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1

Introduction to Field Theory

The purpose of this book is twofold. Here I will introduce field theory as a framework for the
study of systems with a very large number of degrees of freedom, N→∞. And I will also
introduce and develop the tools that will allow us to treat such systems. Systems that involve
a large (in fact, infinite) number of coupleddegrees of freedomarise inmany areas of physics,
notably in high-energy and in condensed matter physics, among others. Although the
physical meanings of these systems and their symmetries are quite different, they actually
have much more in common than it may seem at first glance. Thus, we will discuss, on
the same footing, the properties of relativistic quantum field theories, classical statistical
mechanical systems, and condensed matter systems at finite temperature. This is a very
broad field of study, and we will not be able to cover each area in great depth. Nevertheless,
we will learn that it is often the case that what is clear in one context can be used to expand
our knowledge in a different physical setting. We will focus on a few unifying themes, such
as the construction of the ground state (the “vacuum”), the role of quantum fluctuations,
collective behavior, and the response of these systems to weak external perturbations.

1.1 Examples of fields in physics

1.1.1 The electromagnetic field

Let us consider a very large box of linear size L→∞ and the electromagnetic field enclosed
inside it. At each point in space x, we can define a vector (which is a function of time as
well) A(x, t) and a scalar A0(x, t). These are the vector and scalar potentials. The physically
observable electric field E(x, t) and the magnetic field B(x, t) are defined in the usual way:

B(x, t)=�×A(x, t), E(x, t)=−1
c
∂A
∂t
(x, t)−�A0(x, t) (1.1)

The time evolution of this dynamical system is determined by a local Lagrangian density
(which we will consider in section 2.6). The equations of motion are just the Maxwell
equations. Let us define the 4-vector field

Aμ(x)= (
A0(x),A(x)

)
, A0≡A0 (1.2)
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where μ= 0, 1, 2, 3 are the time and space components. Here x stands for the 4-vector

xμ= (ct, x) (1.3)

To every point xμ of Minkowski spacetime M we associate a value of the vector potential
Aμ. The vector potentials are ordered sets of four real numbers and hence are elements of
R

4. Thus a field configuration can be viewed as a mapping of the Minkowski spacetimeM
onto R

4,
Aμ :M �→R

4 (1.4)

Since spacetime is continuous, we need an infinite number of 4-vectors to specify a
configuration of the electromagnetic field, even if the box were finite (which it is not).
Thus we have a infinite number of degrees of freedom for two reasons: spacetime is both
continuous and infinite.

1.1.2 The elastic field of a solid

Consider a three-dimensional crystal. A configuration of the system can be described by
the set of positions of its atoms relative to their equilibrium state (i.e., the set of deformation
vectors d at every time t). Lattices are labeled by ordered sets of three integers and are
equivalent to the set

Z
3=Z×Z×Z (1.5)

whereas deformations are given by sets of three real numbers and are elements ofR3. Hence
a crystal configuration is a mapping

d :Z3×R �→R
3 (1.6)

At length scales �, which are large compared to the lattice spacing a but small compared to
the linear size L of the system, we can replace the lattice Z

3 by a continuum description, in
which the crystal is replaced by a continuum three-dimensional Euclidean space R

3. Thus
the dynamics of the crystal requires a four-dimensional spacetime R

3×R=R
4. Hence the

configuration space becomes the set of continuous mappings

d :R4 �→R
3 (1.7)

In this continuum description, the dynamics of the crystal is specified in terms of the
displacement vector field d(x, t) and its time derivatives, the velocities ∂d

∂t (x, t), which define
the mechanical state of the system. This is the starting point of the theory of elasticity. The
displacement field d is the elastic field of the crystal.

1.1.3 The order-parameter field of a ferromagnet

Let us nowconsider a ferromagnet. This is a physical system, usually a solid, inwhich there is
a local averagemagnetization fieldM(x) in the vicinity of a point x. The local magnetization
is simply the sum of the local magnetic moments of each atom in the neighborhood of
x. At scales long compared to microscopic distances (the interatomic spacing a), M(x) is
a continuous real vector field. In some situations of interest, the magnitude of the local
moment does not fluctuate, but its local orientation does. Hence, the local state of the
system is specified locally by a three-component unit vector n. Since the set of unit vectors
is in one-to-one correspondence with the points on a sphere S2, the configuration space
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is equivalent (isomorphic) to the sets of mappings of Euclidean three-dimensional space
onto S2,

n :R3 �→ S2 (1.8)

In an ordered state, the individual magnetic moments become spontaneously oriented
along some direction. For this reason, the field n is usually said to be an order-parameter
field. In the theory of phase transitions, the order-parameter field represents the important
degrees of freedom of the physical system (i.e., the degrees of freedom that drive the phase
transition).

1.1.4 Hydrodynamics of a charged fluid

Charged fluids can be described in terms of hydrodynamics. In hydrodynamics, one
specifies the charge density ρ(x, t) and the current density j(x, t) near a spacetime point
xμ. The charge and current densities can be represented in terms of the 4-vector

jμ(x)= (
cρ(x, t), j(x, t)

)
(1.9)

where c is a suitably chosen speed (generally not the speed of light!). Clearly, the config-
uration space is the set of maps

jμ :R4 �→R
4 (1.10)

In general, we will be interested both in the dynamical evolution of such systems and
in their large-scale (thermodynamic) properties. Thus, we will need to determine how a
system that, at some time t0, is in some initial state, manages to evolve to some other state
after time T. In classical mechanics, the dynamics of any physical system can be described
in terms of a Lagrangian. The Lagrangian is a local functional of the field and of its space and
time derivatives. “Local” here means that the equations of motion can be expressed in terms
of partial differential equations. In other words, we do not allow for “action-at-a-distance,”
but only for local evolution. Similarly, the thermodynamic properties of these systems are
governed by a local energy functional, the Hamiltonian. That the dynamics is determined
by a Lagrangian means that the field itself is regarded as a mechanical system, to which
the standard laws of classical mechanics apply. Here the wave equations of the fluid are the
equations of motion of the field. This point of view will also tell us how to quantize a field
theory.

1.2 Why quantum field theory?

From a historical point of view, quantum field theory (QFT) arose as an outgrowth of
research in the fields of nuclear and particle physics. In particular, Dirac’s theory of electrons
and positrons was, perhaps, the first QFT. Nowadays, QFT is used, both as a picture and as
a tool, in a wide range of areas of physics. In this book, I will not follow the historical path
of the way QFT was developed. By and large, it was a process of trial and error in which
the results had to be reinterpreted a posteriori. The introduction of QFT as the general
framework of particle physics implied that the concept of particle had to be understood as an
excitation of a field. Thus, photons become the quantized excitations of the electromagnetic
field with particle-like properties (such as momentum), as anticipated by Einstein’s 1905
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paper on the photoelectric effect. Dirac’s theory of the electron implied that even such
“conventional” particles should also be understood as the excitations of a field.

Themainmotivation of these developments was the need to reconcile, or unify, quantum
mechanics with special relativity. In addition, the experimental discoveries of the spin of
the electron and of electron-positron creation by photons showed that not only was the
Schrödinger equation inadequate to describe such physical phenomena, but the very notion
of a particle itself had to be revised.

Indeed, let us consider the Schrödinger equation

H� = i�
∂�

∂t
(1.11)

where H is the Hamiltonian

H= p̂2

2m
+V(x) (1.12)

and p̂ is the momentum represented as a differential operator

p̂= �

i
� (1.13)

acting on the Hilbert space of wave functions�(x).
The Schrödinger equation is invariant under Galilean transformations, provided the

potential V(x) is constant, but not under general Lorentz transformations. Hence, quan-
tum mechanics, as described by the Schrödinger equation, is not compatible with the
requirement that the description of physical phenomena must be identical for all inertial
observers. In addition, it cannot describe pair-creation processes, since in the nonrelativistic
Schrödinger equation, the number of particles is strictly conserved.

Back in the late 1920s, two apparently opposite approaches were proposed to solve
these problems. We will see that these approaches actually do not exclude each other. The
first approach was to stick to the basic structure of “particle” quantum mechanics and to
write down a relativistically invariant version of the Schrödinger equation. Since in special
relativity, the natural Lorentz scalar involving the energy E of a particle of mass m is
E2− (p2c2+m2c4), it was proposed that the “wave functions” should be solutions of the
equation (the “square” of the energy)

[(
i�
∂

∂t

)2
−

((
�c
i

�
)2
+m2c4

)]

�(x, t)= 0 (1.14)

This is the Klein-Gordon equation. This equation is invariant under the Lorentz transfor-
mations

xμ=�μ,νx′ν xμ= (x0, x) (1.15)

provided that the “wave function” �(x) is also a scalar (i.e., invariant) under Lorentz
transformations

�(x)=� ′(x′) (1.16)

However, it soon became clear that the Klein-Gordon equation was not compatible with a
particle interpretation. In addition, it cannot describe particles with spin. In particular, the
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solutions of the Klein-Gordon equation have the (expected) dispersion law

E2= p2c2+m2c4 (1.17)

which implies that there are positive and negative energy solutions

E=±√
p2c2+m2c4 (1.18)

From a “particle” point of view, negative energy states are unacceptable, since they would
imply that there is no ground state.Wewill see in chapter 4 that inQFT, there is a natural and
simple interpretation of these solutions that in no way make the system unstable. However,
the meaning of the negative-energy solutions was unclear in the early 1930s.

To satisfy the requirement from special relativity that energy and momentum must be
treated equally, and to avoid the negative-energy solutions that came from working with
the square of the Hamiltonian H, Dirac proposed to look for an equation that was linear
in derivatives (Dirac, 1928). To be compatible with special relativity, the equation must be
covariant under Lorentz transformations (i.e., it should have the same form in all reference
frames). Dirac proposed amatrix equation that is linear in derivativeswith a “wave function”
�(x) in the form of a four-component vector, a 4-spinor�a(x) (with a= 1, . . . , 4):

i�
∂�a

∂t
(x)+ �c

i

3∑

j= 1

αabj ∂j�b(x)+mc2 βab�b(x)= 0 (1.19)

where αj and β are four 4× 4 matrices. For this equation to be covariant, it is necessary that
the 4-spinor field� should transform as a spinor under Lorentz transformations

� ′a(�x)= Sab(�)�b(x) (1.20)

where S(�) is a suitable matrix. The matrix elements of the matrices αj and β have to be
pure numbers that are independent of the reference frame. By further requiring that the
iterated form of this equation (i.e., the “square”) satisfies the Klein-Gordon equation for
each component separately, Dirac found that the matrices obey the (Clifford) algebra

{αj,αk}= 2δjk1, {αj,β}= 0, α2j =β2= 1 (1.21)

where 1 is the 4× 4 identity matrix. The solutions are easily found to have the energy
eigenvalues E=±√

p2c2+m2c4 . (Wewill come back to this in chapter 2.) It is also possible
to show that the solutions are spin-1/2 particles and antiparticles (we will discuss this
later on).

However, the particle interpretation of both the Klein-Gordon and the Dirac equations
was problematic. Although spin 1/2 appeared now in a natural way, the meaning of the
negative energy states remained unclear.

The resolution of all of these difficulties was the fundamental idea that these equations
should not be regarded as the generalization of Schrödinger’s equation for relativistic
particles but, instead, as the equations of motion of a field, whose excitations are the particles,
much in the same way as photons are the excitations of the electromagnetic field. In this
picture, particle number is not conserved, but charge is. Thus, photons interacting with
matter can create electron-positronpairs. Suchprocesses donot violate charge conservation,
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but the notion is lost of a particle as an object that is a fundamental entity and has a distinct
physical identity. Instead, the field becomes the fundamental object, and the particles
become the excitations of the field.

Thus, the relativistic generalization of quantum mechanics is QFT. This concept is the
starting point of QFT. The basic strategy is to seek a field theory with specific symmetry
properties andwhose equations ofmotion areMaxwell, Klein-Gordon, andDirac equations,
respectively. Notice that if the particles are to be regarded as the excitations of a field, there
can be as many particles as we wish. Thus, the Hilbert space of a QFT has an arbitrary (and
indefinite) number of particles. Such a Hilbert space is called a Fock space.

Therefore, in QFT, the field is not the wave function of anything. Instead the field
represents an infinite number of degrees of freedom. In fact, the wave function in a QFT is
a functional of the field configurations, which themselves specify the state of the system.We
will see in chapter 4 that the states in Fock space are given either by specifying the number
of particles and their quantum numbers or, alternatively, in terms of the amplitudes (or
configurations) of some properly chosen fields.

Different fields transform differently under Lorentz transformations and constitute
different representations of the Lorentz group. Consequently, their excitations are particles
with different quantum numbers that label the representation. Thus,

1) The Klein-Gordon field φ(x) represents charge-neutral scalar spin-0 particles.
Its configuration space is the set of mappings of Minkowski space onto the real
numbersφ :M �→R, or complex numbers for charged spin-0 particlesφ :M �→C.

2) TheDirac field represents charged spin-1/2 particles. It is a complex 4-spinor�α(x)
(α= 1, . . . , 4), and its configuration space is the set of maps�α :M �→C

4, while it
is real for neutral spin-1/2 particles (such as neutrinos).

3) The gauge field Aμ(x) represents the electromagnetic field, and its non-abelian
generalizations for gluons (and so forth).

The description of relativistic quantummechanics in terms of relativistic quantum fields
solved essentially all problems that originated in its initial development. Moreover, QFT
gives exceedingly accurate predictions of the behavior of quantized electromagnetic fields
and charged particles, as described by quantum electrodynamics (QED). QFT also gives
a detailed description of both the strong and weak interactions in terms of field theories
known as quantum chromodynamics (QCD), based on Yang-Mills gauge field theories, and
unified and grand unified gauge theories.

However, along with its successes, QFT also brought with it a completely new set of
physical problems and questions. Essentially, any QFT of physical interest is necessarily a
nonlinear theory, as it has to describe interactions. So even though the quantumnumbers of
the excitations (i.e., the “particle” spectrum) may be quite straightforward in the absence of
interactions, the intrinsic nonlinearities of the theory may actually unravel much of this
structure. Note that the equations of motion of QFT are nonlinear, as they also are in
quantum mechanics. However, the wave functional of a QFT obeys a linear Schrödinger
equation, just as the wave function does in nonrelativistic quantum mechanics.

In the early days of QFT, and indeed for some time thereafter, it was assumed that
perturbation theory could be used in all cases to determine the actual spectrum. It was
soon found out that while there are several cases of great physical interest in which some
sort of perturbation theory yields an accurate description of the physics, in many more
situations this is not the case. Early on it was found that, at every order in perturbation
theory, there are singular contributions to many physical quantities. These singularities
reflected the existence of an infinite number of degrees of freedom, both at short distances,
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since spacetime is a continuum (the ultraviolet (UV) domain), and at long distances,
since spacetime is (essentially) infinite (the infrared (IR) domain). Qualitatively, divergent
contributions in perturbation theory come about because degrees of freedom from a wide
range of length scales (or wavelengths) and energy scales (or frequencies) contribute to the
expectation values of physical observables.

Historically, the way these problems were dealt with was through the process of regular-
ization (i.e., making the divergent contributions finite), and renormalization (i.e., defining
a set of effective parameters which are functions of the energy and/or momentum scale at
which the system is probed). Regularization required that the integrals be cut off at some
high-energy scale (in the UV). Renormalization was then thought of as the process by
which these arbitrarily introduced cutoffs were removed from the expressions for physical
quantities. This was a physically obscure procedure, but it worked brilliantly in QED and, to
a lesser extent, in QCD. Theories for which such a procedure can be implemented with the
definition of only a finite number of renormalized parameters (the actual input parameters
to be taken from experiment) are said to be renormalizable QFTs. QED and QCD are the
most important examples of renormalizable QFTs, although there are many others.

Renormalization implies that the connection between the physical observables and the
parameters in the Lagrangian of a QFT is highly nontrivial, and that the spectrum of the
theory may have little to do with the predictions of perturbation theory. This is the case
for QCD, whose “fundamental fields” involve quarks and gluons but the actual physical
spectrum consists only of bound states whose quantum numbers are not those of either
quarks or gluons. Renormalization also implies that the behavior of the physical observables
depends on the scale at which the theory is probed. Moreover, a closer examination of
these theories also revealed that they may exist in different phases, in which the observables
have different behaviors with a specific particle spectrum in each phase. In this way, to
understand what a given QFT predicted became very similar to the study of phases in
problems in statistical physics. We will explore these connections in detail later in this book
when we develop the machinery of the renormalization group in chapter 15. In this picture,
the vacuum (or ground state) of a QFT corresponds to a phase, much in the same way as in
statistical (or condensed matter) physics.

While the requirement of renormalizability works for the Standard Model of particle
physics, it fails for gravity. The problem of unifying gravity with the rest of the forces of
Nature remains a major problem in contemporary physics. A major program to solve this
problem is string theory. String theory is the only known viable candidate to quantize gravity
in a consistent manner. However, in string theory, QFT is seen as an effective low-energy
(hydrodynamic) description of nature, and the QFT singularities are “regulated” by string
theory in a natural way (but at the price of locality).
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Bogoliubov transformation, 400
Bogomol’nyi

bound, 587, 601, 603
point, 587

bosonization, 621
abelian, 621
non-abelian, 686
non-abelian currents, 688
non-abelian mass terms, 689

BPS equations, 587
Braid, 709
Braid group, 709
BRST

classification of states, 251
infinitesimal transformation, 250
Jacobi identity, 251

BRST invariance, 250

C-function, 675
Callan-Harvey effect, 639
Callan-Symanzik equation, 428, 447, 448

nonlinear sigma model, 473
canonical anticommutation relations, 163,

164
canonical commutation relations, 80
canonical formalism, 15
canonical quantization

field theory, 80
Maxwell’s theory, 222
quantum mechanics, 78

Casimir effect, 220, 403, 672
Virasoro central charge, 672

Cauchy theorem, 255
Cauchy-Riemann equation, 592
causal boundary condition, 254
causality, 168, 254
central charge, 667

2D Ising model, 403
Casimir effect, 403, 672
compactified boson, 678
Majorana fermion, 681
minimal models, 685
RG flow, 675
universal specific heat, 673

central extension, 687
Kac-Moody algebra, 687
Virasoro algebra, 667

charge conjugation, 172
charge conservation, 619
charge current

U(1), 63
Chern-Simons, 701

abelian gauge theory, 633
boundaries, 703
bulk-boundary correspondence, 704
bulk-edge correspondence, 704
canonical commutators, 703
flat connections, 702
Gauss’s Law, 702
global degrees of freedom on a torus, 704
induced, 702
non-abelian gauge theory, 634
term, 633
vacuum degeneracy, 704

chiral anomaly, 617
1+1 dimensions, 617
bosonization, 619
Fujikawa determinant, 630
non-abelian, 686
pair creation, 617

chiral compactified boson, 704
chiral condensate, 506
chiral Gross-Neveu model, 351, 505, 509

absence of spontaneous chiral symmetry
breaking, 511

asymptotic freedom, 510
effective action, 509
saddle-point equations, 509
U(1) chiral symmetry, 509

chiral symmetry, 175
spontaneous breaking, 506

chiral transformation, 175
classical conservation laws, 42
classical field, 336
classical Heisenberg model, 474
coarse-grained configurations, 32
cocycle, 209
coherent states, 180

analytic functions, 183
fermions, 188, 189
functional determinant, 197
linear harmonic oscillator, 180
nonrelativistic Bose gas, 186
overcompleteness, 183
path integral, 184, 185
spin, 207

Coleman theorem, 510
collective coordinate, 572
color charge, 65
compact electrodynamics, 529, 543, 604, 610

Hamiltonian, 532
compact Lie group, 46
compactification radius, 622, 678
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compactified boson, 609
complex projective space, 460
complex scalar field, 44
conductivity tensor, 290, 292
confinement, 244

abelian Higgs model, 587
CP

N−1 model, 503
instantons, 587
large-Nc Yang-Mills theory, 520
magnetic condensate, 542
QCD strings, 518
Z2 gauge theory, 541

conformal algebra, 658
conformal blocks, 666
conformal correlators, 659

energy-momentum tensor, 668
four-point function, 660
orthogonality, 659
universal three-point function, 660

conformal field theory
C-theorem, 673
central charge, 667
compactification radius, 678
compactified boson, 676
conformal spin, 673
Dirac fermion, 681
free massless fermion, 680
fusion algebra, 433
highest weight state, 669
Kac determinant, 684
Majorana fermion, 680
minimal models, 685
mode expansion, 668
null state, 683
primary field, 661
RG flow, 673
scaling dimension, 673
two-dimensional Ising model, 685
unitary, 683
vertex operators, 678

conformal invariance, 416, 430, 431, 652
three-point function, 432
traceless energy-momentum tensor, 657
two-point function, 431
WZW, 686

conformal perturbation theory, 435
conformal transformations, 653
conformal Ward identity, 656
connected correlators

generating functional, 332
connected two-point function, 332
conservation law, 43
constant of motion, 44

constraint, 222, 252
contact term, 463
continuity equation, 27
continuum limit, 412
contraction, 122
contravariant vector, 10
coordinate transformation, 65

Jacobian, 66
translations, 67
variation of the action, 67

correspondence principle, 78
coset, 459
Coulomb gas, two-dimensional, 584

Kosterlitz-Thouless transition, 584
Coulomb gas, three-dimensional, 612

logarithmic interaction, 585
coulomb gauge, 30, 224

mode expansion, 226
quantization, 225
topological obstruction, 236

Coulomb interaction, 538
Coulomb phase, 538, 563
Coulomb potential

D spacetime dimensions, 246
Coulomb scattering, 295
counterterms, 368
coupling constant renormalization

one loop, 359
two loops, 361

covariant derivative, 50
non-abelian, 56

covariant gauge condition, 247
covariant vector, 10
CP

N−1 model, 459, 488, 499, 643
beta function at large N, 502
broken symmetry phase, 504
confinement, 503
dynamical mass generation, 502
gap equation, 501
instanton, 595
large-N effective action, 500, 503
large-N limit, 500
renormalized coupling constant, 501

CPT, 172
critical dimension, 372, 531
critical number of flavors, 484
current algebra, 620, 679

SU(N)k, 686
U(1), 620

current correlation function, 289, 290

Debye screening, 610
deconfinement, 542
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density matrix, 105
dilation, 430
dilation current, 659
dimensional analysis, 370
dimensional regularization, 377, 380, 456
dimensional transmutation, 477
dimensionless coupling constant, 372, 374
Dirac algebra, 18
Dirac bilinears, 25
Dirac canonical momentum, 27
Dirac current, 21
Dirac equation, 18

covariant form, 19
solutions, 20

Dirac Euclidean Lagrangian, 196
Dirac fermion, 396
Dirac field

charge conjugation, 172
mode expansion, 164
normal ordering, 164
parity, 174
propagator, 170
quantization, 163
time-reversal, 174
vacuum state, 163

Dirac gamma matrices, 19
Dirac magnetic monopole, 597
Dirac mass, 176
Dirac quantization, 55, 213
Dirac relativistic covariance, 22
Dirac sea, 163
Dirac spectrum

charge, 167
energy-momentum, 164
spin, 165

Dirac spin, 25
Dirac spinor

angular momentum, 24
Dirac string

vortex, 606
Z2 gauge theory, 542

discrete Gaussian model, 607
discrete symmetries, 42
disorder operator, 396

condensate, 396
domain wall, 396, 577
φ4 theory, 577
chiral Dirac fermions, 638

dual field, 623
dual group, 605
dual superconductor, 520
dual tensor, 28
duality, 545, 610, 647

strong coupling–weak coupling, 607
XY model, 604

dynamical symmetry breaking, 506
dyon, 648
Dyson equation, 334

effective action
chiral phase field, 510
slow modes, 425

effective potential, 340, 356
one-loop, 357
one-loop renormalized, 359
tree-level, 356

effective temperature, 389
electromagnetic duality, 29
electromagnetic field

equation of motion, 28
electromagnetic field tensor, 28
Elitzur’s theorem, 533
emergent symmetry

scale invariance, 430
energy-momentum four-vector, 10
energy-momentum tensor, 68

conservation, 68, 655
free Dirac field, 168
gauge-invariant, 71
response to a change of the geometry, 73
scalar electrodynamics, 75
scalar field, 68
symmetric, 70, 73
trace, 658
traceless, 657

equivalence class, 579
Euclidean action

extrema, 569
Euclidean Dirac Lagrangian, 196
Euclidean field theory, 33
Euclidean path integral, 116

classical statistical mechanics, 116
on a cylinder, 117
free scalar field, 118

Euclidean propagator, 124
behavior, 124
Fourier transform, 123

Euler angles, 48
Euler character, 515, 518
Euler relation, 514
Euler-Lagrange equation, 13, 34

Euclidean, 570
Euler-Mascheroni constant, 126, 472
evolution operator

matrix elements, 112
exponential decay of correlations, 127
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f sum rule, 572
Faddeev-Popov, 572
Faddeev-Popov determinant, 238, 572

non-abelian gauge theory, 247
Fermi energy, 148, 152
Fermi Golden Rule, 299
Fermi momentum, 152
fermion coherent states, 189
fermion doubling, 636
Feynman diagram, 144
Feynman gauge, 225, 239
Feynman gauge propagator, 241

real space, 245
Feynman path integral, 100

imaginary time, 105
relativistic particle, 520
scalar field, 113
vacuum persistence amplitude, 115

Feynman propagator, 112
Feynman slash, 19
Feynman–’t Hooft gauges, 239
Feynman-Schwinger parameter, 123
field strength, 52
field tensor

non-abelian, 61
fine structure constant, 246
finite temperature quantum field

theory, 117
first Chern number, 636
fishnet diagram, 516
fixed point, 416

critical, 417
emergent symmetries, 652
renormalizable field theory, 417
scale invariance, 416
scaling dimension, 430
universality, 430
Wilson-Fisher, 427

flavor symmetry, 64
fluctuation determinant, 105

Coleman’s approach, 107
free Euclidean scalar field, 120

fluctuation-dissipation theorem, 295
flux attachment, 702
flux confinement, 608
flux excitation, 542
flux quantization, 55, 586
Fock space, 6, 85, 137

anticommutation relations, 140
commutation relations, 140
creation and annihilation operators, 139
Hamiltonian, 144
identity operator, 143

inner product, 139
linear momentum, 143
two-body operators, 144

four-point function
conformal invariance, 432

four-point vertex function
relation with the connected function, 339

four-vectors, 10
fractal dimension, 451
fractional statistics, 706
free complex scalar field, 90

field expansions, 91
free Dirac field, 159

canonical momentum, 159
eigenspinors, 161
energy-momentum tensor, 168
Hamiltonian, 160
Lagrangian, 159

free energy
scalar field, 129

free Euclidean scalar field
generating function, 120

free Fermi gas, 152
one-particle states, 154

free fermion
field expansion, 151
filled Fermi sea, 148
ground state, 148
vacuum state, 149

free scalar field
Euclidean propagator, 122
field expansion, 82
quantization, 82
vacuum state, 84

free scalar field propagator
Minkowski spacetime, 125

frustration, 385
functional determinant, 107, 197
ζ -function, 201
coherent states, 197
Klein-Gordon, 205

fusion, 710
fusion algebra, 433, 666

gamma matrices, 19
gap equation, 492

Gross-Neveu model, 506
gauge class, 237
gauge field

non-abelian, 56
gauge fixing, 29, 235

Feynman–’t Hooft gauges, 239
general, 236
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gauge fixing (continued)
Lorentz gauge, 224
Maxwell theory, 224

gauge group
color, 64

gauge invariance, 29, 49, 221, 293, 619
Lorentz invariance, 232
minimal coupling, 51
non-abelian, 56
polarization tensor, 293

gauge theory
absence of spontaneous symmetry breaking,

533
finite temperature, 236
path integral quantization, 231
phase diagram, 561
quantization, 221

gauge transformation, 29, 235
as an orbit in the group, 236
Maxwell, 29
non-abelian, 57

gauge-invariant current, 63
gauge-invariant measure, 235
Gauss invariant, 708
Gauss’s law, 222, 531

constraint on the space of states, 232
lattice gauge theory, 533
Z2 gauge theory, 532

Gauss’s theorem, 43
Gaussian model, 119
Gell-Mann-Low theorem, 114
generalized susceptibility, 286
generating function

Maxwell’s theory, 245
genus, 515, 518
geodesic, 51
geometric quantization, 180, 212
Georgi-Glashow model, 558

instanton, 597
G/H nonlinear sigma model, 594
Gibbs free energy, 335
Ginzburg-Landau equation, 34
Ginzburg-Landau free energy, 33
global internal symmetry, 44
globally conserved charge, 44
gluon propagator

cancellation of one-loop gluon mass terms,
481

dimensional regularization renormalization
constants, 483

large-N limit, 517
one-loop, 480
one-loop logarithmic divergent diagrams, 481

gluons, 64
Goldstone boson, 343
Goldstone’s theorem, 343
grand canonical ensemble, 138
Grassmann algebra, 188
Grassmann Gaussian integrals, 192
Grassmann variables, 188
Green function

advanced, 255
retarded, 254
time-ordered, 257

Gribov copies, 232, 236
Griffiths-Ginibre inequality, 550
Gross-Neveu model, 179, 351, 488, 504

beta function at large N, 507
effective potential, 508
large-N effective action, 506
saddle-point equations, 506
Z2 chiral symmetry, 506

Haar measure, 237, 529
nonlinear sigma model, 463

Hamiltonian duality, 545
Z2 gauge theory, 545

Hamiltonian picture, 540
Hartree approximation, 317, 491
heat kernel, 201, 202
Heaviside function, 255
hedgehog, 598
Heisenberg picture

quantum field theory, 81
helicity, 176
Higgs mechanism, 556

CP
N−1 model, 500

Higgs particle, 558
Higgs phase, 244

observables, 558
Higgs-confinement complementarity, 563
Hilbert space, 77

quantum field theory, 80
holography, 521
homogeneous function, 412, 430
homogeneous space, 462
homotopy, 579
homotopy group, 578, 580
π1(S1), 580, 582
π1(S2), 580
π2(G/H), 595
π2(S2), 589
π2(SN), 594
π3(SU(2)), 602

Hopf map, 460
Hubbard-Stratonovich field, 492
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imaginary time, 35
periodic boundary conditions, 117

infrared divergence, 121
instanton, 568

confinement, 587
dilute gas, 575
double well, 568
Ising model, 575
O(3) nonlinear sigma model, 588
quantum tunneling, 568
scale invariance, 593
Yang-Mills, 601
zero mode, 571, 592

invariant measure, 237
inverted potential, 570

tunneling solution, 570
irrelevant operator, 375
Ising CFT

fusion rules, 685
scaling dimensions, 685

Ising model, 31, 384
central charge, 403, 685
continuum limit, 404
fermion Hamiltonian, 397
ground state, 402
Hamiltonian in a transverse field, 390, 530
Onsager solution, 394
partition function, 385
quantum to classical mapping, 390
specific heat, 402
strong coupling expansion, 391
time continuum limit, 388
transfer matrix, 386
weak coupling expansion, 393
Z2 global symmetry, 390
Z2 invariance, 391

Jacobian, 238
nonlinear sigma model, 463

Jordan-Wigner transformation, 395
inverse, 397

Kac-Moody algebra, 620
Kac-Moody level, 687
Kalb-Ramond field, 611
kink creation operator, 395, 545
Klein-Gordon equation, 4

as a field equation, 15
Knizhnik-Zamolodchikov equation, 693
Kondo problem, 477, 488
Kosterlitz renormalization group, 435
Kosterlitz-Thouless transition, 435, 585
Kramers-Krönig relation, 287

Kramers-Wannier duality, 604
Ising model, 545

Kubo formula, 286

Lagrange multiplier field, 494
A0, 222

Lagrangian
Dirac, 26
for a classical particle, 11
Maxwell, 30
real scalar field, 14
for a relativistic massive particle, 12
renormalizable, 375

Landau theory of phase transitions, 32
Langevin equation, 252
large gauge transformations, 236
large-N limit, 488
φ4 theory, 489
as the sum of bubble diagrams, 491
matrix models, 513
minimal subtraction scheme, 496
O(N) nonlinear sigma model, 493
path integral approach, 492
saddle-point equation, 492
self-consistent one-loop approximation,

491
solution and scaling, 496
string interpretation, 519

lattice gauge theory, 376, 519
Euclidean formulation, 529
Hamiltonian formulation, 531
non-abelian, 544
weak coupling expansion, 537

lattice regularization, 526
least action principle, 12, 13
Legendre transform, 336
Legendre transformation, 15
Levi-Civita tensor, 28
light cone, 10
linear effective potential, 541
linear potential, 244
linear response theory, 284
linking number, 708
local charge conservation, 27
local symmetry, 49
logarithmic corrections, 453
loop expansion, 355
Lorentz gauge, 30, 224, 236
Lorentz group, 8, 9

generators, 9
spinor representation generators, 24

Lorentz scalar, 10
Lorentz spinor, 11
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Lorentz transformations, 8
boosts, 8
Dirac bilinears, 25
spinors, 22

Lorentz vector, 10

magnetic flux, 586
magnetic loop, 545
magnetic monopole, 29, 55, 213, 597, 599, 610
magnetic susceptibility, 333
Majorana fermion, 396, 680

fermion parity, 397
Majorana fermion CFT, 406, 685
Majorana mass, 406
Majorana spinor condition, 399
Maldacena conjecture, 521
Mandelstam operators, 623
marginal operator, 375
marginally relevant operator, 419
mass gaps, 127
mass renormalization

one loop, 358
two loops, 360

mass shell, 88
massless Dirac field, 176
Maxwell’s equations, 28
Maxwell’s theory

scaling of the coupling constant, 245
Maxwell U(1) gauge theory

propagator, 241
mean field theory, 34
Meissner effect, 520
Mermin-Wangner theorem, 510
metric tensor, 9

Minkowski, 10
minimal coupling, 61
minimal subtraction, 377, 382, 456, 471
minimal surface, 520
minimap coupling, 51
monopole, 55, 213
monopole condensate, 520, 614

Nambu representation, 399
Nielsen-Ninomiya theorem, 636
Noether charge, 44

energy-momentum conservation, 68
Noether current, 44

general case, 49
Noether’s theorem, 42
non-abelian gauge invariance, 56
non-abelian gauge theory

BRST invariance, 250
lattice Hamiltonian, 532

quantization, 247
Yang-Mills Lagrangian, 61

nonlinear sigma model, 347, 459, 493
2+ ε expansion, 474
anomalous dimension, 473
asymptotic freedom, 477
beta function at large N, 498
Callan-Symanzik equation, 473
cancellation of linear divergences, 471
correlation length exponent, 474
dimensional regularization with minimal

subtraction, 472
Einstein equations, 478
equation of state, 496
large-N effective action, 494
logarithmic corrections to scaling, 477
nontrivial UV fixed point, 474
one-loop beta function, 473
one-loop effective action, 467
one-loop renormalized effective action, 468
one-loop two-point vertex function, 470
order parameter exponent, 475
partition function, 462
perturbative expansion, 467
primitive divergences, 465
proof of renormalizability, 466
renormalization, 462
renormalization in the large-N limit, 495,

496
saddle-point equations, 495
tree-level effective action, 467

nonrelativistic field theory, 145
nonrenormalizable theory, 374
normal ordering, 150
null state, 683

O(3) nonlinear sigma model, 347, 588, 644
classical Euclidean equations, 588
Euclidean action bound, 591
general instanton solution, 592
instanton zero modes, 592
self-dual solutions, 591
topological charge, 589

O(N), 47
generators, 48

O(N) nonlinear sigma model, 459
large-N limit, 493

one-particle irreducible vertex function, 335
operator product expansion, 432, 666
φ4 theory, 438
energy-momentum tensor, 667
Ising, 685
SU(2)1 currents, 679
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pairing Hamiltonian, 399
parafermion, 679
parallel transport, 50

non-abelian, 58
parity, 174
parity anomaly, 633
particle-hole excitations, 148
particle-hole transformation, 150
partition function

gauge theory, 529
path integral, 96

charged particle in a magnetic field, 134
coherent state representation, 185
Dirac field, 194
double well, 133
fermions, 194
fluctuation determinant, 105
gauge theory, 231
imaginary time, 105
integration measure, 104
linear harmonic oscillator, 102
Majorana fields, 196
non-abelian gauge theory, 247
phase space, 100
scalar field, 110, 113
spin, 207
sum over histories, 101

path-ordered exponential, 51
Pauli principle, 27
Pauli-Lubanski vector, 70
Pauli-Villars, 376
penetration depth, 586
perimeter law, 244, 539

deconfinement, 244
perturbative renormalizability

criterion, 372
perturbative renormalization group, 445
phase transition

confinement-deconfinement, 550
scaling, 412

phase-space path integral, 113
photon, 227
photon self-energy, 351
physical Hilbert space, 232
planar diagrams, 514, 515
poincaré conjecture, 478
poincaré group, 653
point-splitting, 620, 686
Poisson bracket, 76
Poisson summation formula, 220
polarization operator, 351

CP
N−1 model, 503

gauge invariance, 351

polarization tensor, 290
polyacetylene, 179
Pontryagin index, 602
power counting, 373
primary field, 661
primitively divergent diagrams, 373
principal chiral field, 461
principle of relativity, 50
propagator, 97

Dirac field, 170
free Euclidean scalar field, 122

QCD strings, 519
quadratic Casimir, 482
quantization

Dirac field, 163
free scalar field, 82
Maxwell theory, 221
non-abelian gauge theory, 247

quantum antiferromagnet, 155, 488
quantum chromodynamics, 64

one-loop beta function, 483
Feynman rules, 479
Lagrangian, 479

quantum electrodynamics
Lagrangian, 63
large-N effective action, 511
large-N limit, 511
nontrivial fixed point for D< 4, 511
one-loop beta function, 484, 511
Ward identity, 349

quark-gluon plasma, 564
quarks, 64
quasi-primary operator, 431

radial quantization, 664
random matrices, 488
random phase approximation, 491
rational conformal field theory, 680
reduction formula, 282
reflection positivity, 386, 549, 661, 670
regularization, 375
ζ -function, 377, 631
dimensional, 377
Gaussian, 376
lattice, 376
Pauli-Villars, 376
UV cutoff, 375

relativistic interval, 9, 10
space-like, 10
time-like, 10

relativistic string action, 520
relevant operator, 375, 609
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renormalizability
nonlinear sigma model, 466

renormalizable theory, 374
renormalization conditions, 364
renormalization group

anomalous dimension, 447
beta function, 410
effective action, 414
fixed point, 416
flow, 415
Migdal transformation, 419
momentum shell, 421
nonlinear sigma model, 462
transformation, 413

renormalized perturbation theory, 445
resolution of the identity, 97
retarded Green function, 254

definition, 255
RG flow, 415
φ4 theory, 427
Ising model, 420
Wilson-Fisher, 427

rotations, 69
running coupling constant, 449

saddle-point equation, 495
scalar field, 13

causality, 87
Euler-Lagrange equation, 14
Feynman propagator, 112
finite temperature, 129
Lagrangian, 14
Lorentz invariance, 14
N-point function, 112
positive energy, 18
sum over histories, 113
time-ordered product, 112
Wightman function, 112

scalar product, 10
scale invariance, 412

as emergent symmetry, 430
scale transformations

generator, 658
scaling dimension, 374, 430, 451
scaling function, 449
Schrödinger equation, 78
Schrödinger picture

quantum field theory, 80
Schrödinger propagator, 97
Schwartzian derivative, 668
Schwinger model, 512, 519, 641
Schwinger term, 620, 686

nonrelativistic current algebra, 293

SU(N)k, 687
U(1), 620, 682
Virasoro algebra, 667

Schwinger-Dyson equation, 348
quantum electrodynamics, 349

second quantization, 136
self-energy, 335, 337
shooting method, 108
simplectic 2-form, 211
sine-Gordon model, 609, 612
SL(2,Z), 647
Slater determinant, 138
Slavnov-Taylor identities, 483
SO(3, 1), 9
soliton, 396, 568
φ4 theory, 577
domain wall, 577
kink, 577

spacetime symmetries, 65
spectral asymmetry, 635
spectral function, 287
spin coherent states, 207
spinor transformation, 22
spin-statistics theorem, 27, 168
spontaneous symmetry breaking, 336, 393
standard model, 64
state vector, 77
state wave functional, 80
Stefan-Boltzmann law, 673
stereographic projection, 589
string tension, 244
string theory, 516
strong coupling expansion, 540

gauge theory strings, 548
SU(2)
commutation relations, 48
generators, 48

SU(N), 47
color gauge group, 64

SU(N)k Kac-Moody algebra, 687
superconducting gap, 557
superconductor, 585

abelian Higgs, 585
type I, 586
type II, 586

superficial degree of divergence, 373
superposition principle, 77
super-renormalizable theory, 374
symmetry

continuous, 43
quantum theory, 89
unitary transformations, 89

symmetry group, 45
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generators, 47
structure constants, 47

target manifold, 459
target space, 578

O(3) nonlinear sigma model, 580
temporal gauge, 225
tesselation, 518
thermal propagator, 131
’t Hooft coupling, 517
’t Hooft loop, 699
’t Hooft magnetic loop, 543
’t Hooft model, 519
’t Hooft-Polyakov monopole, 597

topological charge, 599
three-point function

conformal invariance, 432
three-point vertex function, 338
time-ordered Green function, 257

Feynman propagator, 257
time-ordered product, 112
time-reversal invariance, 174
topological charge, 568, 602

’t Hooft–Polyakov monopole, 599
vorticity, 606

topological current
’t Hooft–Polyakov monopole, 599

topological excitation, 568
topological field theory, 236, 697

BF, 701
classical, 697
Chern-Simons, 701
deconfined discrete gauge theory, 698
vacuum degeneracy, 698, 704

topological invariant, 568
Pontryagin index, 602
vorticity, 582
winding number, 580

topological nonlinear sigma model,
644

topological qubit, 710
topological soliton, 396
trace anomaly, 671
transfer matrix, 386

hermitian, 386
transverse gauge, 30
tunneling

essential singularity, 576
multi-instanton partition function, 576
one-instanton, 574

two-dimensional Ising model
conformal field theory, 685

two-point 1-PI vertex function, 337

two-point function
conformal invariance, 431
corrections to scaling, 452
logarithmic corrections, 453
scaling form, 450

U(1), 44
conserved charge, 45
conserved current, 45

U(1) Faddeev-Popov determinant, 239
U(1) gauge theory

generating function, 240
U(1) Gauss’s law, 543
U(1) global chiral symmetry, 509
U(1) Kac-Moody algebra, 620
U(1)N Kac-Moody algebra, 687
U(N), 47
ultraviolet divergence, 121
ultraviolet fixed point, 417
ultraviolet uncertainty principle, 78
unitarity, 386
unitary transformation, 79
universality, 458
universality class, 416

vacuum persistence amplitude, 113, 287
vacuum persistence function

generating function of the N-point functions,
115

vacuum wave functional, 230
vector bundle, 236
vertex function, 335

scale dependence, 450
scaling form, 450

vertex operators
conformal weight, 679
vorticity, 609

Virasoro algebra, 667, 669
vortex, 582

logarithmic interaction, 584
two-dimensional Coulomb gas, 582, 610
XY model, 604

vortex proliferation, 610
vorticity, 582

Ward identity, 293, 341
conformal, 656
CP

N−1 model, 503
for the generating functional, 342
global O(2) symmetry, 341
global O(N) symmetry, 344
Goldstone theorem, 343
nonlinear sigma model, 464
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Ward identity (continued)
photon propagator, 351
quantum electrodynamics, 349
Yang-Mills, 481

wave function renormalization, 363
weakly interacting Bose gas, 218
Weierstrass representations, 381
Wess-Zumino action, 211
Wess-Zumino-Witten model, 645, 704

central charge, 692
conformal field theory, 686
currents, 691
null state, 691
primary fields, 690
scaling dimensions, 692
SU(N)k, 693
Sugawara energy-momentum tensor, 692
Virasoro and Kac-Moody algebras, 690

Wess-Zumino-Witten term, 645, 686
Weyl equation, 177
Weyl spinor, 177

left handed, 177
right handed, 177

Wick rotation, 35, 105, 116
Wick’s theorem, 122
Wightman function, 96
Wilson action, 529
Wilson arc, 541
Wilson fermion, 566
Wilson loop, 60, 243, 528

abelian gauge theory, 243
area law, 244, 538, 614
compact electrodynamics, 613
effective potential, 243, 538

fundamental charge, 529
general behaviors, 244
noncontractible cycles, 698
perimeter law, 244, 539
scale invariance, 244, 245

Wilson loop–’t Hooft loop algebra, 700
Wilson-Fisher fixed point, 427

correlation length exponent, 430
two-loop order, 455

winding number, 579

XY model, 604

Yang-Mills, 61, 65, 488
beta function, 483
counterterms, 482
large number of colors, 517
one-loop renormalization, 482
renormalization, 479

Yang-Mills instanton, 601
Yang-Mills lagrangian,

Feynman–’t Hooft gauge, 249
Yukawa couplings, 557

Z2 gauge theory, 531
deconfined phase, 537
Euclidean, 529
Hamiltonian, 531
magnetic excitations, 542
self-duality, 547
topological phase, 547

Z2 global symmetry, 390
spontaneously broken, 393

zero modes, 596




