing, 821–822, 821f
vortex lines, 734, 734f. See also frame-drag vortex lines

diffuse due to viscosity, 741–742
frozen into fluid, for barotropic, inviscid flows, 736–738,

737f
vortex rings, 744, 744f
vorticity, 697, 731–732, 732f

relation to angular velocity of a fluid element, 697–698
measured by a vane with orthogonal fins, 732
sources of, 744–746
evolution equations for, 735–738, 741

diffusion of vorticity, 741
frozen into an inviscid, barotropic flow, 736–737

interaction with magnetic field, 957–958
delta-function: constant-angular-momentum flow,

732–733
Voyager spacecraft, 1147
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wakes
2-dimensional, behind cylinder

laminar, 794–795
turbulent, 805–810

3-dimensional, behind sphere
laminar, 796
turbulent, 810

water waves. See gravity waves on water; sound waves in a
fluid

wave equations
prototypical, 358

lagrangian, energy density flux, and adiabatic invariant
for, 365–366

algebratized, 1037
for electromagnetic waves. See electromagnetic waves
for elastodynamic waves, 635. See also elastodynamic

waves in various media
for gravitational waves, 1312, 1322. See also gravitational

waves
for sound waves, 862, 863

wave packet, 354–356
Gaussian, 356–357
spreading of (dispersion), 356–357

wave zone, 1327f
wave-normal surface, 1062–1063, 1062f, 1064f
wave-wave mixing. See also three-wave mixing in various

media; four-wave mixing in isotropic, nonlinear
media

in nonlinear dielectric media, 540–564
in plasmas, 1132–1135

waves, monochromatic in homogeneous medium. See also
sound waves in a fluid; gravity waves on water;
flexural waves on a beam or rod; gravitational waves;
Alfvén waves; Rossby waves in rotating fluid

dispersion relation, 353
group velocity, 355
phase velocity, 352
plane, 352

weak turbulence formalism, 800–810
Reynolds stress and turbulent viscosity, 802, 803–804
turbulent diffusion coefficient, 805

turbulent thermal conductivity, 805
correlation functions in, 802–803
spatial evolution of turbulent energy, 804, 808f, 808–

809
Weyl (curvature) tensor, 1215, 1216
whistler wave in plasma, 1053f, 1054–1055, 1062f, 1146f
Wiener-Khintchine theorem

for 1-dimensional random process, 303
for 2-dimensional random process, 307–308
for complex 3-dimensional random process (van

Cittert-Zernike theorem), 478–479
Wiener’s optimal filter, 318–320
WIMPs, 1440–1441
winds

around low-pressure region, 770
drive ocean’s surface currents, 772–776, 805
in stratosphere, 784–785
lee waves in, 821n
propagation of sound waves in, 366

wingtip vortices, 734f, 739, 744, 744f
WKB approximation, as example of eikonal approximation,

358
Womersley number, 719
world line, 49, 59f, 1155f
World Trade Center buildings, collapse of, 605–607
world tube, 49n, 68f, 69
wormhole, 68–69, 68f

as time machine, 69
Schwarzschild, 1276–1277

yield point, in elasticity, 580, 581f
origin of yield: dislocations, 586, 587f
yield strains for various materials, 586t

Young’s modulus, 582, 589–592
values of, for specific materials, 586t

Young’s slits, 456–458

zero point energy, 175n, 669, 1002, 1437–1438, 1446
zone plate, 435–436
Z-pinch for plasma confinement, 960–962, 961f

stability of, 975–978
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