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Chapter 1

Randomized Trials

3]

Kwar CHANG CAINE: What happens in a man’s life is already
written. A man must move through life as his destiny wills.

OLD MAN: Yet each is free to live as he chooses. Though they seem
opposite, both are true.
Kung Fu, Pilot

Our Path

ur path begins with experimental random assignment,

both as a framework for causal questions and a bench-

mark by which the results from other methods are
judged. We illustrate the awesome power of random assign-
ment through two randomized evaluations of the effects of
health insurance. The appendix to this chapter also uses the
experimental framework to review the concepts and methods
of statistical inference.

1.1 In Sickness and in Health (Insurance)

The Affordable Care Act (ACA) has proven to be one of the
most controversial and interesting policy innovations we’ve
seen. The ACA requires Americans to buy health insurance,
with a tax penalty for those who don’t voluntarily buy in. The
question of the proper role of government in the market for
health care has many angles. One is the causal effect of health
insurance on health. The United States spends more of its GDP
on health care than do other developed nations, yet Americans
are surprisingly unhealthy. For example, Americans are more
likely to be overweight and die sooner than their Canadian
cousins, who spend only about two-thirds as much on care.
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America is also unusual among developed countries in having
no universal health insurance scheme. Perhaps there’s a causal
connection here.

Elderly Americans are covered by a federal program called
Medicare, while some poor Americans (including most single
mothers, their children, and many other poor children) are
covered by Medicaid. Many of the working, prime-age poor,
however, have long been uninsured. In fact, many uninsured
Americans have chosen not to participate in an employer-
provided insurance plan.! These workers, perhaps correctly,
count on hospital emergency departments, which cannot turn
them away, to address their health-care needs. But the emer-
gency department might not be the best place to treat, say,
the flu, or to manage chronic conditions like diabetes and
hypertension that are so pervasive among poor Americans. The
emergency department is not required to provide long-term
care. It therefore stands to reason that government-mandated
health insurance might yield a health dividend. The push for
subsidized universal health insurance stems in part from the
belief that it does.

The ceteris paribus question in this context contrasts the
health of someone with insurance coverage to the health of
the same person were they without insurance (other than an
emergency department backstop). This contrast highlights a
fundamental empirical conundrum: people are either insured
or not. We don’t get to see them both ways, at least not at the
same time in exactly the same circumstances.

In his celebrated poem, “The Road Not Taken,” Robert
Frost used the metaphor of a crossroads to describe the causal
effects of personal choice:

Two roads diverged in a yellow wood,
And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

LFor more on this surprising fact, see Jonathan Gruber, “Covering the
Uninsured in the United States,” Journal of Economic Literature, vol. 46,
no. 3, September 2008, pages 571-606.
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Frost’s traveler concludes:

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

The traveler claims his choice has mattered, but, being only
one person, he can’t be sure. A later trip or a report by other
travelers won’t nail it down for him, either. Our narrator might
be older and wiser the second time around, while other trav-
elers might have different experiences on the same road. So it
is with any choice, including those related to health insurance:
would uninsured men with heart disease be disease-free if they
had insurance? In the novel Light Years, James Salter’s irreso-
lute narrator observes: “Acts demolish their alternatives, that
is the paradox.” We can’t know what lies at the end of the road
not taken.

We can’t know, but evidence can be brought to bear on the
question. This chapter takes you through some of the evidence
related to paths involving health insurance. The starting point
is the National Health Interview Survey (NHIS), an annual
survey of the U.S. population with detailed information on
health and health insurance. Among many other things, the
NHIS asks: “Would you say your health in general is excellent,
very good, good, fair, or poor?” We used this question to code
an index that assigns 5 to excellent health and 1 to poor health
in a sample of married 2009 NHIS respondents who may or
may not be insured.? This index is our outcome: a measure
we’re interested in studying. The causal relation of interest
here is determined by a variable that indicates coverage by
private health insurance. We call this variable the treatment,
borrowing from the literature on medical trials, although the
treatments we’re interested in need not be medical treatments
like drugs or surgery. In this context, those with insurance can
be thought of as the treatment group; those without insurance
make up the comparison or control group. A good control
group reveals the fate of the treated in a counterfactual world
where they are not treated.

2 Qur sample is aged 26-59 and therefore does not yet qualify for Medicare.
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The first row of Table 1.1 compares the average health index
of insured and uninsured Americans, with statistics tabulated
separately for husbands and wives.? Those with health insur-
ance are indeed healthier than those without, a gap of about
.3 in the index for men and .4 in the index for women. These
are large differences when measured against the standard de-
viation of the health index, which is about 1. (Standard de-
viations, reported in square brackets in Table 1.1, measure
variability in data. The chapter appendix reviews the relevant
formula.) These large gaps might be the health dividend we’re
looking for.

Fruitless and Fruitful Comparisons

Simple comparisons, such as those at the top of Table 1.1, are
often cited as evidence of causal effects. More often than not,
however, such comparisons are misleading. Once again the
problem is other things equal, or lack thereof. Comparisons
of people with and without health insurance are not apples to
apples; such contrasts are apples to oranges, or worse.
Among other differences, those with health insurance are
better educated, have higher income, and are more likely to
be working than the uninsured. This can be seen in panel B
of Table 1.1, which reports the average characteristics of
NHIS respondents who do and don’t have health insurance.
Many of the differences in the table are large (for example,
a nearly 3-year schooling gap); most are statistically precise
enough to rule out the hypothesis that these discrepancies are
merely chance findings (see the chapter appendix for a re-
fresher on statistical significance). It won’t surprise you to
learn that most variables tabulated here are highly correlated
with health as well as with health insurance status. More-
educated people, for example, tend to be healthier as well as
being overrepresented in the insured group. This may be be-
cause more-educated people exercise more, smoke less, and
are more likely to wear seat belts. It stands to reason that
the difference in health between insured and uninsured NHIS

3 An Empirical Notes section after the last chapter gives detailed notes for
this table and most of the other tables and figures in the book.
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TaBLE 1.1
Health and demographic characteristics of insured and uninsured
couples in the NHIS

Husbands Wives
Some HI No HI Difference Some HI No HI Difference
(1) (2) (3) (4) (5) (6)
A. Health
Health index 4.01 3.70 31 4.02 3.62 .39
[.93] [1.01] (.03) [.92] [1.01] (.04)
B. Characteristics
Nonwhite .16 17 —-.01 15 17 —.02
(.01) (.01)
Age 43.98 41.26 2.71 42.24 39.62 2.62
(.29) (.30)
Education 14.31 11.56 2.74 14.44 11.80 2.64
(.10) (.11)
Family size 3.50 3.98 —.47 3.49 3.93 —.43
(.035) (.03)
Employed 92 .85 .07 .77 .56 21
(.01) (.02)
Family income 106,467 45,656 60,810 106,212 46,385 59,828
(1,355) (1,406)

Sample size 8,114 1,281 8,264 1,131

Notes: This table reports average characteristics for insured and uninsured married
couples in the 2009 National Health Interview Survey (NHIS). Columns (1), (2), (4), and
(5) show average characteristics of the group of individuals specified by the column heading.
Columns (3) and (6) report the difference between the average characteristic for individuals
with and without health insurance (HI). Standard deviations are in brackets; standard errors
are reported in parentheses.
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respondents at least partly reflects the extra schooling of the
insured.

Our effort to understand the causal connection between in-
surance and health is aided by fleshing out Frost’s two-roads
metaphor. We use the letter Y as shorthand for health, the
outcome variable of interest. To make it clear when we’re
talking about specific people, we use subscripts as a stand-
in for names: ¥; is the health of individual i. The outcome Y; is
recorded in our data. But, facing the choice of whether to pay
for health insurance, person i has two potential outcomes, only
one of which is observed. To distinguish one potential outcome
from another, we add a second subscript: The road taken with-
out health insurance leads to Yy; (read this as “y-zero-i”) for
person i, while the road with health insurance leads to Yy; (read
this as “y-one—i”) for person i. Potential outcomes lie at the
end of each road one might take. The causal effect of insurance
on health is the difference between them, written Yy, — Yy;.4

To nail this down further, consider the story of visiting
Massachusetts Institute of Technology (MIT) student Khuzdar
Khalat, recently arrived from Kazakhstan. Kazakhstan has a
national health insurance system that covers all its citizens
automatically (though you wouldn’t go there just for the health
insurance). Arriving in Cambridge, Massachusetts, Khuzdar is
surprised to learn that MIT students must decide whether to
opt in to the university’s health insurance plan, for which MIT
levies a hefty fee. Upon reflection, Khuzdar judges the MIT
insurance worth paying for, since he fears upper respiratory
infections in chilly New England. Let’s say that Yy, = 3 and
Yy; = 4 for i = Khuzdar. For him, the causal effect of insurance
is one step up on the NHIS scale:

Yl,Khuzdar - YO,Khuzdar =1

Table 1.2 summarizes this information.

4Robert Frost’s insights notwithstanding, econometrics isn’t poetry. A
modicum of mathematical notation allows us to describe and discuss
subtle relationships precisely. We also use italics to introduce repeatedly used
terms, such as potential outcomes, that have special meaning for masters of
’metrics.
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TaBLE 1.2
Outcomes and treatments for Khuzdar and Maria

Khuzdar Maria
Khalat Morefio

Potential outcome without insurance: Y, 3 5
Potential outcome with insurance: Yy;
Treatment (insurance status chosen): D;

Actual health outcome: Y;

[ N = N

5
0
5
0

Treatment effect: Yy; — Yy,

It’s worth emphasizing that Table 1.2 is an imaginary table:
some of the information it describes must remain hidden.
Khuzdar will either buy insurance, revealing his value of Yy;,
or he won’t, in which case his Yy; is revealed. Khuzdar has
walked many a long and dusty road in Kazakhstan, but even
he cannot be sure what lies at the end of those not taken.

Maria Morefo is also coming to MIT this year; she hails
from Chile’s Andean highlands. Little concerned by Boston
winters, hearty Maria is not the type to fall sick easily. She
therefore passes up the MIT insurance, planning to use her
money for travel instead. Because Maria has Yy naria = Y1, Maria
=3, the causal effect of insurance on her health is

Y1 Maria — Y0,Maria = 0.

Maria’s numbers likewise appear in Table 1.2.

Since Khuzdar and Maria make different insurance choices,
they offer an interesting comparison. Khuzdar’s health is
Ykhuzdar = Y1,Khuzdar = 4 while Maria’s is Ynaria = Y0, Maria
= 5. The difference between them is

Ykhuzdar — YMaria = -1

Taken at face value, this quantity—which we observe—
suggests Khuzdar’s decision to buy insurance is counter-
productive. His MIT insurance coverage notwithstanding, in-
sured Khuzdar’s health is worse than uninsured Maria’s.

For general queries contact webmaster@press.princeton.edu.
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In fact, the comparison between frail Khuzdar and hearty
Maria tells us little about the causal effects of their choices.
This can be seen by linking observed and potential outcomes
as follows:

Yihuzdar — YMaria = Yl,Khuzdar - YO,Maria

= Yl,Khuzdar - YO,Khuzdar + {YO,Khuzdar - YO,Maria} .

1 -2

The second line in this equation is derived by adding and
subtracting Y( khuzdar» thereby generating two hidden com-
parisons that determine the one we see. The first compar-
ison, Y1 Khuzdar — Y0,Khuzdar> 1S the causal effect of health
insurance on Khuzdar, which is equal to 1. The second,
Y0, Khuzdar — Y0,Maria> 18 the difference between the two stu-
dents’ health status were both to decide against insurance.
This term, equal to —2, reflects Khuzdar’s relative frailty. In
the context of our effort to uncover causal effects, the lack of
comparability captured by the second term is called selection
bias.

You might think that selection bias has something to do
with our focus on particular individuals instead of on groups,
where, perhaps, extraneous differences can be expected to
“average out.” But the difficult problem of selection bias car-
ries over to comparisons of groups, though, instead of indi-
vidual causal effects, our attention shifts to average causal
effects. In a group of n people, average causal effects are writ-
ten Avg,[Y1; — Yo;l, where averaging is done in the usual way
(that is, we sum individual outcomes and divide by n):

n
1
Avg,[Yy; — Yol = P E [Y1i — Yoil
i=1

n n

1 1

P > vy — . > Yo o (L1)
i=1 i=1

The symbol }_"_, indicates a sum over everyone from i = 1 to
n, where n is the size of the group over which we are averaging.
Note that both summations in equation (1.1) are taken over
everybody in the group of interest. The average causal effect

For general queries contact webmaster@press.princeton.edu.
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of health insurance compares average health in hypothetical
scenarios where everybody in the group does and does not
have health insurance. As a computational matter, this is the
average of individual causal effects like Y1 khyzdar — Y0,Khuzdar
and Y1 Maria — Y0,Maria fOr €ach student in our data.

An investigation of the average causal effect of insurance
naturally begins by comparing the average health of groups of
insured and uninsured people, as in Table 1.1. This comparison
is facilitated by the construction of a dummy variable, D;,
which takes on the values 0 and 1 to indicate insurance status:

. { 1 if i is insured
! 0 otherwise.

We can now write Avg,[Y;|D; = 1] for the average among the
insured and Avg,[Y;|D; = 0] for the average among the un-
insured. These quantities are averages conditional on insur-
ance status.’

The average Y; for the insured is necessarily an average of
outcome Yy;, but contains no information about Y. Likewise,
the average ¥; among the uninsured is an average of outcome
Yo;, but this average is devoid of information about the cor-
responding Yy;. In other words, the road taken by those with
insurance ends with Yy;, while the road taken by those without
insurance leads to Y. This in turn leads to a simple but im-
portant conclusion about the difference in average health by
insurance status:

Difference in group means
= Aygn[YllDz = 1] - Aygn[Yl|Dl = 0]
ZAUgn[YlilDi zl]_Aygn[YOiu)i ZO]J (12)

5 Order the n observations on ¥; so that the n, observations from the group
indicated by D; = 0 precede the ny observations from the D; = 1 group. The
conditional average

1 &
Avg,[Y|D; =0]= =YY,
05

is the sample average for the ny observations in the D; = 0 group. The term
Avg,[Y;|D; = 1]is calculated analogously from the remaining n; observations.
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an expression highlighting the fact that the comparisons in
Table 1.1 tell us something about potential outcomes, though
not necessarily what we want to know. We’re after
Avg, Yy, — Yo;], an average causal effect involving everyone’s
Yy; and everyone’s Y;, but we see average Yy; only for the
insured and average Y, only for the uninsured.

To sharpen our understanding of equation (1.2), it helps to
imagine that health insurance makes everyone healthier by a
constant amount, k. As is the custom among our people, we
use Greek letters to label such parameters, so as to distinguish
them from variables or data; this one is the letter “kappa.”
The constant-effects assumption allows us to write:

Y1i=Y0i+K5 (1.3)

or, equivalently, Y; — Yo; = «. In other words, « is both the
individual and average causal effect of insurance on health.
The question at hand is how comparisons such as those at the
top of Table 1.1 relate to .

Using the constant-effects model (equation (1.3)) to substi-
tute for Avg,[Y1;|D; = 1] in equation (1.2), we have:

Avg,[Yy;|D; = 1] — Avg, [Yo;| D; = 0]
= {« + Avg, [Yy;|D; = 1]} — Avg, [Yy;|D; = 0]
=i + {Avg,[Yy;| D; = 1] — Avg, [Y;|D; = 0]}. (1.4)
This equation reveals that health comparisons between those
with and without insurance equal the causal effect of interest
() plus the difference in average Y; between the insured and
the uninsured. As in the parable of Khuzdar and Maria, this

second term describes selection bias. Specifically, the difference
in average health by insurance status can be written:

Difference in group means

= Average causal effect + Selection bias,

where selection bias is defined as the difference in average Y,
between the groups being compared.

For general queries contact webmaster@press.princeton.edu.
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How do we know that the difference in means by in-
surance status is contaminated by selection bias? We know
because Yy, is shorthand for everything about person i re-
lated to health, other than insurance status. The lower part of
Table 1.1 documents important noninsurance differences be-
tween the insured and uninsured, showing that ceteris isn’t
paribus here in many ways. The insured in the NHIS are
healthier for all sorts of reasons, including, perhaps, the
causal effects of insurance. But the insured are also health-
ier because they are more educated, among other things. To
see why this matters, imagine a world in which the causal
effect of insurance is zero (that is, ¥ = 0). Even in such a
world, we should expect insured NHIS respondents to be
healthier, simply because they are more educated, richer, and
so on.

We wrap up this discussion by pointing out the subtle
role played by information like that reported in panel B of
Table 1.1. This panel shows that the groups being compared
differ in ways that we can observe. As we’ll see in the next chap-
ter, if the only source of selection bias is a set of differences
in characteristics that we can observe and measure, selection
bias is (relatively) easy to fix. Suppose, for example, that the
only source of selection bias in the insurance comparison is
education. This bias is eliminated by focusing on samples of
people with the same schooling, say, college graduates. Edu-
cation is the same for insured and uninsured people in such a
sample, because it’s the same for everyone in the sample.

The subtlety in Table 1.1 arises because when observed
differences proliferate, so should our suspicions about un-
observed differences. The fact that people with and without
health insurance differ in many visible ways suggests that even
were we to hold observed characteristics fixed, the uninsured
would likely differ from the insured in ways we don’t see (after
all, the list of variables we can see is partly fortuitous). In other
words, even in a sample consisting of insured and uninsured
people with the same education, income, and employment sta-
tus, the insured might have higher values of Yy;. The principal
challenge facing masters of *metrics is elimination of the selec-
tion bias that arises from such unobserved differences.
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TN
\

Breaking the Deadlock: Just RANDomize

My doctor gave me 6 months to live . . . but when I couldn’t pay
the bill, he gave me 6 months more.
Walter Matthau

Experimental random assignment eliminates selection bias.
The logistics of a randomized experiment, sometimes called
a randomized trial, can be complex, but the logic is simple. To
study the effects of health insurance in a randomized trial, we’d
start with a sample of people who are currently uninsured.
We’d then provide health insurance to a randomly chosen
subset of this sample, and let the rest go to the emergency
department if the need arises. Later, the health of the insured
and uninsured groups can be compared. Random assignment
makes this comparison ceteris paribus: groups insured and
uninsured by random assignment differ only in their insurance
status and any consequences that follow from it.

For general queries contact webmaster@press.princeton.edu.
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Suppose the MIT Health Service elects to forgo payment and
tosses a coin to determine the insurance status of new students
Ashish and Zandile (just this once, as a favor to their distin-
guished Economics Department). Zandile is insured if the toss
comes up heads; otherwise, Ashish gets the coverage. A good
start, but not good enough, since random assignment of two
experimental subjects does not produce insured and uninsured
apples. For one thing, Ashish is male and Zandile female.
Women, as a rule, are healthier than men. If Zandile winds
up healthier, it might be due to her good luck in having been
born a woman and unrelated to her lucky draw in the insurance
lottery. The problem here is that two is not enough to tango
when it comes to random assignment. We must randomly as-
sign treatment in a sample that’s large enough to ensure that
differences in individual characteristics like sex wash out.

Two randomly chosen groups, when large enough, are in-
deed comparable. This fact is due to a powerful statistical
property known as the Law of Large Numbers (LLN). The
LLN characterizes the behavior of sample averages in relation
to sample size. Specifically, the LLN says that a sample average
can be brought as close as we like to the average in the popula-
tion from which it is drawn (say, the population of American
college students) simply by enlarging the sample.

To see the LLN in action, play dice.® Specifically, roll a fair
die once and save the result. Then roll again and average these
two results. Keep on rolling and averaging. The numbers 1 to 6
are equally likely (that’s why the die is said to be “fair”), so we
can expect to see each value an equal number of times if we
play long enough. Since there are six possibilities here, and all
are equally likely, the expected outcome is an equally weighted
average of each possibility, with weights equal to 1/6:

(1xg)+2xg) +Bxg) +(#xg)+(Sx5)+(6x5)

14243444546
= ; -

3.5.

6 Six-sided cubes with one to six dots engraved on each side. There’s an app
for ’em on your smartphone.
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This average value of 3.5 is called a mathematical expectation;
in this case, it’s the average value we’d get in infinitely many
rolls of a fair die. The expectation concept is important to our
work, so we define it formally here.

MATHEMATICAL EXPECTATION The mathematical expecta-
tion of a variable, Y;, written E[Y;], is the population average
of this variable. If Y; is a variable generated by a random
process, such as throwing a die, E[Y;] is the average in in-
finitely many repetitions of this process. If ¥; is a variable
that comes from a sample survey, E[Y;] is the average ob-
tained if everyone in the population from which the sample
is drawn were to be enumerated.

Rolling a die only a few times, the average toss may be far
from the corresponding mathematical expectation. Roll two
times, for example, and you might get boxcars or snake eyes
(two sixes or two ones). These average to values well away
from the expected value of 3.5. But as the number of tosses
goes up, the average across tosses reliably tends to 3.5. This
is the LLN in action (and it’s how casinos make a profit: in
most gambling games, you can’t beat the house in the long
run, because the expected payout for players is negative). More
remarkably, it needn’t take too many rolls or too large a sample
for a sample average to approach the expected value. The
chapter appendix addresses the question of how the number
of rolls or the size of a sample survey determines statistical
accuracy.

In randomized trials, experimental samples are created by
sampling from a population we’d like to study rather than by
repeating a game, but the LLN works just the same. When
sampled subjects are randomly divided (as if by a coin toss)
into treatment and control groups, they come from the same
underlying population. The LLN therefore promises that those
in randomly assigned treatment and control samples will be
similar if the samples are large enough. For example, we expect
to see similar proportions of men and women in randomly
assigned treatment and control groups. Random assignment
also produces groups of about the same age and with similar

For general queries contact webmaster@press.princeton.edu.
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schooling levels. In fact, randomly assigned groups should be
similar in every way, including in ways that we cannot easily
measure or observe. This is the root of random assignment’s
awesome power to eliminate selection bias.

The power of random assignment can be described precisely
using the following definition, which is closely related to the
definition of mathematical expectation.

CONDITIONAL EXPECTATION The conditional expectation of
a variable, Y;, given a dummy variable, D; = 1, is written
E[Y;|D; = 1]. This is the average of Y¥; in the population
that has D; equal to 1. Likewise, the conditional expectation
of a variable, Y;, given D; = 0, written E[Y;|D; = 0], is the
average of ¥; in the population that has D; equal to 0. If ¥;
and D; are variables generated by a random process, such as
throwing a die under different circumstances, E[Y;|D; = d|
is the average of infinitely many repetitions of this process
while holding the circumstances indicated by D; fixed at d.
If Y; and D; come from a sample survey, E[Y;|D; = d] is the
average computed when everyone in the population who has
D; =d is sampled.

Because randomly assigned treatment and control groups
come from the same underlying population, they are the same
in every way, including their expected Yy;. In other words, the
conditional expectations, E[Yy;|D; = 1]and E[Yy;|D; = 0], are
the same. This in turn means that:

RANDOM ASSIGNMENT ELIMINATES SELECTION BIAS When Di
is randomly assigned, E[Yy;|D; =1]= E[Yy;|D; = 0], and
the difference in expectations by treatment status captures
the causal effect of treatment:

E[Y;|D; =1] - E[Y;|D; = 0]
= E[Yy;|D; = 1] - E[Y(;|D; = 0]
= E[Yy; +«|D; = 1] — E[Y,;|D; = 0]
=« + E[Yy|D; = 1] = E[Y,;|D; = 0]

=K.
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Provided the sample at hand is large enough for the LLN to
work its magic (so we can replace the conditional averages in
equation (1.4) with conditional expectations), selection bias
disappears in a randomized experiment. Random assignment
works not by eliminating individual differences but rather
by ensuring that the mix of individuals being compared is
the same. Think of this as comparing barrels that include
equal proportions of apples and oranges. As we explain in
the chapters that follow, randomization isn’t the only way to
generate such ceteris paribus comparisons, but most masters
believe it’s the best.

When analyzing data from a randomized trial or any other
research design, masters almost always begin with a check
on whether treatment and control groups indeed look simi-
lar. This process, called checking for balance, amounts to a
comparison of sample averages as in panel B of Table 1.1.
The average characteristics in panel B appear dissimilar or un-
balanced, underlining the fact that the data in this table don’t
come from anything like an experiment. It’s worth checking for
balance in this manner any time you find yourself estimating
causal effects.

Random assignment of health insurance seems like a fanciful
proposition. Yet health insurance coverage has twice been ran-
domly assigned to large representative samples of Americans.
The RAND Health Insurance Experiment (HIE), which ran
from 1974 to 1982, was one of the most influential social ex-
periments in research history. The HIE enrolled 3,958 people
aged 14 to 61 from six areas of the country. The HIE sam-
ple excluded Medicare participants and most Medicaid and
military health insurance subscribers. HIE participants were
randomly assigned to one of 14 insurance plans. Participants
did not have to pay insurance premiums, but the plans had a
variety of provisions related to cost sharing, leading to large
differences in the amount of insurance they offered.

The most generous HIE plan offered comprehensive care for
free. At the other end of the insurance spectrum, three “cata-
strophic coverage” plans required families to pay 95 % of their
health-care costs, though these costs were capped as a propor-
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tion of income (or capped at $1,000 per family, if that was
lower). The catastrophic plans approximate a no-insurance
condition. A second insurance scheme (the “individual de-
ductible” plan) also required families to pay 95 % of outpatient
charges, but only up to $150 per person or $450 per family.
A group of nine other plans had a variety of coinsurance pro-
visions, requiring participants to cover anywhere from 25%
to 50% of charges, but always capped at a proportion of in-
come or $1,000, whichever was lower. Participating families
enrolled in the experimental plans for 3 or 5 years and agreed
to give up any earlier insurance coverage in return for a fixed
monthly payment unrelated to their use of medical care.”

The HIE was motivated primarily by an interest in what
economists call the price elasticity of demand for health care.
Specifically, the RAND investigators wanted to know whether
and by how much health-care use falls when the price of health
care goes up. Families in the free care plan faced a price of
zero, while coinsurance plans cut prices to 25% or 50% of
costs incurred, and families in the catastrophic coverage and
deductible plans paid something close to the sticker price for
care, at least until they hit the spending cap. But the investiga-
tors also wanted to know whether more comprehensive and
more generous health insurance coverage indeed leads to bet-
ter health. The answer to the first question was a clear “yes”:
health-care consumption is highly responsive to the price of
care. The answer to the second question is murkier.

Randomized Results

Randomized field experiments are more elaborate than a coin
toss, sometimes regrettably so. The HIE was complicated by

7 Our description of the HIE follows Robert H. Brook et al., “Does Free
Care Improve Adults’ Health? Results from a Randomized Controlled Trial,”
New England Journal of Medicine, vol. 309, no. 23, December 8, 1983, pages
1426-1434. See also Aviva Aron-Dine, Liran Einav, and Amy Finkelstein,
“The RAND Health Insurance Experiment, Three Decades Later,” Journal of
Economic Perspectives, vol. 27, Winter 2013, pages 197-222, for a recent
assessment.
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having many small treatment groups, spread over more than a
dozen insurance plans. The treatment groups associated with
each plan are mostly too small for comparisons between them
to be statistically meaningful. Most analyses of the HIE data
therefore start by grouping subjects who were assigned to
similar HIE plans together. We do that here as well.®

A natural grouping scheme combines plans by the amount
of cost sharing they require. The three catastrophic coverage
plans, with subscribers shouldering almost all of their medical
expenses up to a fairly high cap, approximate a no-insurance
state. The individual deductible plan provided more coverage,
but only by reducing the cap on total expenses that plan partic-
ipants were required to shoulder. The nine coinsurance plans
provided more substantial coverage by splitting subscribers’
health-care costs with the insurer, starting with the first dollar
of costs incurred. Finally, the free plan constituted a radical
intervention that might be expected to generate the largest
increase in health-care usage and, perhaps, health. This cat-
egorization leads us to four groups of plans: catastrophic,
deductible, coinsurance, and free, instead of the 14 original
plans. The catastrophic plans provide the (approximate) no-

8 Other HIE complications include the fact that instead of simply tossing
a coin (or the computer equivalent), RAND investigators implemented a
complex assignment scheme that potentially affects the statistical properties
of the resulting analyses (for details, see Carl Morris, “A Finite Selection
Model for Experimental Design of the Health Insurance Study,” Journal of
Econometrics, vol. 11, no. 1, September 1979, pages 43-61). Intentions here
were good, in that the experimenters hoped to insure themselves against
chance deviation from perfect balance across treatment groups. Most HIE
analysts ignore the resulting statistical complications, though many probably
join us in regretting this attempt to gild the random assignment lily. A more
serious problem arises from the large number of HIE subjects who dropped out
of the experiment and the large differences in attrition rates across treatment
groups (fewer left the free plan, for example). As noted by Aron-Dine, Einav,
and Finkelstein, “The RAND Experiment,” Journal of Economic Perspectives,
2013, differential attrition may have compromised the experiment’s validity.
Today’s “randomistas” do better on such nuts-and-bolts design issues (see,
for example, the experiments described in Abhijit Banerjee and Esther Duflo,
Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty,
Public Affairs, 2011).
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insurance control, while the deductible, coinsurance, and free
plans are characterized by increasing levels of coverage.

As with nonexperimental comparisons, a first step in our
experimental analysis is to check for balance. Do subjects ran-
domly assigned to treatment and control groups—in this case,
to health insurance schemes ranging from little to complete
coverage—indeed look similar? We gauge this by comparing
demographic characteristics and health data collected before
the experiment began. Because demographic characteristics
are unchanging, while the health variables in question were
measured before random assignment, we expect to see only
small differences in these variables across the groups assigned
to different plans.

In contrast with our comparison of NHIS respondents’ char-
acteristics by insurance status in Table 1.1, a comparison of
characteristics across randomly assigned treatment groups in
the RAND experiment shows the people assigned to differ-
ent HIE plans to be similar. This can be seen in panel A of
Table 1.3. Column (1) in this table reports averages for the
catastrophic plan group, while the remaining columns com-
pare the groups assigned more generous insurance coverage
with the catastrophic control group. As a summary measure,
column (5) compares a sample combining subjects in the de-
ductible, coinsurance, and free plans with subjects in the cat-
astrophic plans. Individuals assigned to the plans with more
generous coverage are a little less likely to be female and a
little less educated than those in the catastrophic plans. We
also see some variation in income, but differences between
plan groups are mostly small and are as likely to go one
way as another. This pattern contrasts with the large and
systematic demographic differences between insured and un-
insured people seen in the NHIS data summarized in Table 1.1.

The small differences across groups seen in panel A of
Table 1.3 seem likely to reflect chance variation that emerges
naturally as part of the sampling process. In any statistical
sample, chance differences arise because we’re looking at one
of many possible draws from the underlying population from
which we’ve sampled. A new sample of similar size from the
same population can be expected to produce comparisons
that are similar—though not identical—to those in the table.
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TaBLE 1.3

Demographic characteristics and baseline health in the RAND HIE

Means Differences between plan groups
Catastrophic Deductible — Coinsurance —  Free —  Any insurance —
plan catastrophic  catastrophic catastrophic  catastrophic
(1) (2) (3) (4) (5)
A. Demographic characteristics
Female .560 —.023 —.025 —.038 —.030
(.016) (.015) (.015) (.013)
Nonwhite 172 —.019 —.027 —.028 —.025
(.027) (.025) (.025) (.022)
Age 32.4 .56 97 43 .64
[12.9] (.68) (.65) (.61) (.54)
Education 12.1 —.16 —.06 —.26 -.17
[2.9] (.19) (.19) (.18) (.16)
Family income 31,603 —-2,104 970 —-976 —654
[18,148] (1,384) (1,389) (1,345) (1,181)
Hospitalized last year 115 .004 —.002 .001 .001
(.016) (.015) (.015) (.013)
B. Baseline health variables
General health index 70.9 —1.44 21 —-1.31 -.93
[14.9] (.95) (.92) (.87) (.77)
Cholesterol (mg/dl) 207 —1.42 -1.93 —5.25 -3.19
[40] (2.99) (2.76) (2.70) (2.29)
Systolic blood 122 2.32 91 1.12 1.39
pressure (mm Hg) [17] (1.15) (1.08) (1.01) (.90)
Mental health index 73.8 —.12 1.19 .89 71
[14.3] (.82) (.81) (.77) (.68)
Number enrolled 759 881 1,022 1,295 3,198

Notes: This table describes the demographic characteristics and baseline health of subjects in
the RAND Health Insurance Experiment (HIE). Column (1) shows the average for the group
assigned catastrophic coverage. Columns (2)—(5) compare averages in the deductible, cost-
sharing, free care, and any insurance groups with the average in column (1). Standard errors
are reported in parentheses in columns (2)—(5); standard deviations are reported in brackets in
column (1).
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The question of how much variation we should expect from
one sample to another is addressed by the tools of statistical
inference.

The appendix to this chapter briefly explains how to quan-
tify sampling variation with formal statistical tests. Such tests
amount to the juxtaposition of differences in sample aver-
ages with their standard errors, the numbers in parentheses
reported below the differences in averages listed in columns
(2)=(5) of Table 1.3. The standard error of a difference in av-
erages is a measure of its statistical precision: when a difference
in sample averages is smaller than about two standard errors,
the difference is typically judged to be a chance finding com-
patible with the hypothesis that the populations from which
these samples were drawn are, in fact, the same.

Differences that are larger than about two standard errors
are said to be statistically significant: in such cases, it is highly
unlikely (though not impossible) that these differences arose
purely by chance. Differences that are not statistically signifi-
cant are probably due to the vagaries of the sampling process.
The notion of statistical significance helps us interpret com-
parisons like those in Table 1.3. Not only are the differences
in this table mostly small, only two (for proportion female in
columns (4) and (5)) are more than twice as large as the asso-
ciated standard errors. In tables with many comparisons, the
presence of a few isolated statistically significant differences is
usually also attributable to chance. We also take comfort from
the fact that the standard errors in this table are not very big,
indicating differences across groups are measured reasonably
precisely.

Panel B of Table 1.3 complements the contrasts in panel A
with evidence for reasonably good balance in pre-treatment
outcomes across treatment groups. This panel shows no statis-
tically significant differences in a pre-treatment index of gen-
eral health. Likewise, pre-treatment cholesterol, blood pres-
sure, and mental health appear largely unrelated to treatment
assignment, with only a couple of contrasts close to statisti-
cal significance. In addition, although lower cholesterol in the
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free group suggests somewhat better health than in the cata-
strophic group, differences in the general health index between
these two groups go the other way (since lower index values
indicate worse health). Lack of a consistent pattern reinforces
the notion that these gaps are due to chance.

The first important finding to emerge from the HIE was
that subjects assigned to more generous insurance plans used
substantially more health care. This finding, which vindicates
economists’ view that demand for a good should go up when
it gets cheaper, can be seen in panel A of Table 1.4.° As
might be expected, hospital inpatient admissions were less
sensitive to price than was outpatient care, probably because
admissions decisions are usually made by doctors. On the
other hand, assignment to the free care plan raised outpatient
spending by two-thirds (169/248) relative to spending by those
in catastrophic plans, while total medical expenses increased
by 45%. These large gaps are economically important as well
as statistically significant.

Subjects who didn’t have to worry about the cost of health
care clearly consumed quite a bit more of it. Did this extra care
and expense make them healthier? Panel B in Table 1.4, which
compares health indicators across HIE treatment groups, sug-
gests not. Cholesterol levels, blood pressure, and summary
indices of overall health and mental health are remarkably
similar across groups (these outcomes were mostly measured
3 or § years after random assignment). Formal statistical tests
show no statistically significant differences, as can be seen in
the group-specific contrasts (reported in columns (2)—(4)) and
in the differences in health between those in a catastrophic plan
and everyone in the more generous insurance groups (reported
in column (5)).

These HIE findings convinced many economists that gen-
erous health insurance can have unintended and undesirable

9The RAND results reported here are based on our own tabulations from
the HIE public use file, as described in the Empirical Notes section at the end of
the book. The original RAND results are summarized in Joseph P. Newhouse
et al., Free for All? Lessons from the RAND Health Insurance Experiment,
Harvard University Press, 1994.
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TaBLE 1.4
Health expenditure and health outcomes in the RAND HIE
Means Differences between plan groups
Catastrophic Deductible — Coinsurance —  Free —  Any insurance —
plan catastrophic  catastrophic catastrophic  catastrophic
(1) (2) (3) (4) (5)
A. Health-care use
Face-to-face visits 2.78 19 48 1.66 .90
[5.50] (.25) (.24) (.25) (.20)
Outpatient expenses 248 42 60 169 101
[488] (21) (21) (20) (17)
Hospital admissions .099 .016 .002 .029 .017
[.379] (.011) (.011) (.010) (.009)
Inpatient expenses 388 72 93 116 97
[2,308] (69) (73) (60) (53)
Total expenses 636 114 152 285 198
[2,535] (79) (85) (72) (63)
B. Health outcomes
General health index 68.5 —.87 .61 —.78 -.36
[15.9] (.96) (.90) (.87) (.77)
Cholesterol (mg/dl) 203 .69 —-2.31 —1.83 —1.32
[42] (2.57) (2.47) (2.39) (2.08)
Systolic blood 122 1.17 -1.39 -.52 -.36
pressure (mm Hg) [19] (1.06) (.99) (.93) (.89)
Mental health index 75.5 45 1.07 43 .64
[14.8] (.91) (.87) (.83) (.75)
Number enrolled 759 881 1,022 1,295 3,198

Notes: This table reports means and treatment effects for health expenditure and health
outcomes in the RAND Health Insurance Experiment (HIE). Column (1) shows the average for
the group assigned catastrophic coverage. Columns (2)—(5) compare averages in the deductible,
cost-sharing, free care, and any insurance groups with the average in column (1). Standard errors
are reported in parentheses in columns (2)—(5); standard deviations are reported in brackets in

column (1).
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consequences, increasing health-care usage and costs, without
generating a dividend in the form of better health.!?

1.2 The Oregon Trail

MasTeR KAN: Truth is hard to understand.

Kwa1r CHANG CAINE: It is a fact, it is not the truth. Truth is often
hidden, like a shadow in darkness.
Kung Fu, Season 1, Episode 14

The HIE was an ambitious attempt to assess the impact of
health insurance on health-care costs and health. And yet, as
far as the contemporary debate over health insurance goes,
the HIE might have missed the mark. For one thing, each
HIE treatment group had at least catastrophic coverage, so
financial liability for health-care costs was limited under every
treatment. More importantly, today’s uninsured Americans
differ considerably from the HIE population: most of the un-
insured are younger, less educated, poorer, and less likely to
be working. The value of extra health care in such a group
might be very different than for the middle class families that
participated in the HIE.

One of the most controversial ideas in the contemporary
health policy arena is the expansion of Medicaid to cover the
currently uninsured (interestingly, on the eve of the RAND
experiment, talk was of expanding Medicare, the public in-
surance program for America’s elderly). Medicaid now covers
families on welfare, some of the disabled, other poor children,
and poor pregnant women. Suppose we were to expand Med-
icaid to cover those who don’t qualify under current rules.
How would such an expansion affect health-care spending?
Would it shift treatment from costly and crowded emergency
departments to possibly more effective primary care? Would
Medicaid expansion improve health?

10 participants in the free plan had slightly better corrected vision than those
in the other plans; see Brook et al., “Does Free Care Improve Health?” New
England Journal of Medicine, 1983, for details.
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Many American states have begun to “experiment” with
Medicaid expansion in the sense that they’ve agreed to broaden
eligibility, with the federal government footing most of the
bill. Alas, these aren’t real experiments, since everyone who
is eligible for expanded Medicaid coverage gets it. The most
convincing way to learn about the consequences of Medicaid
expansion is to randomly offer Medicaid coverage to people
in currently ineligible groups. Random assignment of Medi-
caid seems too much to hope for. Yet, in an awesome social
experiment, the state of Oregon recently offered Medicaid to
thousands of randomly chosen people in a publicly announced
health insurance lottery.

We can think of Oregon’s health insurance lottery as ran-
domly selecting winners and losers from a pool of registrants,
though coverage was not automatic, even for lottery winners.
Winners won the opportunity to apply for the state-run Ore-
gon Health Plan (OHP), the Oregon version of Medicaid. The
state then reviewed these applications, awarding coverage to
Oregon residents who were U.S. citizens or legal immigrants
aged 19-64, not otherwise eligible for Medicaid, uninsured for
at least 6 months, with income below the federal poverty level,
and few financial assets. To initiate coverage, lottery winners
had to document their poverty status and submit the required
paperwork within 45 days.

The rationale for the 2008 OHP lottery was fairness and
not research, but it’s no less awesome for that. The Oregon
health insurance lottery provides some of the best evidence
we can hope to find on the costs and benefits of insurance
coverage for the currently uninsured, a fact that motivated
research on OHP by MIT master Amy Finkelstein and her
coauthors.'!

See Amy Finkelstein et al., “The Oregon Health Insurance Experiment:
Evidence from the First Year,” Quarterly Journal of Economics, vol. 127,
no. 3, August 2012, pages 1057-1106; Katherine Baicker et al., “The Oregon
Experiment—Effects of Medicaid on Clinical Outcomes,” New England Jour-
nal of Medicine, vol. 368, no. 18, May 2, 2013, pages 1713-1722; and Sarah
Taubman et al., “Medicaid Increases Emergency Department Use: Evidence
from Oregon’s Health Insurance Experiment,” Science, vol. 343, no. 6168,
January 17, 2014, pages 263-268.
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Roughly 75,000 lottery applicants registered for expanded
coverage through the OHP. Of these, almost 30,000 were ran-
domly selected and invited to apply for OHP; these winners
constitute the OHP treatment group. The other 45,000 con-
stitute the OHP control sample.

The first question that arises in this context is whether OHP
lottery winners were more likely to end up insured as a re-
sult of winning. This question is motivated by the fact that
some applicants qualified for regular Medicaid even without
the lottery. Panel A of Table 1.5 shows that about 14% of
controls (lottery losers) were covered by Medicaid in the year
following the first OHP lottery. At the same time, the second
column, which reports differences between the treatment and
control groups, shows that the probability of Medicaid cov-
erage increased by 26 percentage points for lottery winners.
Column (4) shows a similar increase for the subsample living
in and around Portland, Oregon’s largest city. The upshot is
that OHP lottery winners were insured at much higher rates
than were lottery losers, a difference that might have affected
their use of health care and their health.!?

The OHP treatment group (that is, lottery winners) used
more health-care services than they otherwise would have.
This can also be seen in Table 1.5, which shows estimates of
changes in service use in the rows below the estimate of the
OHP effect on Medicaid coverage. The hospitalization rate in-
creased by about half a percentage point, a modest though sta-
tistically significant effect. Emergency department visits, out-
patient visits, and prescription drug use all increased markedly.
The fact that the number of emergency department visits rose
about 10%, a precisely estimated effect (the standard error as-
sociated with this estimate, reported in column (4), is .029),
is especially noteworthy. Many policymakers hoped and ex-
pected health insurance to shift formerly uninsured patients

123Why weren’t all OHP lottery winners insured? Some failed to submit
the required paperwork on time, while about half of those who did complete
the necessary forms in a timely fashion turned out to be ineligible on further
review.
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TaBLE 1.5
OHP effects on insurance coverage and health-care use
Oregon Portland area
Control Treatment Control Treatment
mean effect mean effect
Outcome (1) (2) (3) (4)

A. Administrative data

Ever on Medicaid 141 256 151 247
(.004) (.006)
Any hospital admissions .067 .005
(.002)
Any emergency department .345 .017
visit (.006)
Number of emergency 1.02 .101
department visits (.029)
Sample size 74,922 24,646

B. Survey data

Outpatient visits (in the 1.91 314
past 6 months) (.054)
Any prescriptions? .637 .025
(.008)

Sample size 23,741

Notes: This table reports estimates of the effect of winning the Oregon Health
Plan (OHP) lottery on insurance coverage and use of health care. Odd-numbered
columns show control group averages. Even-numbered columns report the regres-
sion coefficient on a dummy for lottery winners. Standard errors are reported in
parentheses.

away from hospital emergency departments toward less costly
sources of care.

Finally, the proof of the health insurance pudding appears
in Table 1.6: lottery winners in the statewide sample report
a modest improvement in the probability they assess their
health as being good or better (an effect of .039, which can be
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TaBLE 1.6
OHP effects on health indicators and financial health
Oregon Portland area
Control Treatment Control Treatment
mean effect mean effect
Outcome (1) (2) (3) (4)
A. Health indicators
Health is good .548 .039
(.008)
Physical health index 45.5 29
(.21)
Mental health index 44 .4 A7
(.24)
Cholesterol 204 .53
(.69)
Systolic blood pressure 119 —.13
(mm Hg) (-30)
B. Financial health
Medical expenditures .055 —.011
>30% of income (.005)
Any medical debt? .568 —.032
(.010)
Sample size 23,741 12,229

Notes: This table reports estimates of the effect of winning the Oregon
Health Plan (OHP) lottery on health indicators and financial health. Odd-
numbered columns show control group averages. Even-numbered columns
report the regression coefficient on a dummy for lottery winners. Standard
errors are reported in parentheses.

compared with a control mean of .55; the Health is Good vari-
able is a dummy). Results from in-person interviews conducted
in Portland suggest these gains stem more from improved men-
tal rather than physical health, as can be seen in the second and
third rows in column (4) (the health variables in the Portland
sample are indices ranging from 0 to 100). As in the RAND
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experiment, results from Portland suggest physical health in-
dicators like cholesterol and blood pressure were largely un-
changed by increased access to OHP insurance.

The weak health effects of the OHP lottery disappointed
policymakers who looked to publicly provided insurance to
generate a health dividend for low-income Americans. The fact
that health insurance increased rather than decreased expen-
sive emergency department use is especially frustrating. At the
same time, panel B of Table 1.6 reveals that health insurance
provided the sort of financial safety net for which it was de-
signed. Specifically, households winning the lottery were less
likely to have incurred large medical expenses or to have ac-
cumulated debt generated by the need to pay for health care.
It may be this improvement in financial health that accounts
for improved mental health in the treatment group.

It also bears emphasizing that the financial and health effects
seen in Table 1.6 most likely come from the 25% of the sample
who obtained insurance as a result of the lottery. Adjusting for
the fact that insurance status was unchanged for many winners
shows that gains in financial security and mental health for the
one-quarter of applicants who were insured as a result of the
lottery were considerably larger than simple comparisons of
winners and losers would suggest. Chapter 3, on instrumental
variables methods, details the nature of such adjustments. As
you’ll soon see, the appropriate adjustment here amounts to
the division of win/loss differences in outcomes by win/loss
differences in the probability of insurance. This implies that
the effect of being insured is as much as four times larger than
the effect of winning the OHP lottery (statistical significance
is unchanged by this adjustment).

The RAND and Oregon findings are remarkably similar.
Two ambitious experiments targeting substantially different
populations show that the use of health-care services increases
sharply in response to insurance coverage, while neither exper-
iment reveals much of an insurance effect on physical health.
In 2008, OHP lottery winners enjoyed small but noticeable
improvements in mental health. Importantly, and not coinci-
dentally, OHP also succeeded in insulating many lottery win-
ners from the financial consequences of poor health, just as a
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good insurance policy should. At the same time, these studies
suggest that subsidized public health insurance should not be
expected to yield a dramatic health dividend.

©
MASTER JosHWAY: In a nutshell, please, Grasshopper.

GrassHOPPER: Causal inference compares potential out-
comes, descriptions of the world when alternative roads
are taken.

MASTER JosHWAY: Do we compare those who took one
road with those who took another?

GRASSHOPPER: Such comparisons are often contaminated
by selection bias, that is, differences between treated and
control subjects that exist even in the absence of a treatment
effect.

MASTER JosHWAY: Can selection bias be eliminated?

GRASSHOPPER: Random assignment to treatment and
control conditions eliminates selection bias. Yet even in
randomized trials, we check for balance.

MASTER JosHWAY: Is there a single causal truth, which all
randomized investigations are sure to reveal?

GRrASSHOPPER: I see now that there can be many truths,
Master, some compatible, some in contradiction. We
therefore take special note when findings from two or
more experiments are similar.

Masters of *Metrics: From Daniel to R. A. Fisher

The value of a control group was revealed in the Old Tes-
tament. The Book of Daniel recounts how Babylonian King
Nebuchadnezzar decided to groom Daniel and other Israelite
captives for his royal service. As slavery goes, this wasn’t a
bad gig, since the king ordered his captives be fed “food and
wine from the king’s table.” Daniel was uneasy about the rich
diet, however, preferring modest vegetarian fare. The king’s
chamberlains initially refused Daniel’s special meals request,
fearing that his diet would prove inadequate for one called on
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to serve the king. Daniel, not without chutzpah, proposed a
controlled experiment: “Test your servants for ten days. Give
us nothing but vegetables to eat and water to drink. Then com-
pare our appearance with that of the young men who eat the
royal food, and treat your servants in accordance with what
you see” (Daniel 1, 12-13). The Bible recounts how this ex-
periment supported Daniel’s conjecture regarding the relative
healthfulness of a vegetarian diet, though as far as we know
Daniel himself didn’t get an academic paper out of it.

Nutrition is a recurring theme in the quest for balance.
Scurvy, a debilitating disease caused by vitamin C deficiency,
was the scourge of the British Navy. In 1742, James Lind,
a surgeon on HMS Salisbury, experimented with a cure for
scurvy. Lind chose 12 seamen with scurvy and started them
on an identical diet. He then formed six pairs and treated each
of the pairs with a different supplement to their daily food
ration. One of the additions was an extra two oranges and
one lemon (Lind believed an acidic diet might cure scurvy).
Though Lind did not use random assignment, and his sample
was small by our standards, he was a pioneer in that he chose
his 12 study members so they were “as similar as I could have
them.” The citrus eaters—Britain’s first limeys—were quickly
and incontrovertibly cured, a life-changing empirical finding
that emerged from Lind’s data even though his theory was
wrong.!3

Almost 150 years passed between Lind and the first recorded
use of experimental random assignment. This was by Charles
Peirce, an American philosopher and scientist, who experi-
mented with subjects’ ability to detect small differences in
weight. In a less-than-fascinating but methodologically signif-
icant 18835 publication, Peirce and his student Joseph Jastrow
explained how they varied experimental conditions according
to draws from a pile of playing cards.!*

B Lind’s experiment is described in Duncan P. Thomas, “Sailors, Scurvy,
and Science,” Journal of the Royal Society of Medicine, vol. 90, no. 1, January
1997, pages 50-54.

14 Charles S. Peirce and Joseph Jastrow, “On Small Differences in Sensa-
tion,” Memoirs of the National Academy of Sciences, vol. 3, 1885, pages
75-83.
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Siv Ronald Aglmer Fisher's
devotion to scientific tvuth
being literally passionate,

he was an implacable enemy

of Hhose whom he judged

guiH"g O‘P PVOPAQAH'\Q wvovy
(Vohn Aldvich)

The idea of a randomized controlled trial emerged in earnest
only at the beginning of the twentieth century, in the work of
statistician and geneticist Sir Ronald Aylmer Fisher, who an-
alyzed data from agricultural experiments. Experimental ran-
dom assignment features in Fisher’s 1925 Statistical Methods
for Research Workers and is detailed in his landmark The De-
sign of Experiments, published in 1935.1%

Fisher had many fantastically good ideas and a few bad ones.
In addition to explaining the value of random assignment, he
invented the statistical method of maximum likelihood. Along
with ’metrics master Sewall Wright (and J.B.S. Haldane), he
launched the field of theoretical population genetics. But he
was also a committed eugenicist and a proponent of forced
sterilization (as was regression master Sir Francis Galton, who
coined the term “eugenics”). Fisher, a lifelong pipe smoker, was

15Ronald A. Fisher, Statistical Methods for Research Workers, Oliver and
Boyd, 1925, and Ronald A. Fisher, The Design of Experiments, Oliver
and Boyd, 1935.
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also on the wrong side of the debate over smoking and health,
due in part to his strongly held belief that smoking and lung
cancer share a common genetic origin. The negative effect of
smoking on health now seems well established, though Fisher
was right to worry about selection bias in health research.
Many lifestyle choices, such as low-fat diets and vitamins, have
been shown to be unrelated to health outcomes when evaluated
with random assignment.

Appendix: Mastering Inference

YounG CAINE: [ am puzzled.

MasTER Po: That is the beginning of wisdom.
Kung Fu, Season 2, Episode 25

This is the first of a number of appendices that fill in key
econometric and statistical details. You can spend your life
studying statistical inference; many masters do. Here we offer a
brief sketch of essential ideas and basic statistical tools, enough
to understand tables like those in this chapter.

The HIE is based on a sample of participants drawn (more
or less) at random from the population eligible for the exper-
iment. Drawing another sample from the same population,
we’d get somewhat different results, but the general picture
should be similar if the sample is large enough for the LLN to
kick in. How can we decide whether statistical results con-
stitute strong evidence or merely a lucky draw, unlikely to
be replicated in repeated samples? How much sampling vari-
ance should we expect? The tools of formal statistical infer-
ence answer these questions. These tools work for all of the
econometric strategies of concern to us. Quantifying sampling
uncertainty is a necessary step in any empirical project and on
the road to understanding statistical claims made by others.
We explain the basic inference idea here in the context of HIE
treatment effects.

The task at hand is the quantification of the uncertainty
associated with a particular sample average and, especially,
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groups of averages and the differences among them. For ex-
ample, we’d like to know if the large differences in health-care
expenditure across HIE treatment groups can be discounted as
a chance finding. The HIE samples were drawn from a much
larger data set that we think of as covering the population of
interest. The HIE population consists of all families eligible for
the experiment (too young for Medicare and so on). Instead
of studying the many millions of such families, a much smaller
group of about 2,000 families (containing about 4,000 people)
was selected at random and then randomly allocated to one of
14 plans or treatment groups. Note that there are two sorts
of randomness at work here: the first pertains to the construc-
tion of the study sample and the second to how treatment was
allocated to those who were sampled. Random sampling and
random assignment are closely related but distinct ideas.

A World without Bias

We first quantify the uncertainty induced by random sampling,
beginning with a single sample average, say, the average health
of everyone in the sample at hand, as measured by a health in-
dex. Our target is the corresponding population average health
index, that is, the mean over everyone in the population of in-
terest. As we noted on p. 14, the population mean of a variable
is called its mathematical expectation, or just expectation for
short. For the expectation of a variable, Y;, we write E[Y;]. Ex-
pectation is intimately related to formal notions of probability.
Expectations can be written as a weighted average of all possi-
ble values that the variable Y; can take on, with weights given
by the probability these values appear in the population. In
our dice-throwing example, these weights are equal and given
by 1/6 (see Section 1.1).

Unlike our notation for averages, the symbol for expectation
does not reference the sample size. That’s because expectations
are population quantities, defined without reference to a par-
ticular sample of individuals. For a given population, there is
only one E[Y;], while there are many Avg,[Y;], depending on
how we choose n and just who ends up in our sample. Because
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E[Y;]is a fixed feature of a particular population, we call it a
parameter. Quantities that vary from one sample to another,
such as the sample average, are called sample statistics.

At this point, it’s helpful to switch from Avg,[Y;] to a more
compact notation for averages, Y. Note that we’re dispensing
with the subscript n to avoid clutter—henceforth, it’s on you
to remember that sample averages are computed in a sample
of a particular size. The sample average, Y, is a good estimator
of E[Y;] (in statistics, an estimator is any function of sample
data used to estimate parameters). For one thing, the LLN
tells us that in large samples, the sample average is likely
to be very close to the corresponding population mean. A
related property is that the expectation of Y is also E[Y;].
In other words, if we were to draw infinitely many random
samples, the average of the resulting ¥ across draws would be
the underlying population mean. When a sample statistic has
expectation equal to the corresponding population parameter,
it’s said to be an unbiased estimator of that parameter. Here’s
the sample mean’s unbiasedness property stated formally:

UNBIASEDNESS OF THE SAMPLE MEAN ~ E[Y] = E[Y;]

The sample mean should not be expected to be bang on the
corresponding population mean: the sample average in one
sample might be too big, while in other samples it will be
too small. Unbiasedness tells us that these deviations are not
systematically up or down; rather, in repeated samples they
average out to zero. This unbiasedness property is distinct
from the LLN, which says that the sample mean gets closer
and closer to the population mean as the sample size grows.
Unbiasedness of the sample mean holds for samples of any size.

Measuring Variability

In addition to averages, we’re interested in variability. To gauge
variability, it’s customary to look at average squared deviations
from the mean, in which positive and negative gaps get equal
weight. The resulting summary of variability is called variance.
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The sample variance of Y; in a sample of size n is defined as

S(v)? = % S (-7

i=1

The corresponding population variance replaces averages with
expectations, giving:

V(Y,) = E[(Y,- - E[Yi])z] .

Like E[Y;], the quantity V(Y;) is a fixed feature of a population
—a parameter. It’s therefore customary to christen it in Greek:
V(Y;) = o}%, which is read as “sigma-squared-y.”!®

Because variances square the data they can be very large.
Multiply a variable by 10 and its variance goes up by 100.
Therefore, we often describe variability using the square root
of the variance: this is called the standard deviation, written oy.
Multiply a variable by 10 and its standard deviation increases
by 10. As always, the population standard deviation, oy, has
a sample counterpart S(Y;), the square root of S(¥;)2.

Variance is a descriptive fact about the distribution of ¥;.
(Reminder: the distribution of a variable is the set of values
the variable takes on and the relative frequency that each
value is observed in the population or generated by a random
process.) Some variables take on a narrow set of values (like
a dummy variable indicating families with health insurance),
while others (like income) tend to be spread out with some
very high values mixed in with many smaller ones.

It’s important to document the variability of the variables
you’re working with. Our goal here, however, goes beyond

16 Sample variances tend to underestimate population variances. Sample

variance is therefore sometimes defined as
n

1 5\2
S(yi)2 = Z (Yi - Y) 5
n—1 =
that is, dividing by n — 1 instead of by n. This modified formula provides an
unbiased estimate of the corresponding population variance.
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this. We’re interested in quantifying the variance of the sample
mean in repeated samples. Since the expectation of the sample
mean is E[Y;] (from the unbiasedness property), the population
variance of the sample mean can be written as

v(P) = E[(7 - EI7)’] = E[ (7 - EIv:)].

The variance of a statistic like the sample mean is distinct
from the variance used for descriptive purposes. We write
V(Y) for the variance of the sample mean, while V(Y;) (or
o) denotes the variance of the underlying data. Because the
quantity V(Y) measures the variability of a sample statistic in
repeated samples, as opposed to the dispersion of raw data,
V(Y) has a special name: sampling variance.

Sampling variance is related to descriptive variance, but, un-
like descriptive variance, sampling variance is also determined
by sample size. We show this by simplifying the formula for
V(Y). Start by substituting the formula for Y inside the nota-
tion for variance:

n
— 1
v =v{ | Z Y;
i=1

To simplify this expression, we first note that random sam-
pling ensures the individual observations in a sample are not
systematically related to one another; in other words, they are
statistically independent. This important property allows us to
take advantage of the fact that the variance of a sum of statis-
tically independent observations, each drawn randomly from
the same population, is the sum of their variances. Moreover,
because each Y; is sampled from the same population, each
draw has the same variance, 03. Finally, we use the property
that the variance of a constant (like 1/n) times Y; is the square
of this constant times the variance of Y;. From these consider-
ations, we get
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viny=v([1Sr )= 1v,2
B ni T2 Y

Simplifying further, we have

2
Oy

_ 1 < 2 no}%
V(Y):;;ayz—2=7 (1.5)

n

We’ve shown that the sampling variance of a sample average
depends on the variance of the underlying observations, a%,
and the sample size, n. As you might have guessed, more data
means less dispersion of sample averages in repeated samples.
In fact, when the sample size is very large, there’s almost no
dispersion at all, because when n is large, G% /n is small. This
is the LLN at work: as n approaches infinity, the sample aver-
age approaches the population mean, and sampling variance
disappears.

In practice, we often work with the standard deviation of the
sample mean rather than its variance. The standard deviation
of a statistic like the sample average is called its standard error.
The standard error of the sample mean can be written as

SE(Y) = % (1.6)

Every estimate discussed in this book has an associated stan-
dard error. This includes sample means (for which the standard
error formula appears in equation (1.6)), differences in sample
means (discussed later in this appendix), regression coefficients
(discussed in Chapter 2), and instrumental variables and other
more sophisticated estimates. Formulas for standard errors can
get complicated, but the idea remains simple. The standard er-
ror summarizes the variability in an estimate due to random
sampling. Again, it’s important to avoid confusing standard er-
rors with the standard deviations of the underlying variables;
the two quantities are intimately related yet measure different
things.

One last step on the road to standard errors: most popula-
tion quantities, including the standard deviation in the numer-
ator of (1.6), are unknown and must be estimated. In practice,
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therefore, when quantifying the sampling variance of a sam-
ple mean, we work with an estimated standard error. This is
obtained by replacing oy with S(Y;) in the formula for SE(Y).
Specifically, the estimated standard error of the sample mean
can be written as

a - S(Y,
SE(Y) = %

We often forget the qualifier “estimated” when discussing
statistics and their standard errors, but that’s still what we have
in mind. For example, the numbers in parentheses in Table 1.4
are estimated standard errors for the relevant differences in
means.

The t-Statistic and the Central Limit Theorem

Having laid out a simple scheme to measure variability using
standard errors, it remains to interpret this measure. The sim-
plest interpretation uses a t-statistic. Suppose the data at hand
come from a distribution for which we believe the population
mean, E[Y;], takes on a particular value, u (read this Greek
letter as “mu”). This value constitutes a working hypothesis.
A t-statistic for the sample mean under the working hypothesis
that E[Y;] = u is constructed as

Y — 1
SE(Y)

() =

The working hypothesis is a reference point that is often called
the null hypothesis. When the null hypothesis is u = 0, the
t-statistic is the ratio of the sample mean to its estimated
standard error.

Many people think the science of statistical inference is bor-
ing, but in fact it’s nothing short of miraculous. One miracu-
lous statistical fact is that if E[Y;]is indeed equal to u, then—as
long as the sample is large enough—the quantity 7(u) has a
sampling distribution that is very close to a bell-shaped stan-
dard normal distribution, sketched in Figure 1.1. This prop-
erty, which applies regardless of whether Y; itself is normally
distributed, is called the Central Limit Theorem (CLT). The

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

40 Chapter1

FiGcure 1.1
A standard normal distribution

Probability distribution

1 1 1 1 1
-4 -2 0 2 4
Variable value

CLT allows us to make an empirically informed decision as
to whether the available data support or cast doubt on the
hypothesis that E[Y;] equals u.

The CLT is an astonishing and powerful result. Among other
things, it implies that the (large-sample) distribution of a -
statistic is independent of the distribution of the underlying
data used to calculate it. For example, suppose we measure
health status with a dummy variable distinguishing healthy
people from sick and that 20% of the population is sick. The
distribution of this dummy variable has two spikes, one of
height .8 at the value 1 and one of height .2 at the value 0. The
CLT tells us that with enough data, the distribution of the ¢-
statistic is smooth and bell-shaped even though the distribution
of the underlying data has only two values.

We can see the CLT in action through a sampling experi-
ment. In sampling experiments, we use the random number
generator in our computer to draw random samples of differ-
ent sizes over and over again. We did this for a dummy variable
that equals one 80% of the time and for samples of size 10,
40, and 100. For each sample size, we calculated the ¢-statistic
in half a million random samples using .8 as our value of u.
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Figures 1.2-1.4 plot the distribution of 500,000 ¢-statistics
calculated for each of the three sample sizes in our experi-
ment, with the standard normal distribution superimposed.
With only 10 observations, the sampling distribution is spiky,
though the outlines of a bell-shaped curve also emerge. As the
sample size increases, the fit to a normal distribution improves.
With 100 observations, the standard normal is just about bang
on.

The standard normal distribution has a mean of 0 and
standard deviation of 1. With any standard normal variable,
values larger than £2 are highly unlikely. In fact, realizations
larger than 2 in absolute value appear only about 5% of the
time. Because the ¢-statistic is close to normally distributed, we
similarly expect it to fall between about 2 most of the time.
Therefore, it’s customary to judge any z-statistic larger than
about 2 (in absolute value) as too unlikely to be consistent
with the null hypothesis used to construct it. When the null
hypothesis is ;=0 and the ¢-statistic exceeds 2 in absolute
value, we say the sample mean is significantly different from

FIGURE 1.2
The distribution of the ¢-statistic for the mean in a sample of size 10
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Note: This figure shows the distribution of the sample mean of a dummy
variable that equals 1 with probability .8.
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Ficure 1.3
The distribution of the ¢-statistic for the mean in a sample of size 40
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Note: This figure shows the distribution of the sample mean of a dummy
variable that equals 1 with probability .8.

FIGURE 1.4
The distribution of the ¢-statistic for the mean in a sample of
size 100
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Note: This figure shows the distribution of the sample mean of a dummy
variable that equals 1 with probability .8.
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zero. Otherwise, it’s not. Similar language is used for other
values of u as well.

We might also turn the question of statistical significance on
its side: instead of checking whether the sample is consistent
with a specific value of u, we can construct the set of all values
of u that are consistent with the data. The set of such values
is called a confidence interval for E[Y;]. When calculated in
repeated samples, the interval

[1? — 2 x SE(V), ¥ +2 x SE(?)]

should contain E[Y;] about 95% of the time. This interval is
therefore said to be a 95% confidence interval for the pop-
ulation mean. By describing the set of parameter values con-
sistent with our data, confidence intervals provide a compact
summary of the information these data contain about the pop-
ulation from which they were sampled.

Pairing Off

One sample average is the loneliest number that you’ll ever
do. Luckily, we’re usually concerned with two. We’re espe-
cially keen to compare averages for subjects in experimental
treatment and control groups. We reference these averages
with a compact notation, writing ¥! for Avg, [Y;|D; = 1] and
Y0 for Avg,[Y;|D; = 0]. The treatment group mean, Y, is
the average for the ny observations belonging to the treat-
ment group, with Y° defined similarly. The total sample size is
n=nq+ny.

For our purposes, the difference between ¥! and Y? is ei-
ther an estimate of the causal effect of treatment (if ¥; is an
outcome), or a check on balance (if ¥; is a covariate). To keep
the discussion focused, we’ll assume the former. The most im-
portant null hypothesis in this context is that treatment has no
effect, in which case the two samples used to construct treat-
ment and control averages come from the same population.
On the other hand, if treatment changes outcomes, the pop-
ulations from which treatment and control observations are
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drawn are necessarily different. In particular, they have differ-
ent means, which we denote p! and u°.

We decide whether the evidence favors the hypothesis that
u! = 19 by looking for statistically significant differences in the
corresponding sample averages. Statistically significant results
provide strong evidence of a treatment effect, while results
that fall short of statistical significance are consistent with the
notion that the observed difference in treatment and control
means is a chance finding. The expression “chance finding” in
this context means that in a hypothetical experiment involving
very large samples—so large that any sampling variance is
effectively eliminated—we’d find treatment and control means
to be the same.

Statistical significance is determined by the appropriate 7-
statistic. A key ingredient in any 7 recipe is the standard error
that lives downstairs in the ¢ ratio. The standard error for
a comparison of means is the square root of the sampling
variance of Y1 — Y0, Using the fact that the variance of a
difference between two statistically independent variables is
the sum of their variances, we have

V(P -70) =v(7)+v(F)
2 2

% %Y _ 2 [ 11 } .

ny  no

The second equality here uses equation (1.5), which gives the

sampling variance of a single average. The standard error we
need is therefore

In deriving this expression, we’ve assumed that the variances
of individual observations are the same in treatment and con-
trol groups. This assumption allows us to use one symbol, o2,
for the common variance. A slightly more complicated formula
allows variances to differ across groups even if the means are
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the same (an idea taken up again in the discussion of robust
regression standard errors in the appendix to Chapter 2).!”

Recognizing that o2 must be estimated, in practice we work
with the estimated standard error

SE(?l - iO) — SV (1.7)

where S(Y;) is the pooled sample standard deviation. This is
the sample standard deviation calculated using data from both
treatment and control groups combined.

Under the null hypothesis that u! — 1 is equal to the value
W, the t-statistic for a difference in means is

y1_y0_
Hp) = ————
SE(Y!—Y9)

We use this r-statistic to test working hypotheses about
w1 — 1o and to construct confidence intervals for this differ-
ence. When the null hypothesis is one of equal means (u = 0),
the statistic # () equals the difference in sample means divided
by the estimated standard error of this difference. When the ¢-
statistic is large enough to reject a difference of zero, we say the
estimated difference is statistically significant. The confidence
interval for a difference in means is the difference in sample
means plus or minus two standard errors.

Bear in mind that ¢-statistics and confidence intervals have
little to say about whether findings are substantively large or
small. A large ¢-statistic arises when the estimated effect of in-
terest is large but also when the associated standard error is
small (as happens when you’re blessed with a large sample).
Likewise, the width of a confidence interval is determined by

17 Using separate variances for treatment and control observations, we have

1cy. Ocy.
ny o

where V1(Y;) is the variance of treated observations, and VO(Y;) is the variance
of control observations.
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statistical precision as reflected in standard errors and not by
the magnitude of the relationships you’re trying to uncover.
Conversely, ¢-statistics may be small either because the differ-
ence in the estimated averages is small or because the standard
error of this difference is large. The fact that an estimated dif-
ference is not significantly different from zero need not imply
that the relationship under investigation is small or unimpor-
tant. Lack of statistical significance often reflects lack of sta-
tistical precision, that is, high sampling variance. Masters are
mindful of this fact when discussing econometric results.
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