Contents

4. What Dark Matter Is Not

- 4.1 Making Visible Matter: The Big Bang
- 4.2 Neutrinos as Dark Matter
- 4.3 Black Holes, White Dwarfs, Failed Stars, and Planets
 - 4.3.1 Baryonic Compact Objects
 - 4.3.2 Primordial Black Holes
- 4.4 Modified Newtonian Dynamics

5. Searching for WIMPS on Earth

- 5.1 Dark Matter in Galaxies
- 5.2 Detecting WIMP Dark Matter from Elastic Scattering
- 5.3 Measuring Two Kinds of Energy
- 5.4 Detecting the Earth's Motion through the Dark Matter Halo

6. Searching for Dark Matter in Space

- 6.1 WIMP Annihilation in the Galaxy
- 6.2 Detecting Cosmic Rays

7. Searching for Axions

- 7.1 Why Do We Need Axions?
- 7.2 The Axion Dark Matter Experiment
- 7.3 The CERN Axion Solar Telescope (CAST)

8. Epilogue

- 8.1 Looking Forward: Current and Upcoming Dark Matter Experiments
- 8.2 Outlook

Glossary

Suggested Readings

Index
INTRODUCTION:
THE DARK MATTER PROBLEM

Suppose you became aware that there were specters, invisible beings, living in your house. You cannot see, hear, or feel them, but you know they are there, because they move things around your home, open and close doors, and change the room temperature. You begin to notice patterns for these changes, as if they are governed by rules.

After a time, knowing their patterns, you begin to learn the rules. You learn how to predict what changes they will make, and when they will make them. As more time passes, you come to suspect that there are many specters—maybe ten for each person in your house. The specters have always dominated your environment, and you and your family have always responded to them without knowing it.

Your curiosity about the specters grows, and you try to learn more about them—what are they made of? Where did they come from? What do they want? Still, you never sense them directly, but only learn about them through the changes they make in your (their?) home. The specters shape your environment, but you do not shape theirs. They are completely unresponsive to anything you do to communicate with or learn about them. You imagine that the specters have always been there. They are not intruders, but part of the natural order of things.
Most of us would find such a circumstance very strange, perhaps troubling, and certainly very frustrating. How could we have coexisted with so many specters for so long without knowing it? Why is it so difficult to learn about them? Where did they come from?

Over the twentieth century, astronomers gradually became aware of “specters” in our universe in the form of a new substance first called “missing mass” and later “dark matter.” This book uses the term dark matter. Dark matter created the shape and structure of galaxies, clusters of galaxies, and the universe itself.

The goal of this book is to make sense of the specters that represent dark matter: to explain how astronomers came to know about it; how theoreticians uncovered how dark matter shaped the largest structures in our universe through gravity; and how physicists and astronomers are navigating the complex, frustrating hunt to understand more about dark matter.

I will use the terms visible matter or normal or luminous matter to refer to matter that forms stars and generates the light that we observe through telescopes. Dark matter’s “invisibility” means that it does not form stars or generate light (hence the term “dark” matter). More broadly, “dark” implies that dark matter does not significantly interact with visible or normal matter in any way other than through gravity.

Over the past 85 years, particle physicists, astronomers, and astrophysicists have shown through the process of elimination that no known substance can account for the

1. The glossary at the end of the book provides brief explanations of words in bold.
effects of dark matter. That includes planets, extra gas in the universe, and anything else that is made of particles that we know about. This also includes the black holes made from the collapse of stars at the end of their lives. However, there is the idea that as-yet unobserved primordial black holes (PBHs) that formed in the early universe from matter fluctuations in space-time could explain dark matter.

In the 1930s, a few astronomers began to understand that the amount of visible matter in clusters of galaxies could not explain the motion of the galaxies in their cluster. The total mass of the newly discovered invisible matter appeared to be tens or hundreds of times the visible mass of the stars. In the 1970s, measurements of how stars move inside galaxies led to the idea that some unseen gravitating matter causes the visible stars to orbit around the center of their galaxy faster than predicted from just the mass of the stars alone. To explain this concept, and set the stage for the rest of the book, Chapter 1 provides some physics background. Chapter 2 then lays out the evidence for dark matter from astronomical observations.

In Chapter 3, we turn to what we do know. Four forces describe almost all the dynamics of matter. The weak force causes radioactive decays, the strong force binds quarks into protons and neutrons and binds protons and neutrons into atomic nuclei, the electromagnetic force determines the structure of matter, and all matter and energy feel the force of gravity. The weak, strong, and electromagnetic forces are all variants of quantum field theory and collectively make up the Standard Model of particle physics. The three Standard Model forces act on quarks and leptons that make up normal matter.
The Standard Model explains almost all the observed interactions between particles made since Henri Becquerel first observed radioactive decay in 1896. Albert Einstein and his successors left us with an excellent classical theory of gravity, but theorists have been unable to find a quantum theory of gravity, leaving us with a patchwork of theories: the quantum mechanical Standard Model for quarks and leptons, and classical gravity that acts on all matter. Dark matter does not fit anywhere in our patchwork: None of the known particles from the Standard Model have the properties of dark matter; and classical gravity does not predict particles, as gravity acts on all matter.

Chapter 4 follows the experiments that led to the conclusion that dark matter does not fit into our current view of particle physics, leaving the problem of finding out what dark matter is.

Over the past 30 years, many ideas have emerged to explain the effects of dark matter. This book focuses mostly on two hypothesized new particles, called Weakly Interacting Massive Particles (WIMPs) and axions, both of which could be dark matter particles. Chapters 5 and 6 explain some of the experiments searching for WIMPs on Earth and in space. Chapter 7 describes the idea behind axions, how axions could be dark matter, and how physicists search for axions.

This book does not end in Chapter 8 with a grand revelation of the properties of dark matter—these still elude my experimental colleagues and me. However, I hope that you will gain a deeper understanding of the dark matter problem and what a triumph it will be when we do learn something new about dark matter.
INDEX

\[E = mc^2, \ 11, \ 78 \]
\[Z^0 \ text{ bosons}, \ 124 \]
1E 0657-56, 46–49, 51, 74, 96
acceleration, gravitational, 6, 8, 9, 11
Moon, 11
Advanced Thin Ionization Calorimeter (ATIC), 131
alpha decays, 86, 102
Alpha Magnetic Spectrometer (AMS), 132
alpha rays, 87, see also beta rays; gamma rays, 106, 109
Alpher, Ralph, 76
AMS-02 experiment, 147
Andromeda galaxy, 13, 14, 21, 33, 34, 95, 147
mass of, 38
rotation of, 35
Andromeda Gravitational Amplification Pixel Experiment (AGAPE), 91
angular momentum
dark matter, 99
annihilation
anti-neutrinos, 82
anti-quarks, 80
dark matter, 122–124, 126–128, 131–132, 134
electron-positron, 81
galaxy, 122–127
neutrinos, 82
neutron–anti-neutrons, 83
probability for, 123
rate, 123
anti-hadrons, 81
anti-matter, 83
anti-neutrinos, 80, 81, 82, 88
anti-neutrons, 81, 82
anti-particles, 81–83
anti-protons, 81–83
anti-quarks, 67, see also quarks, 80
annihilation, 80
argon, 112
asteroids, 95
astronomers, 2, 3, 8, 12, 18, 21, 34, 40, 51, 61, 62, 85, 98, 99, 146
astronomical unit (AU), 12
astrophysicists, 2, 12, 122
atmospheric neutrinos, 115
atomic electrons, 36, 109, 110
atomic hydrogen, 52
atomic nuclei, 3, 125, 148
atom, 63, 64, 105, 112, 115, 126
Axion Dark Matter Experiment (ADMX), 137–145
axions, 4, 73, 93, 94, 97, 98, 101, 123, 135–145, 148, 149
detection, 135, 137
interaction, 135
magnetic field, 140
mass, 138
microwave, 150
microwave photons, 140
photons and, 135
Baade, Walter, 36
Babcock, Horace, 35, 36
baryonic compact objects, 88–92
baryonic gas, 99
baryonic matter, 85, 97, 99, 103
baryons, 14, 65, 82, 86, 88, 89, 92–94, 99, 100, 101, 116, 121
Becquerel, Henri, 4, 86
beta decay
 neutrons, 69
 decays, 86, 87, 102
 electrons, 87
 rays, 86, 87, 106, 109
 spectrum, 87
Betelguese, 144
BICEP2 experiment, 77
Big Bang, 28, 76
 light from, 51–60
 nucleosynthesis, 84
 protons in, 77
Big Bang theory, 28, 63, 76, 77, 85, 88, 97
black holes, 3, 46, 75, 76, 88, 92, 99, 133, 134
formation, 76
neutron star, 76
primordial, 92–96
supernova, 76
blueshift, 18, 19
Bohr, Niels, 87, 152
Bohr's conjecture, 87
BOOMERanG experiment, 60
bosons, 64, 67, 68, 71–73
 exchange, 72
 gauge, 66
 scalar, 64, 66
 bubbles, 133
Bullet Cluster, 46, 47, 49, see also Coma Cluster, 51
Carnegie Observatories, 36
caustics, 101
Cepheid variable stars, 21
CERN Axion Solar Telescope (CAST), 141–145
charged particle magnetic spectrometer, 130
clusters, 44, 61, 88
 motion of galaxies in, 32
 clusters of galaxies, 2, 3, 9, 13, 20, 28, 29
cold dark matter, 61
Coma Cluster, 30–32, 38, 75
 mass-to-light ratio for, 30
 sky map, 31
 Zwicky's survey, 31
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>conservation of energy, 87</td>
<td>87</td>
</tr>
<tr>
<td>contraction-expansion-contraction cycle, 55, 57</td>
<td></td>
</tr>
<tr>
<td>COSINE-100, 120</td>
<td></td>
</tr>
<tr>
<td>Cosmic Background Explorer (COBE), 51, 58, 60</td>
<td></td>
</tr>
<tr>
<td>cosmic microwave background (CMB), 52, 58, 60, 76, 77, 85</td>
<td></td>
</tr>
<tr>
<td>cosmic rays, 83, 102, 105, 106, 107, 108, 111, 113, 114, 115, 122, 123, 124, 125, 147</td>
<td></td>
</tr>
<tr>
<td>detection, 127–134</td>
<td></td>
</tr>
<tr>
<td>Earth, 127</td>
<td></td>
</tr>
<tr>
<td>electrons, 126</td>
<td></td>
</tr>
<tr>
<td>experiments, 128</td>
<td></td>
</tr>
<tr>
<td>muons, 108</td>
<td></td>
</tr>
<tr>
<td>particles, 106</td>
<td></td>
</tr>
<tr>
<td>proton, 114</td>
<td></td>
</tr>
<tr>
<td>protons, 126</td>
<td></td>
</tr>
<tr>
<td>cosmological constant, 20, 27, 28</td>
<td></td>
</tr>
<tr>
<td>cosmologists, 12, 23, 77</td>
<td></td>
</tr>
<tr>
<td>cosmology, 28</td>
<td></td>
</tr>
<tr>
<td>cosmos, 6, 77, 134</td>
<td></td>
</tr>
<tr>
<td>Coulomb interaction, 54</td>
<td></td>
</tr>
<tr>
<td>Cowan, Clyde, 75</td>
<td></td>
</tr>
<tr>
<td>CP, 136</td>
<td></td>
</tr>
<tr>
<td>Cryogenic Dark Matter Search (CDMS), 110–112, 147</td>
<td></td>
</tr>
<tr>
<td>Cryogenic Rare Event Search with Superconducting Thermometers (CRESST), 111</td>
<td></td>
</tr>
<tr>
<td>cryostat, 108</td>
<td></td>
</tr>
<tr>
<td>Cygnus, 116, 117, 120</td>
<td></td>
</tr>
<tr>
<td>dark baryons, 89</td>
<td></td>
</tr>
<tr>
<td>dark energy, 20–28</td>
<td></td>
</tr>
<tr>
<td>density, 26</td>
<td></td>
</tr>
<tr>
<td>dark matter, 20, 75, 105</td>
<td></td>
</tr>
<tr>
<td>angular momentum, 99</td>
<td></td>
</tr>
<tr>
<td>annihilation, 122–124, 127, 131, 132</td>
<td></td>
</tr>
<tr>
<td>axions, 98, 141</td>
<td></td>
</tr>
<tr>
<td>cosmic rays, 134</td>
<td></td>
</tr>
<tr>
<td>defined, 2</td>
<td></td>
</tr>
<tr>
<td>density fluctuations, 53</td>
<td></td>
</tr>
<tr>
<td>detector, 108</td>
<td></td>
</tr>
<tr>
<td>elastic scattering, 104</td>
<td></td>
</tr>
<tr>
<td>experiments, 102, 116</td>
<td></td>
</tr>
<tr>
<td>galactic halo, 123</td>
<td></td>
</tr>
<tr>
<td>galaxies, 99–101</td>
<td></td>
</tr>
<tr>
<td>gravitational field, 40</td>
<td></td>
</tr>
<tr>
<td>gravitational forces, 29</td>
<td></td>
</tr>
<tr>
<td>halo, 116–121</td>
<td></td>
</tr>
<tr>
<td>interaction, 113</td>
<td></td>
</tr>
<tr>
<td>interaction rate with normal matter, 103</td>
<td></td>
</tr>
<tr>
<td>invisibility, 2</td>
<td></td>
</tr>
<tr>
<td>neutrinos as, 86–88</td>
<td></td>
</tr>
<tr>
<td>particles, 103</td>
<td></td>
</tr>
<tr>
<td>PBH, 94</td>
<td></td>
</tr>
<tr>
<td>potential well, 54, 55</td>
<td></td>
</tr>
<tr>
<td>WIMPs, 102</td>
<td></td>
</tr>
<tr>
<td>Dark Matter Radio (DMRadio), 148</td>
<td></td>
</tr>
<tr>
<td>Dark Matter/Large sodium Iodide Bulk for RARe processes (DAMA/LIBRA)</td>
<td></td>
</tr>
<tr>
<td>decoupling, 82</td>
<td></td>
</tr>
<tr>
<td>density fluctuations, 52, 53, 57, 88, 98, 99</td>
<td></td>
</tr>
</tbody>
</table>
detector
 cosmic rays, 128
 nuclear recoil, 115
 solar axions, 142
 spaceborne, 126
detected, 142
 deuterium, 53, 84, 88
detectors, 84, 115
differential microwave
 radiometers (DMRs), 58
dipole magnet, 142, 143
Dirac, Paul A. M., 150, 152
distances in universe, 12–14
 Andromeda galaxy, 13
 astronomical unit (AU), 12
Earth to Moon, 12
Earth to Proxima Centauri, 13
Earth to Sun, 12
light-year (lt-yr), 12
meters, 12
scientific notation, 12
solar system to galactic
 superclusters, 15
Doppler shift of sound, 19
double beta decays, 106
dwarf galaxies, 34, 133
dying star, explosion, 124
dynamical law, 6
Earth
 atmosphere, 115
 atmosphere, 127
 axions and, 123
 cosmic rays, 127
 magnetic field, 125, 128
 Moon, distance to, 12
motion detection through dark
 matter halo, 116–121
 orbit, 13, 99
 size of, 13
 Sun orbit, 13, 116
 WIMPs and, 123
Eddington, Arthur, 43
Edelweiss-III, 108
Einstein, Albert, 4, 5, 11, 18, 23,
 27, 43, 77, 150, 152
Einstein radius, 90, 91
Einstein’s theory of general
 relativity, 23, 28, 77
 Einstein’s theory of gravity, 43,
 72, 74, 152
electric field, 120, 138
electromagnetic calorimeter
 (ECAL), 130
electromagnetic decay, 69
electromagnetic energy, 68
electromagnetic forces, 3, 10, 29,
 49, 72, 150
electromagnetic waves, 16, 44
electron-positron annihilation,
 81, 83
electron-positron flux, 132
electronic forces, 68
electrons, 53, 65, 68, 80, 81, 86,
 124
electroweak unification, 150
Ellis, Charles, 87
energy, 5–12
 energy density, 23
 energy threshold, 118
Expérience pour la Recherche
 d’Objets Sombres (EROS),
 91, 92
failed stars, 32, 86, 88–89
Fast Fourier Transform (FFT), 140
Fermi, Enrico, 124, 150
Fermi Bubbles, 133–134
Fermi Gamma-Ray Space Telescope (Fermi), 132, 133
Fermi National Laboratory, 72
Fermi spacecraft, 134
fermions, 64, 67, 68, 71–73
fine-tuning problem, 72, 73
fission reactor, 75
forces, 3
acting on body, 7
bodies produces, 5
carriers, 65
defined, 6
distance between the bodies and, 7
electromagnetic, 3, 10, 29, 65, 72
gravitational, 3, 5, 8, 15, 29
motion of objects, 5
size of, 7
strong, 3, 29, 65, 72
tidal, 10
weak, 3, 29, 65, 72
Ford, Kent, 36, 38, 39
Friedmann, Alexander, 77
galactic halo, 123
galactic magnetic field, 125
galactic structure, 14
galactic superclusters, 15
galaxies, 2, 3, 21
1E 0657-56, 46, 47–49
Bullet Cluster, 46, 51
dark matter in, 99–101
formation, 38, 100
lensing, 45
mass of, 34
motion of, 18, 30, 41
motion of stars, 33
New General Catalog (NGC), 39
orbit of stars in, 32–38
recession measurement, 22
universality of rotation curves, 39
galaxy clusters, 13, 27, 61
Galilei, Galileo, 5
gamma rays, 106, 107, 108, 109, 111, 115, 127, 133, 134
map of galaxy, 133
photons, 110, 112, 132
Gamow, George, 76
gas, 78
baryonic, 99
thermal energy, 79
gauge bosons, 64, 66
generation of particles, 64
Germanium, 104, 107, 109
detector, 105
double beta decays, 111
experiments, 109, 110
gluons, 3, 65, 69, 78, 79
gravitational field, 40
gravitational forces, 3, 5, 8, 15, 29
gravitational lensing, 40–46, 50, 89, 147, 149
gravitational waves, 150
gravitational well, 54
gravity, 3, 4, 5, 67, 93
bending of space and time, 72
For general queries, contact webmaster@press.princeton.edu
gravity (cont.)
dark matter and, 99
distant bodies, between, 6
effects, 5
light ray deflection, 42
Green Bank Observatory, 36

hadrons, 64, 65, 67, 81
Hahn, Otto, 87
Hawking, Stephen, 92, 95
helium, 53, 127
Herman, Robert, 76
Higgs boson, 64, 66–72, 147, 150
particles, 66, 69, 71
High Energy Anti-matter Telescope (HEAT), 131
high-energy electrons, 131
high-energy particles, 83
high-energy positrons, 131
HII regions, 36
Hitchcock, Alfred, 152
Hubble, Edwin, 19, 21, 22
Hubble Constant, 22
Hubble flow, 27
Hubble Space Telescope (HST), 16
Hubble’s law, 22, 28
hydrogen, 54, 56, 57, 76
hydrogen atoms, 51, 65, 125
hydrogen gas, 34
velocity of, 36
inertia, 6
inflationary theory, 77, 78
inflations, 52
inflatons, 52

International Axion Observatory (IAXO), 144, 148
intracluster gas, 47, 49
infrared matter, 3
ionization energy loss, 126
isotopes, 67
Kapton’s star, 30, 32
Kepler, Johannes, 5
kinematic law, 6
kinetic energy, 15, 79, 87
dark matter, 118
nucleus, 102
Lambda-CDM model, 61
Large Area Telescope (Fermi/LAT), 132
Large Hadron Collider (LHC), 147
Large Magellanic Cloud (LMC), 13, 90, 147
Laser Interferometer Gravitational-Wave Observatory (LIGO), 150
LeMaître, Georges, 77
lensing effect, 43
leptons, 3, 4, 64, 65, 66, 68, 78–80, 124
Lick Observatory, 36
light detectors, 112
light waves, 17, 25
light-year (lt-yr), 12
liquid helium, 138, 139
liquid helium coolant, 129
Lowell Observatory, 18
LZ, 147
INDEX

M31, see Andromeda galaxy
MacGuffins, 152
MACHO experiment, 89, 91, 92
magnet, 129
magnetic field, 125, 126, 138
Majorana mass, 151
Majorana neutrinos, 151
mass, 5–12
 axions, 137, 138
 measurement, 6
 protons, 137, 139, 141, 144
mass-energy, 12
mass-to-light ratios, 30
massive compact halo object
 (MACHOs), 89
matter, 2
matter density, 23
matter-energy density, 25
MAXIMA balloon experiment, 61
Mayall, Nicholas, 36
Meitner, Lise, 87
Mercury, 95
microlensing, 46
microwave axions, 150
microwave photon, 100
Milgrom, Mordechai, 96
Milky Way galaxy, 13, 21, 30, 89, 99–101
 lensing transiting objects, 90
missing mass, see dark matter
modified Newtonian dynamics
 (MOND), 46, 47, 74, 96
motion of objects, 5
Mount Palomar Observatory, 30
Mount Wilson Observatory, 36
muon veto, 108
muons, 64, 65, 66, 71, 114, 124
 spin frequency, 71
nebula, 21
neon, 112
Neptune, 13
neutral supersymmetric particles, 103
neutrinoless double beta decay, 151
neutrinos, 64, 65, 66, 75, 78–81, 86–88, 103, 111, 114–116, 124
 annihilation, 82
 atmospheric, 115
 dark matter, 86–88
 electron, 64, 87
 electron-positron annihilation to, 81
 muon, 64, 88
 tau, 64, 88
neutron stars, 75, 76, 89
 absorber, 108, 113
 beta decay, 69
 electric dipole moment, 136
New General Catalog (NGC), 39
Newton, Isaac, 5
Newton’s dynamic law of gravitation, 7–8
Newton’s law of gravitation, 5
 on distant object, 6
Newton’s laws of motion, 5, 6
 first law, 6
 second law, 6, 8, 96
 third law, 7
noble gases, 112
normal matter, 2
nuclear beta decay, 75
nuclear physicist, 86
nuclear recoil experiments, 88, 144, 147
nucleus, 65
recoiling, 110

Optical Gravitational Lensing Experiment (OGLE), 91, 92
orbital velocity, 34, 37, 38
orbits of stars in galaxies, 32–38
Ostriker, Jerimiah, 41

particle annihilation, 79
particle detectors, 105
particle physicist, 2
particle-anti-particle pairs, 83
particles decoupling, 82
Pauli, Wolfgang, 87
Payload for Anti-matter Matter Exploration and
Light-nuclei Astrophysics (PAMELA), 131, 132
PBH, see primordial black holes (PBH)
Peebles, James, 41
phase transition, 52, 53
phonons, 109, 111
photo detectors, 113
photons, 16, 25, 40, 54, 59, 65, 68, 78–81, 109, 110, 114, 126, 132
electron-positron annihilation, 81

fusion, 80
massless, 80
trapping, 141
physicists, 75, 87
pion, 69, 100
Planck, 59, 60
planetary orbit, 10
planets, 88, 89
Pluto, orbit, 13
position, 8
position-measuring detectors, 130
positrons, 53, 80, 81, 83, 126
primordial black holes (PBH), 3, 92–96, 148, 150
primordial universe, 92
Principia (Newton), 6, 7
protons, 3, 53, 65, 67, 81–83, 86, 100, 114, 127
atomic rays, 114
Proxima Centauri, 13
pulsars, 122, 133
quantum chromodynamics (QCD), 135, 136
quantum field theory, 3
quantum mechanical density fluctuations, 88, 92, 99
quantum mechanical Standard Model for quarks and leptons, 4
quantum mechanics, 52, 87, 93
quarks, 3, 4, 64–68, 78–81, see also anti-quarks, 124
quasar, 44, 45
INDEX

radio frequencies, 76
radioactive contamination, 106
radioactive decay, 4, 106
radioactivity, 107
radon gas, 107
recoil particle, 101, 102
redshift, 6, 18, 19, 76
 measuring speed using, 16–20
 orbital velocity, 34
 radio waves, 34
 velocities of galaxies, 22
Reines, Frederick, 75
relativistic quantum field theory, 150
ring imaging Cerenkov detector (RICH), 130
Roberts, Mort, 36, 38
Robertson, Howard, 77
Rubin, Vera, 36, 38, 39
Rutherford, Ernest, 87
scalar boson, 64, 66
scattering, 54
scattering off charged particles, 82
Schmidt-Cassegrain refracting telescope, 30
scientific notion, 12
scintillation light, 112
shock waves, 124
single-sided bound, 151
Slipher, Vesto, 18, 21, 33
Sloan Digital Sky Survey, 44
Small Magellanic Cloud (SMC), 13
solar axion detector, 142
solar system, 9, 116
solid-state detectors, 112
spaceborne experiments, 128
special relativity, 11
spiral galaxy, 13
spiral nebula, 33
spring scale, 10, 11
standard candles, 21
Standard Model of particle physics, 3, 4, 63, 64, 75, 79, 98
axions, 137
bosons, 67
electrons, 66
fermions, 67
force carriers, 64–66
forces, 65
gluons, 78
Higgs boson, 66–71
leptons, 78
neutrinos, 66, 78
particles and interactions, 63–68
photons, 78
quarks, 66, 78
testing, 71–74
Standard Model of particles physics, 123
stars
 failed, 88, 89
 light-emitting, 32, 33
 motion in galaxy, 33
 neutron, 75, 76, 89
 red giant, 137
 visible, 3
stellar nucleosynthesis, 84
strong forces, 3, 29, 72
Subaru telescope, 95
Sun, 13
super clusters, 13
superclusters, 13–15, 88
superconducting thermometers, 112
supernova, 76
supernova explosions, 122, 124
Supernovas, 133
supersymmetric particles, 97
Supersymmetry (SUSY), 73
SUSY, see Supersymmetry (SUSY)
tau, 64, 65, 124
time of flight (TOF) system, 130
theory of gravity, 4, 7, 27, 72, 94
Theory of Relativity, 18
 General, 5, 22
 Special, 5, 11, 18, 20, 22
thermal energy, 54
gas, 79
thermal equilibrium, 80–82
thorium, 107
tidal force, 10
two energy measurements, 109, 110
universal laws of motion, 5
universe
 expansion of, 19, 22, 23, 26
 matter-energy constant, 22
Uppsala General Catalogue of
Galaxies (UGC), 39
uranium, 107
vacuum expectation value (VEV), 69–71
vector bosons, 64, 68
velocity, 6, 8, 18
dispersion, 31
fractional recession, 26
hydrogen gas, 36
of galaxy, 21
orbit, 34
rotation of stars, 19
stars in galaxies, 36
virial theorem, 31, 32
visible matter, 2
gravitational forces on,
 29
motion of galaxies, 3
Volders, Louise, 36
Vuilluemier, Jean-Luc, 152
Walker, Arthur, 77
wavelength of light, 17
weak forces, 3, 29, 72, 150
weak lensing, 46, 47
Weakly Interacting Massive
Particles (WIMPs), 4,
 73, 93, 101, 102, 103,
 104, 121, 144, 147,
 148
annihilation in galaxy,
 122–127
detectors, 107, 112, 115, 118,
 119, 137
weight, 5–12
 Earth, on, 10
 force of gravity, 11
 Moon, on, 11
white dwarfs, 46, 88
Wilkinson Microwave Anisotropy
 Probe (WMAP), 59, 60
WIMP, see Weakly Interacting
 Massive Particles (WIMPs)
x-ray photon, 100, 102, 142,
 143, 149
x-ray telescopes, 47, 144
xenon, 112
XENON10T, 147
Zwicky, Fritz, 30–32, 75
galaxies of Coma Cluster,
 survey, 31
 measurements, 62