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1
Propositions and Arguments

1.1 What Is Logic?
Somebody who wants to do a good job of measuring up a room for purposes of
cutting and laying carpet needs to know some basic mathematics—but mathe-
matics is not the science of room measuring or carpet cutting. In mathematics
one talks about angles, lengths, areas, and so on, and one discusses the laws
governing them: if this length is smaller than that one, then that angle must be
bigger than this one, and so on. Walls and carpets are things that have lengths
and areas, so knowing the general laws governing the latter is helpful when it
comes to specific tasks such as cutting a roll of carpet in such a way as to min-
imize the number of cuts and amount of waste. Yet although knowing basic
mathematics is essential to being able to measure carpets well, mathematics
is not rightly seen as the science of carpet measuring. Rather, mathematics is
an abstract science which gets applied to problems about carpet. While mathe-
matics does indeed tell us deeply useful things about how to cut carpets, telling
us these things is not essential to it: from the point of view of mathematics, it
is enough that there be angles, lengths, and areas considered in the abstract; it
does not matter if there are no carpets or floors.

Logic is often described as the study of reasoning.1 Knowing basic logic is
indeed essential to being able to reason well—yet it would be misleading to
say that human reasoning is the primary subject matter of logic. Rather, logic
stands to reasoning as mathematics stands to carpet cutting. Suppose you are
looking for your keys, and you know they are either in your pocket, on the
table, in the drawer, or in the car. You have checked the first three and the keys
aren’t there, so you reason that they must be in the car. This is a good way to
reason. Why? Because reasoning this way cannot lead from true premises or
starting points to a false conclusion or end point. As Charles Peirce put it in
the nineteenth century, when modern logic was being developed:

The object of reasoning is to find out, from the consideration of what we already
know, something else which we do not know. Consequently, reasoning is good if it



be such as to give a true conclusion from true premises, and not otherwise. [Peirce,
1877, para. 365]

This is where logic comes in. Logic concerns itself with propositions—things
that are true or false—and their components, and it seeks to discover laws gov-
erning the relationships between the truth or falsity of different propositions.
One such law is that if a proposition offers a fixed number of alternatives (e.g.,
the keys are either (i) in your pocket, (ii) on the table, (iii) in the drawer, or
(iv) in the car), and all but one of them are false, then the overall proposition
cannot be true unless the remaining alternative is true. Such general laws about
truth can usefully be applied in reasoning: it is because the general law holds
that the particular piece of reasoning we imagined above is a good one. The
law tells us that if the keys really are in one of the four spots, and are not in any
of the first three, then they must be in the fourth; hence the reasoning cannot
lead from a true starting point to a false conclusion.

Nevertheless, this does not mean that logic is itself the science of reasoning.
Rather, logic is the science of truth. (Note that by “science” we mean simply
systematic study.)2 As Gottlob Frege, one of the pioneers of modern logic,
put it:

Just as “beautiful” points the ways for aesthetics and “good” for ethics, so do words
like “true” for logic. All sciences have truth as their goal; but logic is also concerned
with it in a quite different way: logic has much the same relation to truth as physics
has to weight or heat. To discover truths is the task of all sciences; it falls to logic to
discern the laws of truth. [Frege, 1918–19, 351]

One of the goals of a baker is to produce hot things (freshly baked loaves). It is
not the goal of a baker to develop a full understanding of the laws of heat: that
is the goal of the physicist. Similarly, the physicist wants to produce true things
(true theories about the world)—but it is not the goal of physics to develop a
full understanding of the laws of truth. That is the goal of the logician. The
task in logic is to develop a framework in which we can give a detailed—yet
fully general—representation of propositions (i.e., those things which are true
or false) and their components, and identify the general laws governing the
ways in which truth distributes itself across them.

Logic, then, is primarily concerned with truth, not with reasoning. Yet logic
is very usefully applied to reasoning—for we want to avoid reasoning in ways
that could lead us from true starting points to false conclusions. Furthermore,
just as mathematics can be applied to many other things besides carpet cutting,
logic can also be applied to many other things apart from human reasoning.
For example, logic plays a fundamental role in computer science and com-
puting technology, it has important applications to the study of natural and
artificial languages, and it plays a central role in the theoretical foundations of
mathematics itself.
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1.2 Propositions
We said that logic is concerned with the laws of truth. Our primary objects of
study in logic will therefore be those things which can be true or false—and
so it will be convenient for us to have a word for such entities. We shall use
the term “proposition” for this purpose. That is, propositions are those things
which can be true or false. Now what sort of things are propositions, and what
is involved in a proposition’s being true or false? The fundamental idea is this:
a proposition is a claim about how things are—it represents the world as being
some way; it is true if the world is that way, and otherwise it is false. This idea
goes back at least as far as Plato and Aristotle:

SOCRATES: But how about truth, then? You would acknowledge that there is in
words a true and a false?
HERMOGENES: Certainly.
S: And there are true and false propositions?
H: To be sure.
S: And a true proposition says that which is, and a false proposition says that which
is not?
H: Yes, what other answer is possible? [Plato, c. 360 bc]

We define what the true and the false are. To say of what is that it is not, or of what
is not that it is, is false, while to say of what is that it is, and of what is not that it is
not, is true. [Aristotle, c. 350 bc-a, Book IV (�) §7]

In contrast, nonpropositions do not represent the world as being thus or so:
they are not claims about how things are. Hence, nonpropositions cannot be
said to be true or false. It cannot be said that the world is (or is not) the way
a nonproposition represents it to be, because nonpropositions are not claims
that the world is some way.3

Here are some examples of propositions:

1. Snow is white.

2. The piano is a multistringed instrument.

3. Snow is green.

4. Oranges are orange.

5. The highest speed reached by any polar bear on 11 January 2004 was 31.35 kilome-
ters per hour.

6. I am hungry.

Note from these examples that a proposition need not be true (3), that a
proposition might be so obviously true that we should never bother saying it
was true (4), and that we might have no way of knowing whether a proposition
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is true or false (5). What these examples do all have in common is that they
make claims about how things are: they represent the world as being some
way. Therefore, it makes sense to speak of each of them as being true (i.e., the
world is the way the proposition represents it to be) or false (things aren’t that
way)—even if we have no way of knowing which way things actually are.

Examples of nonpropositions include:

7. Ouch!

8. Stop it!

9. Hello.

10. Where are we?

11. Open the door!

12. Is the door open?

It might be appropriate or inappropriate in various ways to say “hello” (or
“open the door!” etc.) in various situations—but doing so generally could
not be said to be true or false. That is because when I say “hello,” I do not
make a claim about how the world is: I do not represent things as being thus
or so.4 Nonpropositions can be further subdivided into questions (10, 12),
commands (8, 11), exclamations (7, 9), and so on. For our purposes these
further classifications will not be important, as all nonpropositions lie outside
our area of interest: they cannot be said to be true or false and hence lie outside
the domain of the laws of truth.

1.2.1 Exercises

Classify the following as propositions or nonpropositions.

1. Los Angeles is a long way from New York.

2. Let’s go to Los Angeles!

3. Los Angeles, whoopee!

4. Would that Los Angeles were not so far away.

5. I really wish Los Angeles were nearer to New York.

6. I think we should go to Los Angeles.

7. I hate Los Angeles.

8. Los Angeles is great!

9. If only Los Angeles were closer.

10. Go to Los Angeles!

1.2.2 Sentences, Contexts, and Propositions5

In the previous section we stated “here are some examples of propositions,”
followed by a list of sentences. We need to be more precise about this. The
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idea is not that each sentence (e.g., “I am hungry”) is a proposition. Rather,
the idea is that what the sentence says when uttered in a certain context—the
claim it makes about the world—is a proposition.6 To make this distinction
clear, we first need to clarify the notion of a sentence—and to do that, we need
to clarify the notion of a word: in particular, we need to explain the distinction
between word types and word tokens.7

Consider a word, say, “leisure.” Write it twice on a slip of paper, like so:

leisure leisure

How many words are there on the paper? There are two word tokens on the
paper, but only one word type is represented thereon, for both tokens are of
the same type. A word token is a physical thing: a string of ink marks (a flat
sculpture of pigments on the surface of the paper), a blast of sound waves, a
string of pencil marks, chalk marks on a blackboard, an arrangement of paint
molecules, a pattern of illuminated pixels on a computer screen—and so on,
for all the other ways in which words can be physically reproduced, whether
in visual, aural, or some other form. A word token has a location in space and
time: a size and a duration (i.e., a lifespan: the period from when it comes
into existence to when it goes out of existence). It is a physical object embed-
ded in a wider physical context. A word type, in contrast, is an abstract object:
it has no location in space or time—no size and no duration. Its instances—
word tokens—each have a particular length, but the word type itself does not.
(Tokens of the word type “leisure” on microfilm are very small; tokens on bill-
boards are very large. The word type itself has no size.) Suppose that a teacher
asks her pupils to take their pencils and write a word in their notebooks. She
then looks at their notebooks and makes the following remarks:

1. Alice’s word is smudged.

2. Bob and Carol wrote the same word.

3. Dave’s word is in ink, not pencil.

4. Edwina’s word is archaic.

In remark (1) “word” refers to the word token in Alice’s book. The teacher is
saying that this token is smudged, not that the word type of which it is a token
is smudged (which would make no sense). In remark (2) “word” refers to the
word type of which Bob and Carol both produced tokens in their books. The
teacher is not saying that Bob and Carol collaborated in producing a single
word token between them (say by writing one letter each until it was finished);
she is saying that the two tokens that they produced are tokens of the one
word type. In remark (3) “word” refers to the word token in Dave’s book. The
teacher is saying that this token is made of ink, not that the word type of which

1.2 Propositions 7



it is a token is made of ink (which, again, would make no sense). In remark
(4) “word” refers to the word type of which Edwina produced a token in her
book. The teacher is not saying that Edwina cut her word token from an old
manuscript and pasted it into her book; she is saying that the word type of
which Edwina produced a token is no longer in common use.

Turning from words to sentences, we can make an analogous distinction
between sentence types and sentence tokens. Sentence types are abstract ob-
jects: they have no size, no location in space or time. Their instances—sentence
tokens—do have sizes and locations. They are physical objects, embedded in
physical contexts: arrangements of ink, bursts of sound waves, and so on. A
sentence type is made up of word types in a certain sequence;8 its tokens are
made up of tokens of those word types, arranged in corresponding order. If I
say that the first sentence of Captain Cook’s log entry for 5 June 1768 covered
one and a half pages of his logbook, I am talking about a sentence token. If I
say that the third sentence of his log entry for 8 June is the very same sentence
as the second sentence of his log entry for 9 June, I am talking about a sentence
type (I am not saying of a particular sentence token that it figures in two sep-
arate log entries, because, e.g., he was writing on paper that was twisted and
spliced in such a way that when we read the log, we read a certain sentence
token once, and then later come to that very same token again).9

§

Now let us return to the distinction between sentences and propositions. Con-
sider a sentence type (e.g., “I am hungry”). A speaker can make a claim about
the world by uttering this sentence in a particular context. Doing so will in-
volve producing a token of the sentence.10 We do not wish to identify the
proposition expressed—the claim about the world—with either the sentence
type or this sentence token, for the reasons discussed below.

To begin, consider the following dialogue:

Alan: Lunch is ready. Who’s hungry?
Bob: I’m hungry.
Carol: I’m hungry.
Dave: I’m not.

Bob and Carol produce different tokens (one each) of the same sentence type.
They thereby make different claims about the world. Bob says that he is hun-
gry; Carol says that she is hungry. What it takes for Bob’s claim to be true is
that Bob is hungry; what it takes for Carol’s claim to be true is that Carol is
hungry. So while Bob and Carol both utter the same sentence type (“I’m hun-
gry”) and both thereby express propositions (claims about the world), they
do not express the same proposition. We can be sure that they express differ-
ent propositions, because what Bob says could be true while what Carol says
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is false—if the world were such that Bob was hungry but Carol was not—or
vice versa—if the world were such that Carol was hungry but Bob was not. It
is a sure sign that we have two distinct propositions—as opposed to the same
proposition expressed twice over—if there is a way things could be that would
render one of them true and the other false.11 So one sentence type can be
used to express different propositions, depending on the context of utterance.
Therefore, we cannot, in general, identify propositions with sentence types.12

Can we identify propositions with sentence tokens? That is, if a speaker
makes a claim about the world by producing a sentence token in a particular
context, can we identify the claim made—the proposition expressed—with
that sentence token? We cannot. Suppose that Carol says “Bob is hungry,” and
Dave also says “Bob is hungry.” They produce two different sentence tokens
(one each); but (it seems obvious) they make the same claim about the world.
Two different sentence tokens, one proposition: so we cannot identify the
proposition with both sentence tokens.13 We could identify it with just one
of the tokens—say, Carol’s—but this would be arbitrary, and it would also
have the strange consequence that the claim Dave makes about the world is a
burst of sound waves emanating from Carol. Thus, we cannot happily identify
propositions with sentence tokens.

Let us recapitulate. A proposition is a claim about how things are: it repre-
sents the world as being some way. It is true if things are the way it represents
them to be (saying it how it is) and otherwise it is false (saying it how it isn’t).
The main way in which we make claims about the world—that is, express
propositions—is by uttering sentences in contexts. Nevertheless, we do not
wish to identify propositions with sentences (types or tokens), because of the
following observations:

. One sentence type can be used (in different contexts) to make distinct
claims (the example of “I’m hungry,” as said by Bob and Carol).

. The same claim can be made using distinct sentence types (the example
of John and Johann’s sentences in n. 12).

. The same claim can be made using distinct sentence tokens (the example
of Carol’s and Dave’s tokens of “Bob is hungry”).

It should be said that we have not discussed these issues in full detail.14 We
have, however, said enough to serve our present purposes. For we do not
wish to deny vehemently and absolutely that propositions might (in the final
analysis) turn out to be sentences of some sort. Rather, we simply wish to
proceed without assuming that propositions—our main objects of study—
can be reduced to something more familiar, such as sentences. In light of the
problems involved in identifying propositions with sentences, our decision to
refrain from making any such identification is well motivated.
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So far so good, then. But now, if propositions are not sentences, then what
are they? Propositions might start to seem rather mysterious entities. I can
picture tokens of the sentence “I am hungry,” and perhaps, in some sense, I
can even picture the sentence type (even though it is an abstract object). But
how do I picture the proposition that this sentence expresses (when a certain
speaker utters it in a particular context)? It would be a mistake in methodology
to try to answer this question in detail at this point. One of the tasks of logic—
the science of truth—is to give us an understanding of propositions (the things
that are true or false). What we need in advance of our study of logic—that is,
what we need at the present point in this book—is a rough idea of what it is of
which we are seeking a precise account. (Such a rough idea is needed to guide
our search.) But we now have a rough idea of what propositions are: they are
claims about the world; they are true if the world is as claimed and otherwise
false; they are expressed by sentences uttered in context but are not identical
with sentence types or with tokens thereof. The detailed positive account of
propositions will come later (§11.4).

§

There is one more issue to be discussed before we close this section. We have
seen that, to determine a proposition, we typically need not just a sentence
type but also a context in which that sentence is uttered. For example, for the
sentence type “I am hungry” to determine a proposition, it needs to be uttered
by someone in a particular context. When Bob utters it, he then expresses the
proposition that he (Bob) is hungry (that is how the world has to be for what
he says to be true); when Carol utters it, she then expresses the proposition
that she (Carol) is hungry (that is how the world has to be for what she says to
be true); and so on. This general picture is widely accepted. However, exactly
how it comes about that a particular proposition is expressed by uttering a
certain sentence in a specific context is a topic of great controversy. Some of
the factors that potentially play a role in this process are:

1. The meaning of the sentence type. (This is usually thought of as deter-
mined by the meanings of the sentence’s component word types together
with the syntax—the grammatical structure—of the sentence. The mean-
ing of a word type is what a speaker has to know to understand that word;
it is what a dictionary entry for that word aims to capture.)

2. Facts about the context of utterance. (Relevant facts include the time and
place of the context, and the identity of the speaker.)

3. Facts about the speaker (e.g., what she intended to convey by uttering the
sentence she uttered in the context).
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Together, these facts—and perhaps more besides—determine what is said by
the speaker in uttering a certain sentence in a certain context; that is, what
claim she is making about the world—which proposition is expressed.15 That
much is widely agreed; the controversy enters when it comes to the question
of exactly how the labor of determining a particular proposition is divided
between the contributing factors mentioned above: what role each plays. We
do not need to enter these controversies here, however: for in logic we are
concerned with propositions themselves, not with how exactly they come to be
expressed by uttering sentences in contexts.16 This is not to say that in this book
we shall be able to get by without sentences. On the contrary, our chief way
of getting in touch with propositions is via the sentences that express them.
The point to keep in mind is that our primary interest is in the propositions
expressed: sentences are simply a route to these propositions.17

1.3 Arguments
We said that the laws of truth underwrite principles of good reasoning. Rea-
soning comes packaged in all sorts of different forms in ordinary speech,
writing, and thought. To facilitate discussion of reasoning, it will be useful to
introduce a standard form in which any ordinary piece of reasoning can be rep-
resented. For this purpose we introduce the notion of an argument. As was the
case with the term “proposition,” our usage of the term “argument” is a tech-
nical one that is abstracted from one of the ordinary meanings of the term. In
our usage, an argument is a sequence of propositions. We call the last proposi-
tion in the argument the conclusion: intuitively, we think of it as the claim that
we are trying to establish as true through our process of reasoning. The other
propositions are premises: intuitively, we think of them as the basis on which
we try to establish the conclusion. There may be any finite number of premises
(even zero). We may present arguments in the following format:

Premise 1
Premise 2

Conclusion

Here we use a horizontal line to separate the conclusion from the premises.
The conclusion can also be marked by the term “Therefore” (often abbreviated
as ∴):

Premise 1
Premise 2
Premise 3
∴ Conclusion
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We may also present an argument in a linear fashion, with the premises sepa-
rated by commas and the conclusion separated by a slash and the “therefore”
symbol:

Premise 1, Premise 2, Premise 3, Premise 4 /∴ Conclusion

For example, consider the following piece of ordinary reasoning. I do not
have a watch, and I am wondering what time it is. I notice that Sesame Street
is just starting on television, and I know from my acquaintance with the
timetable that this show starts at 8.30. I conclude that it is now 8.30. We can
represent this piece of reasoning as the following argument:

If Sesame Street is starting, it is 8.30.
Sesame Street is starting.

∴ It is 8.30.

When looking at a piece of reasoning phrased in ordinary language with
a view to representing it as an argument, we identify the conclusion as the
proposition that the speaker is trying to establish—to give reasons for—and
the premises as the reasons given in support of that conclusion. Phrases that
commonly indicate conclusions in ordinary reasoning include “therefore,”
“hence,” “thus,” “so,” and “it follows that;” phrases that commonly indicate
premises include “because,” “since,” and “given that.” However, these words
are not always present, and even when they are they do not always indicate
conclusions and premises, respectively. Hence there is no recipe we can follow
mechanically when representing ordinary reasoning in the form of an argu-
ment: we must always think carefully about what is being said in the ordinary
reasoning—about what it is that the reasoner is trying to establish (this will be
the conclusion) and about what reasons are being given in support of this con-
clusion (these will be the premises). One point to note carefully is that when
we represent a piece of reasoning as an argument in our technical sense—that
is, a sequence of propositions—we always put the conclusion last. In ordinary
English, however, the conclusion of a piece of reasoning is not always what is
stated last.

Let’s consider another example. When working out what to serve a guest
for breakfast, someone might reason as follows: Mary must like marmalade,
because she is English, and all English people like marmalade. Here the
conclusion—the proposition that the reasoning is supposed to establish—is
the thing said first: that Mary likes marmalade. The premises are the reasons
given in support of this conclusion—that Mary is English, and that all English
people like marmalade. So we represent this piece of reasoning as the following
argument:
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Mary is English.
All English people like marmalade.
Therefore, Mary likes marmalade.

Note that we count any sequence of one or more propositions as an argu-
ment. Thus we count as arguments things that do not correspond to anything
we would ordinarily regard as a piece of reasoning. For example:

Snow is green.

It has been a wet winter.

This generosity when it comes to counting things as arguments, while it might
initially seem silly, is in fact good, for the following reason. As we shall dis-
cuss in the next section, one of our aims is to develop an account that will
enable us to determine of any piece of reasoning—no matter what its sub-
ject matter—whether it is valid. (We shall see what validity is, and why it is
important, below.) The more things we count as arguments, the more widely
applicable our account of validity will be. If we were more stringent about what
counts as an argument, then there would be a worry that some piece of rea-
soning to which we want our account to apply cannot be represented as an
argument (in the more restricted sense) and so would be left out of account.
Our present approach avoids this worry. All we are assuming is that any piece
of reasoning can be represented as a sequence of propositions (an argument),
one of which (the conclusion) is what the piece of reasoning is intended to es-
tablish, and the rest of which (the premises) are intended to provide support
for that conclusion. That is, every piece of reasoning can be represented as an
argument. The fact that the opposite does not hold—that not every argument
(in our technical sense) corresponds to an ordinary piece of reasoning—will
not matter.

1.3.1 Exercises

Represent the following lines of reasoning as arguments.

1. If the stock market crashes, thousands of experienced investors will lose a
lot of money. So the stock market won’t crash.

2. Diamond is harder than topaz, topaz is harder than quartz, quartz is
harder than calcite, and calcite is harder than talc, therefore diamond is
harder than talc.

3. Any friend of yours is a friend of mine; and you’re friends with everyone
on the volleyball team. Hence, if Sally’s on the volleyball team, she’s a
friend of mine.
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4. When a politician engages in shady business dealings, it ends up on page
one of the newspapers. No South Australian senator has ever appeared
on page one of a newspaper. Thus, no South Australian senator engages
in shady business dealings.

1.4 Logical Consequence
Consider the following argument:

1. The rabbit ran down the left path or the right path.
The rabbit did not run down the left path.
∴ The rabbit ran down the right path.

It is said that dogs exhibit a grasp of logic by reasoning in this way.18 Suppose a
dog is chasing a rabbit through the forest, when it comes to a fork in the path.
The dog does not know which way the rabbit has gone, but it knows (because
the undergrowth is impenetrable) that it has gone left or right (first premise).
The dog sniffs down one path—say, the left one—trying to pick up the scent.
If it does not pick up the scent, then it knows the rabbit has not gone down
the left path (second premise). In this case the dog simply runs down the right
path, without stopping to pick up the scent. For the dog knows, purely on the
basis of logic—that is, without having to determine so by sniffing—that the
rabbit has gone right: it must have, because it had to go left or right, and it did
not go left, so that leaves only the possibility that it went right.

The argument is a good one. What exactly is good about it? Well, two things.
The first is that given that the premises are true, there is no possibility of the
conclusion’s not being true. We can put the point in various ways:

. The truth of the premises guarantees the truth of the conclusion.

. It is impossible for the premises all to be true and the conclusion not be true.

. There is no way for the premises all to be true without the conclusion being true.

We call this property—the property that an argument has when it is impos-
sible for the premises to be true and the conclusion false—necessary truth-
preservation (NTP), and we call an argument with this property necessarily
truth-preserving (NTP).19

Consider another example:20

2. All kelpies are dogs.
Maisie is a dog.
∴ Maisie is a kelpie.
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Dogs
Kelpies

Maisie

Figure 1.1. The argument is valid

Can we imagine a situation in which the premises are both true but the conclu-
sion is false? Yes: suppose that (as in actual fact) all kelpies are dogs (so the first
premise is true) and suppose that Maisie is a beagle (and hence a dog—so the
second premise is true); in this case the conclusion is false. Hence argument
(2) is not NTP.

Now consider a third example:

3. All kelpies are dogs.
Maisie is a kelpie.
∴ Maisie is a dog.

Can we imagine a situation in which the premises are both true but the con-
clusion is false? No. Supposing the first premise to be true means supposing
that (to represent the situation visually) a line drawn around all kelpies would
never cross outside a line drawn around all dogs (Figure 1.1). Supposing the
second premise to be true means supposing that Maisie is inside the line drawn
around all kelpies. But then it is impossible for Maisie to be outside the line
drawn around the dogs—that is, it is impossible for the conclusion to be false.
So argument (3) is NTP.

There is a second good thing about argument (1), apart from its being NTP.
Consider four more arguments:

4. Tangles is gray, and Maisie is furry.
∴ Maisie is furry.

5. Philosophy is interesting, and logic is rewarding.
∴ Logic is rewarding.

6. John is Susan’s brother.
∴ Susan is John’s sister.

7. The glass on the table contains water.
∴ The glass on the table contains H2O.
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All these arguments are NTP—but let’s consider why each argument is NTP:
what it is, in each case, that underwrites the fact that the premises cannot be
true while the conclusion is false.

In the case of argument (4), it is the form or structure of the argument that
makes it NTP.21 The argument is a complex structure, built from propositions
which themselves have parts. It is the particular way in which these parts
are arranged to form the argument—that is, the form or structure of the
argument—that ensures it is NTP. For the premise to be true, two things
must be the case: that Tangles is gray, and that Maisie is furry. The conclusion
claims that the second of these two things is the case: that Maisie is furry.
Clearly, there is no way for the premise to be true without the conclusion
being true. We can see this without knowing what Tangles and Maisie are (cats,
dogs, hamsters—it doesn’t matter). In fact, we do not even have to know what
“gray” and “furry” mean. We can see that whatever Tangles and Maisie are and
whatever properties “gray” and “furry” pick out, if it is true that Tangles is gray
and Maisie is furry, then it must be true that Maisie is furry—for part of what
it takes for “Tangles is gray, and Maisie is furry” to be true is that “Maisie is
furry” is true.

The same can be said about argument (5). One does not have to know what
philosophy and logic are—or what it takes for something to be interesting or
rewarding—to see that if the premise is true, then the conclusion must be
true, too: for part of what it takes for “philosophy is interesting and logic is
rewarding” to be true is that “logic is rewarding” is true. Indeed it is clear that
any argument will be valid if it has the following form, where A and B are
propositions:

A and B

B

It doesn’t matter what propositions we put in for A and B: we could go
through the same reasoning as above (the conclusion’s being true is part of
what it takes for the premise to be true) and thereby convince ourselves that
the argument is valid.

Contrast arguments (6) and (7). In the case of (6), to see that the premise
cannot be true while the conclusion is false, we need specific knowledge of
the meanings of the terms involved. We need to know that “Susan” is a girl’s
name,22 and that the meanings of “brother” and “sister” are related in a par-
ticular way: if a person x is the brother of a female y, then y is the sister of x.
Accordingly, if we replace these terms with terms having different particular
meanings, then the resulting arguments need not be NTP. For example:
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8. John is Susan’s friend.
∴ Susan is John’s aunt.

9. John is Bill’s brother.
∴ Bill is John’s sister.

Contrast argument (4), where we could replace “Tangles” and “Maisie” with
any other names, and “gray” and “furry” with terms for any other properties,
and the resulting argument would still be NTP. For example:

10. Bill is boring, and Ben is asleep.
∴ Ben is asleep.

11. Jill is snoring, and Jack is awake.
∴ Jack is awake.

In the case of (7), to see that the premise cannot be true while the conclusion
is false, we need specific scientific knowledge: we need to know that the chem-
ical composition of water is H2O.23 Accordingly, if we replace the term “water”
with a term for a substance with different chemical properties—or the term
“H2O” with a term for a different chemical compound—then the resulting
arguments need not be NTP. For example:

12. The glass on the table contains sand.
∴ The glass on the table contains H2O.

13. The glass on the table contains water.
∴ The glass on the table contains N2O.

So, some arguments that are NTP are so by virtue of their form or structure:
simply given the way the argument is constructed, there is no way for the
premises to be true and the conclusion false. Other arguments that are NTP
are not so by virtue of their form or structure: the way in which the argument
is constructed does not guarantee that there is no way for the premises to
be true and the conclusion false. Rather, the fact that there is no such way
is underwritten by specific facts either about the meanings of the particular
terms in the argument (e.g., “Susan”—this has to be a girl’s name), or about
the particular things in the world that these terms pick out (e.g., water—its
chemical composition is H2O), or both.

If an argument is NTP by virtue of its form or structure, then we call it valid,
and we say that the conclusion is a logical consequence of the premises. There
are therefore two aspects to validity/logical consequence:

1. The premises cannot be true while the conclusion is false (NTP).

2. The form or structure of the argument guarantees that it is NTP.

1.4 Logical Consequence 17



An argument that is not valid is said to be invalid. An argument might be
invalid because it is not NTP, or because, although it is NTP, this fact is not
underwritten by the structure of the argument.

Note that the foregoing does not constitute a precise definition of validity: it
is a statement of a fundamental intuitive idea. One of our goals is to come up
with a precise analysis of validity or logical consequence.24 The guiding idea
that we have set out—according to which validity is NTP by virtue of form—
can be found, for example, in Alfred Tarski’s seminal discussion of logical
consequence, where it is presented as the traditional, intuitive conception:25

I emphasize . . . that the proposed treatment of the concept of consequence makes
no very high claim to complete originality. The ideas involved in this treatment
will certainly seem to be something well known. . . . Certain considerations of an
intuitive nature will form our starting-point. Consider any class K of sentences
and a sentence X which follows from the sentences of this class. From an intuitive
standpoint it can never happen that both the class K consists only of true sentences
and the sentence X is false.[26] Moreover, since we are concerned here with the
concept of logical, i.e., formal, consequence, and thus with a relation which is
to be uniquely determined by the form of the sentences between which it holds,
this relation cannot be influenced in any way by empirical knowledge, and in
particular by knowledge of the objects to which the sentence X or the sentences
of the class K refer.[27] . . . The two circumstances just indicated[28] . . . seem to be
very characteristic and essential for the proper concept of consequence. [Tarski,
1936, 414–15]

Indeed, the idea goes back to Aristotle [c. 350 bc-b, §1], who begins by stating:
“A deduction is a discourse in which, certain things being stated, something
other than what is stated follows of necessity from their being so.” This is
the idea of NTP. Then, when discussing arguments, Aristotle first presents an
argument form in an abstract way, with schematic letters in place of particular
terms, for example:

Every C is B.
No B is A.
Therefore no C is A.

He then derives specific arguments by putting particular terms in place of the
letters, for example:

Every swan is white.
No white thing is a raven.
Therefore no swan is a raven.

The reasoning that shows the argument to be NTP is carried out at the level
of the argument form (i.e., in terms of As, Bs and Cs; not ravens, white things,
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and swans): it is thus clear that Aristotle is interested in those arguments that
are NTP by virtue of their form.

In this section, we have considered a number of examples of arguments and
asked whether they are valid. We worked in an intuitive way, asking whether
we could imagine situations in which the premises are true and the conclusion
false. This approach is far from ideal. Suppose someone claims that she cannot
imagine a situation in which the premises of argument (2) are true and the
conclusion is false—or that someone claims that he can imagine a situation
in which the premises of argument (3) are true and the conclusion is false.
What are we to say in response? Can we show that these persons are mistaken?
What we should like to have is a foolproof method of determining whether a
given argument is valid: a method that establishes beyond doubt whether the
argument is valid and that can be followed in a straightforward, routine way,
without recourse to intuition or imagination. Think of the way you convince
someone that 1,257 + 2,874 = 4,131. You do not appeal to their imagination
or intuition: you go through the mechanical process of long addition, first
writing the numbers one above the other, then adding the units and carrying
1, then adding the tens, and so on, until the answer is attained. The task is
thus broken up, in a specified way, into a sequence of small steps (adding
numbers less than ten and carrying single digits), each of which is simple and
routine. What we would like in the case of validity is something similar: a set of
simple rules that we can apply in a specified order to a given argument, leading
eventually to the correct verdict: valid or invalid.29

§

Recall the quotation from Peirce in §1.1 which ends “reasoning is good if it
be such as to give a true conclusion from true premises, and not otherwise.”
The property of reasoning that Peirce mentions here—being such as to give
a true conclusion from true premises—is NTP. In this passage, Peirce equates
NTP with good reasoning. That view seems too strong—if “good reasoning”
is taken to have its ordinary, intuitive meaning. For example, suppose that
someone believes that there is water in the glass, but does not go on to con-
clude that there is H2O in the glass. This does not necessarily mean that there
is something wrong with her powers of reasoning: she may be fully rational,
but simply not know that water is H2O. Such a person could perhaps be criti-
cized for not knowing basic science—but only if she could have been expected
to know it (say, because she had completed high school)—but it would not be
right to say that she had failed to reason well.

So we cannot equate good reasoning with NTP. Can we equate good rea-
soning with validity (i.e., NTP by virtue of form)? This suggestion might seem
plausible at first sight. For example, if someone believes that Bill is boring and
Ben is asleep, but he does not believe that Ben is asleep, then it seems that there
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is certainly something wrong with his powers of reasoning. Yet even the claim
that reasoning is good if and only if it is valid (as opposed to simply NTP)
would be too strong. As we shall see in §1.5, an argument can be valid without
being a good argument (intuitively speaking). Conversely, many good pieces
of reasoning (intuitively speaking) are not valid, for the truth of the premises
does not guarantee the truth of the conclusion: it only makes the conclusion
highly probable.

Reasoning in which validity is a prerequisite for goodness is often called
deductive reasoning. Important subclasses of nondeductive reasoning are in-
ductive reasoning—where one draws conclusions about future events based on
past observations (e.g., the sun has risen on every morning that I have experi-
enced, therefore it will rise tomorrow morning), or draws general conclusions
based on observations of specific instances (e.g., every lump of sugar that I
have put in tea dissolves, therefore all sugar is soluble)—and abductive rea-
soning, also known as (aka) “inference to the best explanation”—where one
reasons from the data at hand to the best available explanation of that data
(e.g., concluding that the butler did it, because this hypothesis best fits the
available clues).30 Whereas validity is a criterion of goodness for deductive ar-
guments, the analogous criterion of goodness for nondeductive arguments is
often called inductive strength: an argument is inductively strong just in case
it is improbable—as opposed to impossible, in the case of validity—that its
premises be true and its conclusion false.

The full story of the relationship between validity and good reasoning is
evidently rather complex. It is not a story we shall try to tell here, for our topic
is logic—and as we have noted, logic is the science of truth, not the science
of reasoning. However, this much certainly seems true: if we are interested in
reasoning—and in classifying it as good or bad—then one question of interest
will always be “is the reasoning valid?” This is true regardless of whether
we are considering deductive or nondeductive reasoning. The answer to the
question “is the reasoning valid?” will not, in general, completely close the
issue of whether the reasoning is good—but it will never be irrelevant to that
issue. Therefore, if we are to apply logic—the laws of truth—to the study
of reasoning, it will be useful to be able to determine of any argument—no
matter what its subject matter—whether it is valid.

§

When it comes to validity, then, we now have two goals on the table. One is to
find a precise analysis of validity. (Thus far we have given only a rough, guiding
idea of what validity is: NTP guaranteed by form. As we noted, this does
not amount to a precise analysis.) The other is to find a method of assessing
arguments for validity that is both
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1. foolproof: it can be followed in a straightforward, routine way, without
recourse to intuition or imagination—and it always gives the right an-
swer; and

2. general: it can be applied to any argument.

Note that there will be an intimate connection between the role of form in the
definition of validity (an argument is valid if it is NTP by virtue of its form)
and the goal of finding a method of assessing arguments for validity that can
be applied to any argument, no matter what its subject matter. It is the fact that
validity can be assessed on the basis of form, in abstraction from the specific
content of the propositions involved in an argument (i.e., the specific claims
made about the world—what ways, exactly, the propositions that make up the
argument are representing the world to be), that will bring this goal within
reach.

1.4.1 Exercises

State whether each of the following arguments is valid or invalid.

1. All dogs are mammals.
All mammals are animals.

All dogs are animals.

2. All dogs are mammals.
All dogs are animals.

All mammals are animals.

3. All dogs are mammals.
No fish are mammals.

No fish are dogs.

4. All fish are mammals.
All mammals are robots.

All fish are robots.

1.5 Soundness
Consider argument (4) in Exercises 1.4.1. It is valid, but there is still something
wrong with it: it does not establish its conclusion as true—because its premises
are not in fact true. It has the property that if its premises were both true,
then its conclusion would have to be true—that is, it is NTP—but its premises
are not in fact true, and so the argument does not establish the truth of its
conclusion.
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We say that an argument is sound if it is valid and, in addition, has premises
that are all in fact true:

sound = valid + all premises true

A valid argument can have any combination of true and false premises and
conclusion except true premises and a false conclusion. A sound argument has
true premises and therefore—because it is valid—a true conclusion.

Logic has very little to say about soundness—because it has very little to say
about the actual truth or falsity of particular propositions. Logic, as we have
said, is concerned with the laws of truth—and the general laws of truth are
very different from the mass of particular facts of truth, that is, the facts as to
which propositions actually are true and which are false. There are countless
propositions concerning all manner of different things: “two plus two equals
four,” “the mother of the driver of the bus I caught this morning was born in
Cygnet,” “the number of polar bears born in 1942 was 9,125,” and so on. No
science would hope to tell us whether every single one is true or false. This is
not simply because there are too many of them: it is in the nature of science
not to catalogue particular matters of fact but to look for interesting patterns
and generalizations—for laws. Consider physics, which is concerned (in part)
with motion. Physicists look for the general laws governing all motions: they
do not seek to determine all the particular facts concerning what moves where,
when, and at what speeds. Of course, given the general laws of motion and
some particular facts (e.g., concerning the moon’s orbit, the launch trajectory
of a certain rocket, and a number of other facts) one can deduce other facts
(e.g., that the rocket will reach the moon at such and such a time). The same
thing happens in logic. Given the general laws of truth and some particular
facts (e.g., that this proposition is true and that one is false) one can deduce
other facts (e.g., that a third proposition is true). But just as it is not the
job of the physicist to tell us where everything is at every moment and how
fast it is moving, so too it is not the job of the logician to tell us whether
every proposition is true or false. Therefore, questions of soundness—which
require, for their answer, knowledge of whether certain premises are actually
true—fall outside the scope of logic.31

Likewise, logic is not concerned with whether we know that the premises of
an argument are true. We might have an argument that includes the premise
“the highest speed reached by a polar bear on 11 January 2004 was 31.35
kilometres per hour.” The argument might (as it happens) be sound, but that
would not make it a convincing argument for its conclusion, because we could
never know that all the premises were true.

So it takes more than validity to make a piece of (deductive) reasoning con-
vincing. A really convincing argument will be not only valid but also sound,
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and furthermore have premises that can be known to be true. Some peo-
ple have complained that logic—which tells us only about validity—does not
provide a complete account of good reasoning. It is entirely true that logic
does not provide a complete account of good reasoning, but this is cause for
complaint only if one thinks that logic is the science of reasoning. From our
perspective there is no problem here: logic is not the science of reasoning; it
is the science of truth. Logic has important applications to reasoning—most
notably in what it says about validity. However there is both more and less to
good reasoning than validity (i.e., valid arguments are not always good, and
good arguments are not always valid)—and hence (as already noted in §1.4)
there is more to be said about reasoning than can be deduced from the laws of
truth.

1.5.1 Exercises

1. Which of the arguments in Exercises 1.4.1 are sound?

2. Find an argument in Exercises 1.4.1 that has all true premises and a true
conclusion but is not valid and hence not sound.

3. Find an argument in Exercises 1.4.1 that has false premises and a false
conclusion but is valid.

1.6 Connectives
We have said that an argument is valid if its structure guarantees that it is
NTP. It follows immediately that if validity is to be an interesting and useful
concept, some propositions must have internal structure. For suppose that all
propositions were simply “dots,” with no structure. Then the only valid argu-
ments would be ones where the conclusion is one of the premises. That would
render the concept of validity virtually useless and deprive it of all interest.
We are going to assume, then, that at least some propositions have internal
structure—and of course this assumption is extremely natural. Consider our
argument:

Tangles is gray, and Maisie is furry.
∴ Maisie is furry.

It seems obvious that the first premise—so far from being a featureless dot
with no internal structure—is a proposition made up (in some way to be
investigated) from two other propositions: “Tangles is gray” and “Maisie is
furry.”

Before we can say anything useful about the forms that arguments may take,
then, our first step must be to investigate the internal structure of the things
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that make up arguments—that is, of propositions. We divide propositions into
two kinds:

1. basic propositions: propositions having no parts that are themselves
propositions; and

2. compound propositions: propositions made up from other propositions
and connectives.

In Part I of this book—which concerns propositional logic—we look at the
internal structure of compound propositions, that is, at the ways in which
propositions may be combined with connectives to form larger propositions.
It will not be until Part II—which concerns predicate logic—that we shall look
at the internal structure of basic propositions.

A compound proposition is made up of component propositions and con-
nectives. We now embark upon an investigation of connectives. Our inves-
tigation will be guided by our interest in the laws of truth. We saw that any
argument of the form “A and B /∴ B” is valid (§1.4). The reason is that the
premise is made up of two component propositions, A and B, put together
by means of “and”—that is, in such a way that the compound proposition can
be true only if both components are true—and the conclusion is one of those
component propositions. Hence, the conclusion’s being true is part of what
it takes for the premise to be true. Thus, if the premise is true, the conclu-
sion must be too: the laws of truth ensure, so to speak, that truth flows from
premise to conclusion (if it is present in the premise in the first place). So the
validity of the argument turns on the internal structure of the premise—in
particular, on the way that the connective “and” works in relationship to truth
and falsity.

Our search for connectives will be guided by the idea that we are interested
only in those aspects of the internal structure of compound propositions that
have an important relationship to truth and falsity. More specifically, we shall
focus on a particular kind of relationship to truth and falsity: the kind where
the truth or falsity of the compound proposition depends solely on the truth
or falsity of its component propositions. A connective is truth functional if it
has the property that the truth or falsity of a compound proposition formed
from the connective and some other propositions is completely determined by
the truth or falsity of those component propositions. Our focus, then, will be
on truth-functional connectives.32

1.6.1 Negation

Consider the proposition “Maisie is not a rottweiler.” Thinking in terms of
truth and falsity, we can see this proposition as being made up of a component
proposition (“Maisie is a rottweiler”) and a connective (expressed by “not”)
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that have the following relationship to one another: if “Maisie is a rottweiler”
is true, then “Maisie is not a rottweiler” is false, and if “Maisie is a rott-
weiler” is false, then “Maisie is not a rottweiler” is true. We use the term
“negation” for the connective which has this property: viz. it goes together
with a proposition to make up a compound proposition that is true just in
case the component proposition is false. Here is some terminology:

“Maisie is not a rottweiler” is the negation of “Maisie is a rottweiler.”
“Maisie is a rottweiler” is the negand of “Maisie is not a rottweiler.”

Note the double meaning of negation. On the one hand we use it to re-
fer to the connective, which goes together with a proposition to make up a
compound proposition. On the other hand we use it to refer to that com-
pound proposition. This ambiguity is perhaps unfortunate, but it is so well
entrenched in the literature that we shall not try to introduce new terms here.
As long as we are on the lookout for this ambiguity, it should not cause us any
problems.

Using our new terminology, we can express the key relationship between
negation and truth this way:

If the negand is true, the negation is false, and if the negand is false, the negation is
true.

Thus, negation is a truth-functional connective: to know whether a negation
is true or false you need only know whether the negand is true or false: the
truth or falsity of the negation is completely determined by the truth or falsity
of the negand.

It is this particular relationship between negation and truth—rather than
the presence of the word “not”—that is the defining feature of negation. Nega-
tion can also be expressed in other ways, for example:

. It is not the case that there is an elephant in the room.

. There is no elephant in the room.

. There is not an elephant in the room.

All these examples can be regarded as expressing the negation of “there is an
elephant in the room.”

Connectives can be applied to any proposition, basic or compound. Thus,
we can negate “Bob is a good student” to get “Bob is not a good student,” and
we can also negate the latter to get “it is not the case that Bob is not a good
student,” which is sometimes referred to as the double negation of “Bob is a
good student.”
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To get a complete proposition using the connective negation, we need to add
the connective to one proposition (the negand). Thus negation is a one-place
(aka unary or monadic) connective.

1.6.1.1 EXERCISES

1. What is the negand of:

(i) Bob is not a good student
(ii) I haven’t decided not to go to the party.

(iii) Mars isn’t the closest planet to the sun.
(iv) It is not the case that Alice is late.
(v) I don’t like scrambled eggs.

(vi) Scrambled eggs aren’t good for you.

2. If a proposition is true, its double negation is . . . ?

3. If a proposition’s double negation is false, the proposition is . . . ?

1.6.2 Conjunction

Consider the proposition “Maisie is tired, and the road is long.” Thinking in
terms of truth and falsity, we can see this proposition as being made up of
two component propositions (“Maisie is tired” and “the road is long”) and a
connective (expressed by “and”), which have the following relationship to one
another: “Maisie is tired, and the road is long” is true just in case “Maisie is
tired” and “the road is long” are both true. We use the term conjunction for
the connective that has this property: it goes together with two propositions
to make up a compound proposition that is true just in case both component
propositions are true.33 Here is some terminology:

“Maisie is tired and the road is long” is the conjunction of “Maisie is tired” and
“the road is long.”

“Maisie is tired” and “the road is long” are the conjuncts of “Maisie is tired
and the road is long.”

Again, “conjunction” is used in two senses: to pick out a connective and to pick
out a compound proposition built up using this connective.

Using our new terminology, we can express the key relationship between
conjunction and truth in this way:

The conjunction is true just in case both conjuncts are true.
If one or more of the conjuncts is false, the conjunction is false.

Thus, conjunction is a truth-functional connective: to know whether a con-
junction is true or false you need only know whether the conjuncts are true or
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false: the truth or falsity of the conjunction is completely determined by the
truth or falsity of the conjuncts.

It is this particular relationship between conjunction and truth—rather
than the presence of the word “and”—that is the defining feature of con-
junction. Conjunction can also be expressed in other ways, and not every
use of “and” in English expresses truth-functional conjunction. For the mo-
ment, however, we shall continue with our preliminary examination of truth-
functional connectives; we turn to a detailed discussion of the relationships
among these connectives and expressions of English in Chapter 6. So keep in
mind throughout the remainder of this chapter: we are here giving a first, brief
introduction to truth-functional connectives via English words that typically,
often, or sometimes express these connectives. In Chapters 2 and 3 we shall
gain a much deeper understanding of these connectives via the study of a new
symbolic language before returning to the subtleties of the relationships be-
tween these connectives and expressions of English in Chapter 6.

To obtain a complete proposition using the conjunction connective, we
need to add the connective to two propositions (the conjuncts). Thus, con-
junction is called a two-place (aka binary or dyadic) connective.

1.6.2.1 EXERCISES

What are the conjuncts of the following propositions?

1. The sun is shining, and I am happy.

2. Maisie and Rosie are my friends.

3. Sailing is fun, and snowboarding is too.

4. We watched the movie and ate popcorn.

5. Sue does not want the red bicycle, and she does not like the blue one.

6. The road to the campsite is long and uneven.

1.6.3 Disjunction

Consider the proposition “Frances had eggs for breakfast or for lunch.” Think-
ing in terms of truth and falsity, we can see this proposition as being made
up of two component propositions (“Frances had eggs for breakfast” and
“Frances had eggs for lunch”) and a connective (expressed by “or”), which
have the following relationship to one another: “Frances had eggs for breakfast
or for lunch” is true just in case at least one of “Frances had eggs for breakfast”
and “Frances had eggs for lunch” are true. We use the term disjunction for the
connective that has this property: it goes together with two propositions to
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make up a compound proposition that is true just in case at least one of those
component propositions is true. Here is some terminology:

“Frances had eggs for breakfast or for lunch” is the disjunction of “Frances had eggs
for breakfast” and “Frances had eggs for lunch.”

“Frances had eggs for breakfast” and “Frances had eggs for lunch” are the disjuncts
of “Frances had eggs for breakfast or for lunch.”

Using this terminology, we can express the key relationship between disjunc-
tion and truth in this way:

The disjunction is true just in case at least one of the disjuncts is true.
If both the disjuncts are false, the disjunction is false.

Thus, disjunction is a truth-functional connective: to know whether a disjunc-
tion is true or false you need only know whether the disjuncts are true or false:
the truth or falsity of the disjunction is completely determined by the truth or
falsity of the disjuncts.

It is this relationship between disjunction and truth—rather than the use
of the word “or” as in the example above—that is the defining feature of
disjunction. Disjunction can also be expressed in other ways, for example:

. Either Frances had eggs for breakfast or she had eggs for lunch.

. Frances had eggs for breakfast and/or lunch.

. Frances had eggs for breakfast or lunch—or both.

To obtain a complete proposition using the disjunction connective, we need
to add the connective to two propositions (the disjuncts). Thus, disjunction is
a two-place connective.

1.6.4 Conditional

Imagine that we look out the window and see a haze; we are not sure whether
it is smoke, fog, dust, or something else. Consider the proposition “if that is
smoke, then there is a fire.” A proposition of this form has two components,
and claims that if one of them is true, then the other is true too. We call
the former component the antecedent, the latter component the consequent,
and the compound proposition a conditional. (Once again we also use the
term “conditional” for the two-place connective used to form this compound
proposition.) In the above example the conditional is “if that is smoke, then
there is a fire,” the antecedent is “that is smoke,” and the consequent is “there
is a fire.”
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Note that the antecedent is not always written first. The antecedent is the
component proposition of which it is said that if it is true, then another prop-
osition is true; the consequent is that other proposition. To put it another way:
if the conditional is true, then one of its components might be true without the
other component being true, but not vice versa. The consequent is the compo-
nent that might be true even if the other component is not true; the antecedent
is the component that cannot be true without the other component also be-
ing true (assuming the conditional as a whole is true). Thus, the relationship
between the antecedent and the consequent is logical or alethic (having to do
with truth), not temporal or spatial. If I say “there is a fire if that is smoke,” the
antecedent is “that is smoke,” and the consequent is “there is a fire.” In other
words, this is just a different way of expressing the same conditional.

As well as being expressed by “if . . . then” and “if,” conditionals can also
be expressed using “only if.” For example, suppose that I have just gotten off
a mystery flight and am wondering where I am. Consider the proposition “I
am in New York only if I am in America.” This is a conditional in which the
antecedent is “I am in New York,” and the consequent is “I am in America:”
it thus says the same thing as “if I am in New York, I am in America.” The
easiest way to see this is to think what it would take to make the latter claim
false: I would have to be in New York without being in America. So “if I am
in New York, I am in America” rules out the case in which I am in New York
but am not in America. And that is exactly what “I am in New York only if I
am in America” does: the claim is that it does not happen that I am in New
York but not in America. In contrast, “I am in America only if I am in
New York” says something quite different: it says the same thing as “if I am
in America, then I am in New York.” In general, “if P then Q” and “P only if
Q” say the same thing.

1.6.4.1 EXERCISES

What are the (a) antecedents and (b) consequents of the following proposi-
tions?

1. If that’s pistachio ice cream, it doesn’t taste the way it should.

2. That tastes the way it should only if it isn’t pistachio ice cream.

3. If that is supposed to taste that way, then it isn’t pistachio ice cream.

4. If you pressed the red button, then your cup contains coffee.

5. Your cup does not contain coffee if you pressed the green button.

6. Your cup contains hot chocolate only if you pressed the green button.

1.6 Connectives 29



1.6.5 Biconditional

Suppose the drink machine has unlabeled buttons, and you are wondering
what is in your cup, which you have just removed from the machine. Consider
the proposition “your cup contains coffee if and only if you pressed the red
button.” Someone who asserts this is committed to two claims:

Your cup contains coffee if you pressed the red button.
Your cup contains coffee only if you pressed the red button.

The first is a conditional with antecedent “you pressed the red button” and
consequent “your cup contains coffee.” The second is a conditional with an-
tecedent “your cup contains coffee” and consequent “you pressed the red but-
ton.” Now, under what conditions is the original proposition true? Suppose
your cup contains coffee. Then, if the second conditional is to be true, it must
be the case that you pressed the red button. Suppose your cup does not con-
tain coffee. Then, if the first conditional is to be true, it must be the case that
you did not press the red button. So the original proposition (“your cup con-
tains coffee if and only if you pressed the red button”) is true if your cup
contains coffee and you pressed the red button, and true if your cup does
not contain coffee and you did not press the red button, but it is false if
your cup contains coffee and you did not press the red button, and it is false
if your cup does not contain coffee and you did press the red button. In other
words, it is true just in case its two component propositions (“your cup con-
tains coffee” and “you pressed the red button”) have the same truth value—
that is, are both true, or both false.

We call the original claim a biconditional. Note that we are here regarding the
proposition “your cup contains coffee if and only if you pressed the red but-
ton” as formed from two propositions (“your cup contains coffee” and “you
pressed the red button”) using the two-place connective “if and only if,” that
is, the biconditional. We regard this claim as equivalent to the conjunction of
the two conditionals “your cup contains coffee if you pressed the red button”
and “your cup contains coffee only if you pressed the red button”—but it is
not the same proposition as “your cup contains coffee if you pressed the red
button and your cup contains coffee only if you pressed the red button.” The
latter is a compound proposition built up using two basic propositions (“your
cup contains coffee” and “you pressed the red button”) and two different con-
nectives (a conditional used twice and a conjunction). This idea of different
propositions being equivalent—that is, true and false in the same situations—
will be made clear in §4.3.34

Note that it is common to abbreviate “if and only if” as “iff,” and that “just in
case” is often used as a synonym for “if and only if” (e.g., “a conjunction is true
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just in case both its conjuncts are true” states the same thing as “a conjunction
is true if and only if both its conjuncts are true”).

1.6.6 Exercises

State what sort of compound proposition each of the following is, and identify
its components. Do the same for the components.

1. If it is sunny and windy tomorrow, we shall go sailing or kite flying.

2. If it rains or snows tomorrow, we shall not go sailing or kite flying.

3. Either he’ll stay here and we’ll come back and collect him later, or he’ll
come with us and we’ll all come back together.

4. Jane is a talented painter and a wonderful sculptor, and if she remains
interested in art, her work will one day be of the highest quality.

5. It’s not the case that the unemployment rate will both increase and de-
crease in the next quarter.

6. Your sunburn will get worse and become painful if you don’t stop swim-
ming during the daytime.

7. Either Steven won’t get the job, or I’ll leave and all my clients will leave.

8. The Tigers will not lose if and only if both Thompson and Thomson get
injured.

9. Fido will wag his tail if you give him dinner at 6 this evening, and if you
don’t, then he will bark.

10. It will rain or snow today—or else it won’t.
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saturated, 221, 226–227, 229–230,
313–316 (See also model,
reading off from saturated
open path)

Peirce, C. S., 3–4, 19, 468n7
PL, 32–33, 36–37, 39, 40–41, 117–118,

372
limitations of, 164–166, 190
semantics, 49–51
syntax, 40–41

placeholder. See variable, syntactic
Plato, 5
possibility, 260, 492n26

logical, 491n24
metaphysical, 491n24

postulate, 251, 261–263, 286–291, 293,
336, 494n17

pragmatics, 470n16
predicate, 167, 168

arguments of
number of, 270
order of, 269–270

calculus, 384
complex, 291–293, 494n20
dyadic, 264
many-place, 251, 264–266
monadic, 264
n-place, 266
one-place, 264, 270, 493n4
polyadic, 264
three-place, 264
two-place, 264, 270, 493n4
zero-place, 492n1

premise, 11–12
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prenex, 296–297, 372
probability

conditional, 478–479n20
subjective, 478–479n20

problem
intractable, 481n1
tractable, 481n1

procedure
for constructing trees, 235–237,

367–369, 373, 381, 500n11
decision (See decision, procedure)
effective, 19, 159, 237, 368–369,

471n29, 500n18 (See also
tree, method, whether it is an
effective procedure)

product
Cartesian, 451
logical, 475n6

proof, 371, 375–376
axiomatic (See axiomatic proof)
box, 408–409, 416, 504–505n32,

505n37
constructive, 434
cut-free, 433
formal, 375, 385, 395–397
informal, 395–397
list style (See also axiomatic proof)

natural deduction, 416–418, 505n38
sequent calculus, 424–425, 437

method, 358, 385–386
natural deduction (See natural

deduction proof system)
nonconstructive, 433–434
search, 381, 405, 420, 424–426, 431,

437, 506n51 (See also search,
stack)

sequent (See sequent, calculus)
stack style

natural deduction, 418–419, 505n39
sequent calculus, 424–426 (See also

search, stack)
style, 385–386
symbol, 375
system, 386
theory, 420, 437

property, 168, 191, 266, 440–441, 489n7
proposition, 10, 187–188, 195–196,

267, 289–291, 337, 470n17,
477n8, 489n7, 503–504n25. See
also constant, propositional;
parameter, propositional; wff,
closed

atomic, 168, 191–192
basic, 24, 32–33, 164, 166, 168, 473n8,

482n2
coarse-grained, 257
compound, 24, 51–53
definition of

intuitive, 5, 242–243, 491n20
precise, 253–256

pluralism with regard to, 256–257
fine-grained, 257
versus formula, 35
Fregean, 490n19
versus nonproposition, 4–5, 121–122
Russellian, 490n19
versus sentence, 6–7, 8–9, 32, 33–34,

170–171, 292
way of making true or false, 63, 146,

163, 189–191, 192–193, 206,
211, 475n1

quantification. See also quantifier
theory, 384

quantifier, 167, 173, 184, 186
alternative symbols for, 483n10
equivalences, 293–297
existential, 173, 175

tree rule, 214–215
need for a new name, 216–217

tree rule for negated, 214
ways of expressing, 173

moving, 293–297
multiple, 271–274
numerical, 321–325, 384
restricted, 177–180

pragmatic approach, 178–180
semantic approach, 179–180

scope, 178, 186–187
symbol, 184
translating into MPL, 174–177
universal, 173, 174

tree rule, 217–219
tree rule for negated, 214
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quantifier (continued)
universal (continued)

ways of expressing, 173, 181
vacuous, 187, 222–223

in tree, 223
Quine, W.V.O., 497n25

readability, unique, 473–474n12
reasoning. See also argument

abductive, 20
deductive, 20
inductive, 20
and logic, 3–4, 19–20, 22–23, 467n1,

472n32
referent, 189, 191–193, 487n3
reflexivity, 453
relation, 264, 266

binary (See relation, two-place)
directed, 493n3
equivalence, 256, 454
(n+ 1)-place, 347, 349–351, 498n40
n-place, 453
reflexive, 256
on a set, 453
symmetric, 256
ternary, 266, 453
three-place, 266, 453
transitive, 256
two-place, 266, 453

possible properties of, 453–454
ways of picturing, 300–302, 455

relevance, 476n6
repetition inward, 411–412
representation, 5, 242–243, 491n20
resolution, 501–502n4
row, of truth table, 54, 153, 190, 206,

482n1. See also scenario
actual, 66–67, 67–68, 476n3, 478n19,

490n13
description, 130–131
header, 54
number of, 55–56

rule
elimination, 408, 413, 505–506n41
inference, 387, 388, 413
introduction, 408, 413, 505–506n41
structural, 436

running time, 481n1
Russell, B., 327, 342, 447
Russell’s paradox, 447

same, 305
satisfaction, 398–400, 503n24
satisfiability problem, 481n1
satisfiable. See also s-property

jointly (two propositions), 69–70, 74,
207

path, 362
proposition, 67–68, 69, 74, 207, 208,

491n24
set of propositions, 74, 95–96, 207

satisfiable*, 96
scenario, 63, 146, 163, 189–191,

192–193, 206, 211, 475n1
science, 4, 260–261, 467n2
scope, 178, 186–187, 334, 418
scope line, 504–505n32
search

brute force, 381
intelligent, 381
stack, 432

fully developed, 432
infinite, 431, 506n46

segment, initial, 459
semantics, 111, 163, 189–191, 204, 276–

277, 470n16. See also model;
truth, table

sentence, 8, 484n21. See also proposition,
versus sentence

declarative, 470n17
eternal, 469n12
fully specific, 469n12
letter, 33, 492n1

sequence, 256, 435–437, 452, 458–460,
506n49

empty, 507n17
finite, 458–459
infinite, 458–459

sequent, 421. See also holding
calculus, 421, 505–506n41, 506n51

predicate logic and identity,
426–431

propositional logic, 422–426
relationship between sequent rules
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and natural deduction rules,
434–435

relationship between sequent
rules and tree rules, 423–424,
427–429

left side, 421
right side, 421

set, 191, 435–436, 438–439, 506n49
background, 443
dependency, 416–417
empty, 439, 441
fuzzy, 384
infinite, 500n21
iterative conception of, 447–449
null, 439, 441
operations on, 442–444

relationships to logical operators,
444–446

power, 442
pure, 449
Russell, 447, 449
theory, 439

axiomatic, 449, 507n8
naı̈ve, 447

unit, 441
universal, 449, 490n11

Sheffer stroke, 132
SI, 312
signature

of a fragment, 485n6
of a model, 486n7

similarity, 299–300, 305
simple, 166, 482n2
singleton, 441
situation, 255
Smith, N.J.J., 475n1 (of Chapter 3)
Smullyan, R. M., 501n3
solitude condition, 497n19, 497n28
solutions, to exercises, xiv
someone, 172, 178, 483–484n15. See also

quantifier, existential
soundness

of an argument, 22, 66–67, 247, 342,
498n1

of axiomatic proof system, 397–398
with respect to logical truth, 387
with respect to validity, 392–393

closure-, 398
of natural deduction proof system,

415–416
of sequent calculus, 431–433
of tree method

with respect to properties other
than validity, 375, 378–379,
381–382

with respect to validity, 358,
361–364, 368, 498n1

sowndness, 398, 401, 503n23
speaker, 10–11, 468n10, 476n1
s-property, 95, 374–375, 501n24

and form, 95–96
proof of, 376, 405, 415, 419, 437

stack. See proof, stack style; search, stack
stage, 447–449
Stalnaker, R., 479n20
statement, 470n17
string, 48
structure, 484n1. See also form
subformula, 43, 185, 474n12, 504n25
subproof, 409, 418
subscript, 33, 473n8
subset, 441–442

proper, 441
substitution

rule, 391
uniform, 274
of variables, 274–275

succedent, 421
successor, 455
sum, logical, 475n6
superscript, 265–267, 473n8

omission of, 268–269
Suppes, P., 505n38
surjection, 455
syllogism

disjunctive, 95
hypothetical, 94

symbol, 39, 242, 462–464, 473n7, 473n8.
See also proof, symbol

auxiliary, 42
finite set, 501n25 (See also alphabet)
logical (See vocabulary, logical)
nonlogical (See vocabulary, nonlogical)
prime, 473n8
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symmetry, 445, 453
synonymy, 470n17
syntax, 40, 462–464. See also GPL,

syntax; GPLI, syntax; GPLID,
syntax; GPLIF, syntax; MPL,
syntax; PL, syntax

T (truth value), 49, 458, 475n6
tableau, 134, 501n2, 501n3

Beth, 386
one-sided, 501n3
semantic, 134, 501n3

Tarski, A., 18, 479n22
tautology, 67–68, 486n20. See also truth,

logical
tautology*, 96, 502n16
term, 183, 268, 332–334

closed, 334, 335
complex, 332
nonreferring, 336, 342–343, 489–

490n8, 498n34
open, 334
referring, 168 (See also name)
singular, 168, 172, 188

test, 135, 260–261. See also decision,
procedure

negative, 371
positive, 371

relationship to sound and complete
proof procedure, 379–381

theorem, 253, 357, 387
proving, automated, 502n4

theory, 253. See also axiomatic theory
thing, 168. See also object
thinning, 423, 436
Thought, 470n17
token, 7–8, 34, 468n9
tractable problem, 481n1
transitivity, 453
translation, 243–247, 248–250, 251,

289–293, 500n12
methodology, 101–103

tree, 134, 501n3
abbreviation, 159, 482n12
checking off entry, 136, 217, 223, 312,

487n4
closed, 368

construction (See also tree, finished,
systematic procedure for
constructing)

numbering stages, 361–362
core idea, 135–136, 146, 211, 213, 282
finished, 143, 221–222, 313, 488n16

(See also tree, unfinished)
systematic procedure for

constructing, 235–237,
367–369, 373, 381, 500n11

finite, 368, 370–371
infinite, 228–229, 238–240, 370–372,

487n4 (See also path, infinite)
method (See also tree, test)

completeness (See completeness, of
tree method)

soundness (See soundness, of tree
method)

speed of, 134–135, 481n1
whether it is an effective procedure,

369–370
official, 159
proof, 376–378, 386–387 (See also tree,

method)
rules, 136–140, 214–220, 311–312,

315, 501n3
application

ignoring irrelevant structure,
140–142

on multiple paths, 144–145, 148
order of, 145, 219–220

branching, 137, 145, 481n5
essential properties, 136, 212–214,

312–313, 363, 487n1, 487n4
nonbranching, 145, 219

semantic, 134
style of natural deduction proof,

418–419, 505n39
test, 155–156, 212, 282, 313–314, 349,

358, 402
contradiction, 151
contradictory, 151–152
contrary, 151–152
equivalence, 154–155
logical truth, 223
satisfiability, 147, 151
tautology, 152–153
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validity, 147–150, 224
truth, 134
uncrossed, 402, 404–405
unfinished, procedure for determining

whether infinite when finished,
373

trewth, 398–400, 503–504n25, 503n23
logical, 401
preservation, 401

triple, ordered, 279, 449. See also n-tuple,
ordered

truth, 5–6, 168, 242–243, 249, 503–
504n25, 503n23

actual, 67, 288, 342, 478n19, 492n26
condition, 103, 104–105, 120,

479n20
-functional (See connective, truth-

functional)
functionality (See conditional, and

truth functionality; connective,
truth-functional)

laws of, 4, 22, 190, 242
logical, 67–68, 95–96, 207, 254,

492n26 (See also a-property)
as conclusion, 77–78
preservation of, 387, 392

in a model (See model, truth in)
necessary, 260–261
possible, 260
preservation, 392, 415

necessary, 14–19, 257–263,
286–288, 471n19, 491n23

-preserving, necessarily, 14–19,
257–263, 286–288, 471n19,
491n23

science of, 4, 22, 190, 242
table (See also row, of truth table)

abbreviation, 58
for complex propositions, 54–57
for connectives, 49–51, 59–61
joint, for multiple propositions, 58
shortcuts, 75–77

unqualified notion of, 252–253
value, 30, 49, 475n1 (See also 0; 1;

F; T)
assignment, 63, 146, 163, 189–191,

192–193, 206, 211, 475n1

of complex proposition, calculating,
51–53

in virtue of form, 491–492n25
Turing, A., 373
turnstile

double, 387, 392
proof-theoretic, 387, 502n5,

502n15
semantic, 387, 392
single, 387, 502n5, 502n15

type, 7–8, 34, 468n9

undecidability, 373–374. See also
decision, procedure

underlining, 184–185, 484n19
union, 442, 444, 473n7, 505n36, 506n6
uniqueness, assumption, 327, 336–337,

343, 497n29
unless, 115–116
unsatisfiable. See also a-property;

satisfiable
jointly (two propositions), 69–70
proposition (See contradiction)
set of propositions, 74, 95–96

as premises, 78
urelement, 448–449, 490n11
utterance, 100, 289–291, 468n10, 476n1,

489n2, 490n9
correctness of, 97

vagueness, 383–384, 474–475n1,
489–490n8

valid*, 87–88, 93–94
validity, 16–19, 22, 63–65, 75–78, 95–

96, 206–207, 208–209. See also
a-property; formula, valid

and form, 79–81, 87–91, 254, 257–263,
287, 491n23

valuation, 243, 247–250, 251
value, 189, 245, 248

assignment, 398–399
of function, 455
of function symbol, 346–347, 498n34
of logical symbol, 490–491n19
of name (See referent)
of predicate (See extension)
of proposition (See truth, value)
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value (continued)
of variable, 196, 485n4, 486n14 (See

also value, assignment)
van Dalen, D., 505n40
variable, 39–40, 167, 188, 334

bound occurrence, 186–187, 334,
484n20

connective, 124
free for, 495n6
free occurrence, 186–187, 188, 334,

484n20
individual, 167, 174
metalinguistic, 473n9
name, 184, 185
predicate, 184
syntactic, 184–185, 309, 484n19
term, 184
uniform substitution, 274–275
variable, 184, 185
wff, 40, 41, 50, 81, 83, 184, 198,

388
vel, 36–37, 39
verum, 129
vocabulary

logical, 42–43, 183, 190, 268, 299, 304,
307, 311, 335, 344, 486n8

categorematic treatment, 490–
491n19

syncategorematic treatment,
490–491n19

nonlogical, 42–43, 183, 189–190, 268,
405, 486n8 (See also signature)

voice
active, 290–291
passive, 290–291

way the world could be, 242, 244. See
also ww

weakening, 423
website, for this book, xiv
wff, 40, 242, 332–334, 462–464

atomic, 183, 266–267, 268
closed, 187–188, 195–196, 211, 214,

242–243, 253–255, 267, 334,
398–400

complexity, 360, 498–499n2
consistent set, 402
construction, 43–44, 185–186, 466
maximal consistent set, 402
open, 187–188, 195–196, 267, 334,

397–398, 400–401, 416, 432,
503–504n25

saturated consistent set, 402
saturated set, 402–403
uninterpreted, 243

what is implied, 100, 477n3, 494–495n3
what is said, 11, 100. See also proposition
word, 7–8
world, possible, 489n3, 490n17, 491n21.

See also way the world could be
logically, 491n24
metaphysically, 491n24

ww, 244–247, 248, 255, 257, 490n12,
490n17, 491n20, 491n24

actual, 245, 247, 288, 342
function from (See intension)
-model, 258–261, 287, 341, 491n24
versus model, 246–247
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