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1
Prelude: What Is Algebra?

What is algebra? It is a question to which a high school student
will give one answer, a college student majoring in mathematics

another, and a professor who teaches graduate courses and conducts
algebraic research a third. The educated “layperson,’’ on the other
hand, might simply grimace while retorting, “Oh, I never did well in
mathematics. Wasn’t algebra all of that x and y stuff that I could never
figure out?’’ This ostensibly simple question, then, apparently has a
number of possible answers. What do the “experts’’ say?

On 18 April 2006, the National Mathematics Advisory Panel (NMAP)
within the US Department of Education was established by executive
order of then President George W. Bush to advise him, as well as
the Secretary of Education, on means to “foster greater knowledge
of and improved performance in mathematics among American stu-
dents.’’1 Among the panel’s charges was to make recommendations
on “the critical skills and skill progressions for students to acquire
competence in algebra and readiness for higher levels of mathemat-
ics.’’ Why should competence in algebra have been especially singled
out?

When it issued its final report in March 2008, the panel stated
that “a strong grounding in high school mathematics through Algebra
II or higher correlates powerfully with access to college, graduation
from college, and earning in the top quartile of income from employ-
ment.’’2 Furthermore, it acknowledged that “although our students en-
counter difficulties with many aspects of mathematics, many observers of

1 US Dept. of Education, 2008, p. 71. The next quotation is also found here.
2 US Dept. of Education, 2008, p. xii. For the next two quotations, see pp. xiii and 16,

respectively.
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educational policy see Algebra as a central concern.’’ The panel had
thus sought to determine how best to prepare students for entry into
algebra and, since algebra was of such concern, it had first to come to
terms with the question, what is the essential content of school algebra?
In answer, it identified the following as the major topics: symbols and
expressions, linear equations, quadratic equations, functions, the algebra
of polynomials, and combinatorics and finite probability. Of course,
each of these topics encompasses several subtopics. For example, the
“algebra of polynomials’’ includes complex numbers and operations,
the fundamental theorem of algebra, and Pascal’s triangle. Interestingly,
the panel mentioned “logarithmic functions’’ and “trigonometric func-
tions’’ under the topic of “functions’’ but made no explicit mention
of analytic geometry except in the special case of graphs of quadratic
functions. Although the details of the panel’s list might prompt these
and other quibbles, it nevertheless gives some idea of what high school
students, in the United States at least, generally study—or should study—
under the rubric of “algebra.’’

These topics, however, constitute “school algebra.’’ What about algebra
at the college level? Most courses entitled “college algebra’’ in the United
States simply revisit the aforementioned topics, sometimes going into
slightly greater depth than is expected in high school. Courses for
mathematics majors—entitled “modern algebra’’ or “abstract algebra’’—
are quite another matter, however. They embrace totally different topics:
groups, rings, fields, and, often, Galois theory. Sometimes such courses
also include vectors, matrices, determinants, and algebras (where the
latter is a technical term quite different from the broad subject under
consideration here).

And then there is algebra at the graduate and research levels. Graduate
students may take courses in commutative or noncommutative algebra,
representation theory, or Lie theory, while research mathematicians
styled “algebraists’’ may deal with topics like “homological functors on
modules,’’ “algebraic coding theory,’’ “regular local rings,’’ or any one
of hundreds of topics listed in the American Mathematical Society’s
“Mathematics Subject Classification.’’ How do all of these subjects at all of
these levels of sophistication fit together to constitute something called
“algebra’’? Before addressing this question, we might first ask why we
need this book about it?
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WHY THIS BOOK?

To be sure, the historical literature already includes several more or less
widely ranging books on the history of algebra that are targeted, like
the present book, at those with a background equivalent to a college
major in mathematics;3 a recent “popular’’ book assumes even less in the
way of mathematical prerequisites.4 Most in the former group, however,
are limited either in the eras covered or in geographical reach, while
that in the latter has too many errors of fact and interpretation to
stand unchallenged. This book thus grew out of a shared realization
that the time was ripe for a history of algebra that told the broader
story by incorporating new scholarship on the diverse regions within
which algebraic thought developed and by tracing the major themes
into the early twentieth century with the advent of the so-called “modern
algebra.’’

We also believe that this is a story very much worth telling, since it
is a history very much worth knowing. Using the history of algebra,
teachers of the subject, either at the school or at the college level, can
increase students’ overall understanding of the material. The “logical’’
development so prevalent in our textbooks is often sterile because it
explains neither why people were interested in a particular algebraic
topic in the first place nor why our students should be interested in that
topic today. History, on the other hand, often demonstrates the reasons
for both. With an understanding of the historical development of algebra,
moreover, teachers can better impart to their students an appreciation
that algebra is not arbitrary, that it is not created “full-blown’’ by fiat.
Rather, it develops at the hands of people who need to solve vital
problems, problems the solutions of which merit understanding. Algebra
has been and is being created in many areas of the world, with the same
solution often appearing in disparate times and places.

And this is neither a story nor a history limited to school stu-
dents and their teachers. College-level mathematics students and their

3 In fact, the prerequisites for reading the first ten chapters are little more than a solid high
school mathematics education. The more general histories of algebra include van der Waerden,
1985; Scholz, 1990; Bashmakova and Smirnova, 2000; and Cooke, 2008, while the more targeted
include Nový, 1973; Sesiano, 1999 and 2009; Kleiner, 2007; and Stedall, 2011.

4 Derbyshire, 2006.
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professors should also know the roots of the algebra they study. With an
understanding of the historical development of the field, professors can
stimulate their students to master often complex notions by motivating
the material through the historical questions that prompted its develop-
ment. In absorbing the idea, moreover, that people struggled with many
important mathematical ideas before finding their solutions, that they
frequently could not solve problems entirely, and that they consciously left
them for their successors to explore, students can better appreciate the
mathematical endeavor and its shared purpose. To paraphrase the great
seventeenth- and early eighteenth-century English mathematician and
natural philosopher, Sir Isaac Newton, mathematicians have always seen
farther by “standing on the shoulders’’ of those who came before them.

One of our goals in the present book is thus to show how—in
often convoluted historical twists and turns—the deeper and deeper
consideration of some of the earliest algebraic topics—those generally
covered in schools—ultimately led mathematicians to discover or invent
the ideas that constitute much of the algebra studied by advanced college-
level students. And, although the prerequisites assumed of our readers
limit our exploration of the development of the more advanced algebraic
topics encountered at the graduate and research levels, we provide at
least a glimpse of the origins of some of those more advanced topics in
the book’s final chapters.

SETTING AND EXAMINING THE HISTORICAL PARAMETERS

Nearly five decades before the National Mathematics Advisory Panel
issued its report, historian of mathematics, Michael Mahoney, gave a
more abstract definition of algebra, or, as he termed it, the “algebraic
mode of thought’’:

What should be understood as the “algebraic mode of thought’’?
It has three main characteristics: first, this mode of thought is
characterized by the use of an operative symbolism, that is, a sym-
bolism that not only abbreviates words but represents the workings
of the combinatory operations, or, in other words, a symbolism with
which one operates. Second, precisely because of the central role
of combinatory operations, the algebraic mode of thought deals
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with mathematical relations rather than objects. Third, the algebraic
mode of thought is free of ontological commitment. . . .In particular,
this mode of thought is free of the intuitive ontology of the physical
world. Concepts like “space,’’ “dimension,’’ and even “number’’ are
understood in a purely mathematical sense, without reference to
their physical interpretation.5

Interestingly, Mahoney’s first characteristic of algebraic thought as an
“operative symbolism’’—as well as the discussion of symbolism—is the
first of the topics mentioned in the NMAP report. If, however, we believed
that an operative symbolism is a necessary characteristic of algebra, this
book would not begin before the seventeenth century since, before that
time, mathematics was generally carried out in words. Here, we shall
argue that symbolism is not necessary for algebra, although it has certainly
come to characterize it—and, indeed, all of mathematics—over the past
three centuries. We shall also argue that, initially, algebra dealt with
objects rather than relations and that the beginnings of algebra actually
required physical interpretations.

The roots of algebra go back thousands of years, as we shall see
in the next chapter, but the two earliest texts that serve to define a
subject of algebra are the Arithmetica of Diophantus (third century CE)
and The Compendious Book on the Calculation of al-Jabr and al-Muqābala
of al-Khwārizmı̄ (ninth century CE). Although neither of these books
required physical interpretations of the problems they presented, they
did deal with objects rather than relations and neither used any operative
symbolism. However, as we shall see below, al-Khwārizmı̄’s book in
particular was on the cusp of the change from “physical interpretations’’
to “abstract number’’ in the development of algebra. And, although
the term “algebra’’ is absent from the texts both of Diophantus and
al-Khwārizmı̄, it is clear that their major goal was to find unknown
numbers that were determined by their relationship to already known
numbers, that is, in modern terminology, to solve equations. This is also
one of the goals listed in the NMAP report, so it would be difficult to
deny that these works exhibit “algebraic thought.’’ Thus, in order to
study algebra historically, we need a definition of it somewhat different
from that of Mahoney, which applies only to the algebra of the past three
centuries.

5 Mahoney, 1971, pp. 1–2.
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It is interesting that school algebra texts today do not even attempt to
define their subject. In the eighteenth and nineteenth centuries, however,
textbook writers had no such compunction. The standard definition, in
fact, was one given by Leonhard Euler in his 1770 textbook, Elements
of Algebra. Algebra, for Euler, was “the science which teaches how to
determine unknown quantities by means of those that are known.’’6 He
thus articulated explicitly what most of his predecessors had implicitly
taken as the meaning of their subject, and we follow his lead here in
adopting his definition, at least in the initial stages of this book when
we explore how “determining unknowns’’ was accomplished in different
times and places.

Now, there is no denying that, taken literally, Euler’s definition of
algebra is vague. It is, for example, not immediately clear what constitutes
the “quantity’’ to be determined. Certainly, a “number’’ is a quantity—
however one may define “number’’—but is a line segment a “quantity’’?
Is a vector? Euler was actually clear on this point. “In algebra,’’ he
wrote, “we consider only numbers, which represent quantities, without
regarding the different kinds of quantity.’’7 So, unless a line segment
were somehow measured and thus represented by a number, Euler would
not have considered it a legitimate unknown of an algebraic equation.
Given, however, the close relationship between geometry and what was to
evolve into algebra, we would be remiss here not to include line segments
as possible unknowns in an equation, regardless of how they may be
described, or line segments and areas as “knowns,’’ even if they are not
measured. By the time our story has progressed into the nineteenth
century, moreover, we shall see that the broadening of the mathematical
horizon will make it necessary also to consider vectors, matrices, and
other types of mathematical objects as unknowns in an equation.

Besides being vague, Euler’s definition, taken literally, is also quite
broad. It encompasses what we generally think of as “arithmetic,’’ since
the sum of 18 and 43 can be thought of as an “unknown’’ that can be
expressed by the modern equation x = 18 + 43. To separate arithmetic
from algebra, then, our historical analysis will generally be restricted to
efforts to find unknowns that are linked to knowns in a more complicated
way than just via an operation. This still leaves room for debate, however,

6 Euler, 1770/1984, p. 186.
7 Euler, 1770/1984, p. 2.
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as to what actually constitutes an “algebraic’’ problem. In particular, some
of the earliest questions in which unknowns are sought involve what we
term proportion problems, that is, problems solved through a version of
the “rule of three,’’ namely, if a

b = x
c , then x = ac

b . These appear in texts
from ancient Egypt but also from Mesopotamia, India, China, Islam, and
early modern Europe. Such problems are even found, in geometric guise,
in classical Greek mathematics. However, al-Khwārizmı̄ and his successors
generally did not consider proportion problems in discussing their own
science of al-jabr and al-muqābala. Rather, they preferred to treat them
as part of “arithmetic,’’ that is, as a very basic part of the foundation
of mathematical learning. In addition, such problems generally arose
from real-world situations, and their solutions thus answered real-world
questions. It would seem that in ancient times, even the solution of what
we would call a linear equation in one variable was part of proportion
theory, since such equations were frequently solved using “false position,’’
a method clearly based on proportions. Originally, then, such equations
fell outside the concern of algebra, even though they are very much part
of algebra now.

Given these historical vagaries, it is perhaps easiest to trace the
development of algebra through the search for solutions to what we
call quadratic equations. In the “West’’—which, for us, will include the
modern-day Middle East as far as India in light of what we currently
know about the transmission of mathematical thought—a four-stage
process can be identified in the history of this part of algebra. The
first, geometric stage goes back some four millennia to Mesopotamia,
where the earliest examples of quadratic equations are geometric in the
sense that they ask for the unknown length of a side of a rectangle,
for example, given certain relations involving the sides and the area.
In general, problems were solved through manipulations of squares
and rectangles and in purely geometric terms. Still, Mesopotamian
mathematicians were flexible enough to treat quadratic problems not
originally set in a geometric context by translating them into their
geometric terminology. Mesopotamian methods for solving quadratic
problems were also reflected in Greek geometric algebra, whether or not
the Greeks were aware of the original context, as well as in some of the
earliest Islamic algebraic texts.

Al-Khwārizmı̄’s work, however, marked a definite shift to what may be
called the static, equation-solving, algorithmic stage of algebra. Although



8 Chapter 1

al-Khwārizmı̄ and other Islamic authors justified their methods through
geometry—either through Mesopotamian cut-and-paste geometry or
through formal Greek geometry—they were interested not in finding
sides of squares or rectangles but in finding numbers that satisfied certain
conditions, numbers, in other words, that were not tied to any geometric
object. The procedure for solving a quadratic equation for a number is, of
course, the same as that for finding the side of a square, but the origin of
a more recognizable algebra can be seen as coinciding with this change
from the geometric to the algorithmic state, that is, from the quest for
finding a geometric object to the search for just an unknown “thing.’’
The solution of cubic equations followed the same path as that of the
quadratics, moving from an original geometric stage, as seen initially in
the writing of Archimedes (third century BCE) and then later in the work
of various medieval Islamic mathematicians, into an algorithmic stage by
the sixteenth century.

Interestingly, in India, there is no evidence of an evolution from
a geometric stage to an algorithmic one, although the ancient Indi-
ans knew how to solve certain problems through the manipulation of
squares and rectangles. The earliest written Indian sources that we
have containing quadratic equations teach their solution via a version
of the quadratic formula. In China, on the other hand, there is no
evidence of either geometric or algorithmic reasoning in the solution of
quadratic equations. All equations, of whatever degree above the first,
were solved through approximation techniques. Still, both Indian and
Chinese mathematicians developed numerical algorithms to solve other
types of equations, especially indeterminate ones. One of our goals in this
book is thus to highlight how each of these civilizations approached what
we now classify as algebraic reasoning.

With the introduction of a flexible and operative symbolism in the late
sixteenth and seventeenth century by François Viète, Thomas Harriot,
René Descartes, and others, algebra entered yet another new stage. It
no longer reflected the quest to find merely a numerical solution to
an equation but expanded to include complete curves as represented
by equations in two variables. This stage—marked by the appearance of
analytic geometry—may be thought of as the dynamic stage, since studying
curves as solutions of equations—now termed differential equations—
arose in problems about motion.
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New symbolism for representing curves also made it possible to
translate the complicated geometric descriptions of conic sections that
Apollonius had formulated in the third century BCE into brief symbolic
equations. In that form, mathematics became increasingly democratic,
that is, accessible for mastery to greater numbers of people. This was
even true of solving static equations. The verbal solutions of complicated
problems, as exemplified in the work of authors like the ninth-century
Egyptian Abū Kāmil and the thirteenth-century Italian Leonardo of
Pisa, were extremely difficult to follow, especially given that copies
of their manuscripts frequently contained errors. The introduction of
symbolism, with its relatively simple rules of operation, made it possible
for more people to understand mathematics and thus, ultimately, for
more mathematics to be created. It also provided a common language
that, once adopted, damped regional differences in approach.8

Moreover, spurred by Cardano’s publication in 1545 of the algorithmic
solutions of cubic and quartic equations, the new symbolism enabled
mathematicians to pursue the solution of equations of degree higher
than four. That quest ultimately redirected algebra from the relatively
concrete goal of finding solutions to equations to a more abstract stage, in
which the study of structures—that is, sets with well-defined axioms for
combining two elements—ultimately became paramount. In this changed
algebraic environment, groups were introduced in the nineteenth century
to aid in the determination of which equations of higher degree were, in
fact, solvable by radicals, while determinants, vectors, and matrices were
developed to further the study of systems of linear equations, especially
when those systems had infinitely many solutions.

Complex numbers also arose initially as a result of efforts to under-
stand the algorithm for solving cubic equations, but subsequently took
on a life of their own. Mathematicians first realized that the complex
numbers possessed virtually the same properties as the real numbers,
namely, the properties of what became known as a field. This prompted
the search for other such systems. Given fields of various types, then, it

8 This is not to say that indigenous techniques and traditions did not persist. Owing to political
and cultural mores, for example, Japan and China can be said to have largely maintained
indigenous mathematical traditions through the nineteenth century. However, see Hsia, 2009
and Jami, 2012 for information on the introduction of European mathematics into China
beginning in the late sixteenth century.
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was only natural to look at the analogues of integers in those fields, a step
that led ultimately to the notions of rings, modules, and ideals. In yet a
different vein, mathematicians realized that complex numbers provided
a way of multiplying vectors in the plane. This recognition motivated the
nineteenth-century Irish mathematician, William Rowan Hamilton, to
seek an analogous generalization for three-dimensional space. Although
that problem proved insoluble, Hamilton’s pursuits resulted in a four-
dimensional system of “generalized numbers,’’ the quaternions, in which
the associative law of multiplication held but not the commutative law.
Pushing this idea further, Hamilton’s successors over the next century de-
veloped the even more general notion of algebras, that is, n-dimensional
spaces with a natural multiplication.

At the close of the nineteenth century, the major textbooks continued
to deem the solution of equations the chief goal of algebra, that is,
its main defining characteristic as a mathematical subject matter. The
various structures that had been developed were thus viewed as a means
to that end. In the opening decades of the twentieth century, however,
the hierarchy flipped. The work of the German mathematician, Emmy
Noether, as well as her students and mathematical fellow travelers
fundamentally reoriented algebra from the more particular and, in some
sense, applied solution of equations to the more general and abstract
study of structures per se. The textbook, Moderne Algebra (1930–1931),
by one of those students, Bartel van der Waerden, became the manifesto
for this new definition of algebra that has persisted into the twenty-first
century.

THE TASK AT HAND

Here, we shall trace the evolution of the algebraic ideas sketched above,
delving into some of the many intricacies of the historical record.
We shall consider the context in which algebraic ideas developed in
various civilizations and speculate, where records do not exist, as to
the original reasoning of the developers. We shall see that some of the
same ideas appeared repeatedly over time and place and wonder if
there were means of transmission from one civilization to another that
are currently invisible in the historical record. We shall also observe
how mathematicians, once they found solutions to concrete problems,
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frequently generalized to situations well beyond the original question.
Inquiries into these and other issues will allow us to reveal not only the
historicity but also the complexity of trying to answer the question, what
is algebra?, a question, as we shall see, with different answers for different
people in different times and places.
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ideal complex numbers, 320–321, 390–394,

396
ideals, 397–398, 425n110, 432, 440–442;

chain conditions on, 442
idempotent, 418
imaginary numbers, 400
indeterminate equations: in the Arithmetica of

Diophantus, 64–68, 335; in China, 98–100;
in India, 118–119; in Islamic mathematics,
153–158

India, algebra in (see algebra, in India)
inductive proof, 164–165
infinite descent, method of, 382
integral domain, 398n43
International Congress of Mathematicians,

429–430
internationalization of mathematics, 429
invariants, theory of (see also forms, theory

of), 318, 372–373, 377–378, 428;

Aronhold’s work on the, 374–377; Cayley’s
work on the, 366–371; Gordan’s work on
the, 378; Hilbert’s work on the, 378–380;
Sylvester’s work on the, 353, 367–373,
375

Islam, algebra in medieval (see algebra, in
medieval Islam)

Iskur-mansum, 24

Jacobi, Carl, 344, 349, 388
Jacopo of Florence, 191–192
Jahrbuch über die Fortschritte der Mathematik,

429
Jayadeva, 124–125
Jean des Murs (see Johannes de Muris)
Jia Xian, 92
Jiuzhang suanshu (see Nine Chapters on the

Mathematical Art)
Johannes de Muris (or Jean des Murs),

181n14
John of Palermo, 185
Jordan, Camille, 316–317, 327; permutations

in the work of, 316–317; Traité des
substitutions et des équations algébriques,
316–317, 363

Jordanus of Nemore, 187–188, 190–191; De
numeris datis, 187–190, 240n64; quadratic
equations in the work of, 188–190

Journal für die reine und angewandte
Mathematik, 320

Jyes.t.hadeva, 127–130, 165

Kant, Immanuel, 402
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Mādhava, 127
maestri d’abbaco (see also libri d’abbaco),

201–202, 203n68, 205, 223, 228, 229, 237,
246
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Pr.thūdakasvāmin, 113, 119–120
Ptolemy, Claudius, 59, 78, 134, 177
Ptolemy I, 58
Pythagoras, 33
Pythagorean theorem, 38–39, 41–42, 91–92,

97, 110, 152

Qin Jiushao, 92, 94, 98, 102; Mathematical
Treatise in Nine Sections, 92–94, 102–104

quadratic equations, 2, 7–9; in Chinese
mathematics, 91–92, 94; in Egyptian
mathematics, 15–16; in Indian
mathematics, 109–118, 130; in Islamic
mathematics, 137–153; in Mesopotamian
mathematics, 18, 20–32, 143, 147; six-fold
classification of, 139–140, 144; in the work
of the cossists, 208, 211–212; in the work of
Descartes, 265; in the work of
Diophantus, 64–68, 72–77; in the work of
Euclid, 35–48; in the work of Girard, 260;
in the work of Harriot, 251–252; in the
work of Jordanus of Nemore, 188–190; in
the work of Leonardo of Pisa, 179–182,
184–187; in the work of the maestri
d’abbaco, 192, 197–200; in the work of
Newton, 278–279; in the work of Viète,
241, 244–245

quadratic forms, 318–321, 329, 332,
346–355, 357–361, 364, 373, 385;
discriminant of, 318, 353



484 Index

quadratic formula, 22, 24–25, 90, 94,
112–114, 130, 142, 149, 180, 190, 241,
251, 265, 276, 279

quadratic reciprocity, law of, 385–386
quadric surfaces, 347
quantics, 370–380
quartic equations, 246, 283, 297–298; in

Chinese mathematics, 93–95, 98; in Indian
mathematics, 115–116; in Islamic
mathematics, 149–150; in the work of
Cardano, 222–225, 227; in the work of
Descartes, 268–270; in the work of
Diophantus, 74–77; in the work of Girard,
260; in the work of Harriot, 251–252; in
the work of the maestri d’abbaco, 196–197;
in the work of Pacioli, 214–215; in the work
of Viète, 245

quasi-real-world problems, 147, 151–152,
159–160, 192, 195, 208, 277

quaternions, 406–407, 415, 420–421, 428;
complex, 408

quintic equations, 289, 314–315; in the work
of Bezout, 293–294; in the work of de
Moivre, 290–291; in the work of Hermite,
315; unsolvability of, 298–300

quotient group, definition of by Hölder, 330
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