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I.1 Newton’s Laws

The foundational equation of our subject

For in those days I was in the prime of my age for invention
and minded Mathematicks & Philosophy more than at any time
since.

—Newton describing his youth in his memoirs

Let us start with one of Newton’s laws, which curiously enough is spoken as F =ma but
written asma = F . For a point particle moving inD-dimensional space with position given
by �x(t)= (x1(t), x2(t), . . . , xD(t)), Mr. Newton taught us that

m
d2xi

dt2
= F i (1)

with the index∗ i = 1, . . . , D. For D ≤ 3 the coordinates have traditional “names”: for
example, for D = 3, x1, x2, x3 are often called, with some affection, x , y , z, respectively.

Bad notation alert! In teaching physics, I sometimes feel, with only slight exaggeration,
that students are confused by bad notation almost as much as by the concepts. I am using
the standard notation of x and t here, but the letter x does double duty, as the position of the
particle, which more strictly should be denoted by xi(t) or �x(t), and as the space coordinates
xi, which are variables ranging from −∞ to ∞ and which certainly are independent of t .

The different status between x and t in say (1) is particularly glaring if N > 1 particles

are involved, in which case we write m
d2xia
dt2

= F i
a or md2�xa

dt2
= �Fa with xia(t) for a =

1, 2, . . . , N . But certainly ta is a meaningless concept in Newtonian physics. In the
Newtonian universe, t is the time ticked off by a universal clock, while �xa(t) is each
particle’s private business. We will have plenty more to say about this point. Here xia(t)
are 3N functions of t , but there are still only 3 xi.

∗ See appendix 2.
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26 | I. From Newton to Riemann: Coordinates to Curvature

Some readers may feel that I am overly pedantic here, but in fact this fundamental
inequality of status between x and t will come to a head when we get to the special theory
of relativity. (I now drop the arrow on �x.) Perhaps Einstein as a student was bothered by
this bad notation. One way to remedy the situation is to use q (or qa) to denote the position
of particles, as in more advanced treatments. But here I bow to tradition and continue to
use x.

Have differential equation, will solve

After Newton’s great insight, we “merely” have to solve some second order differential
equations.

To understand Newton’s fabulous equation, it’s best to work through a few examples. (I
need hardly say that if you do not already know Newtonian mechanics, you are unlikely to
be able to learn it here.)

A priori, the force F i could depend on any number of things, but from experience we
know that in many simple cases, it depends only on x and not on t or dx

dt
. As physicists

unravel the mysteries of Nature, it becomes increasingly clear that fundamental forces
are derived from an underlying quantum field theory and that they have simple forms.
Complicated forces often merely result from some approximations we make in particular
situations.

Example A

A particle in 1-dimensional space tied to a spring oscillates back and forth.
The force F is a function of space. Newton’s equation

m
d2x

dt2
= −kx (2)

is easily solved in terms of two integration constants: x(t) = a cos ωt + b sin ωt , with

ω =
√

k
m

. The two constants a and b are determined by the initial position and initial
velocity, or alternatively∗ by the initial position at t = 0 and by the final position at some
time t = T . Energy, but not momentum, is conserved.

Example B

We kick a particle in 1-dimensional space at t = 0.
The force F is a function of time. This example allows me to introduce the highly useful

Dirac1 delta function, or simply delta function.2 By the word “kick” we mean that the
time scale τ during which the force acts is much less than the other time scales we are

∗ See part II.
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I.1. Newton’s Laws | 27

–τ

1–τ

τ t →

δ(t)

0

Figure 1 The delta function, which could
be thought of as an infinitely sharp spike,
is strictly speaking not a function, but the
limit of a sequence of functions.

interested in. Thus, take F(t)= wδ(t), where the function δ(t) rises sharply just before
t = 0, rapidly reaches its maximum at t = 0, and then sharply drops to 0. Because we
included a multiplicative constant w, we could always normalize δ(t) by

∫
dt δ(t)= 1 (3)

As we will see presently, the precise form of δ(t) does not matter. For example, we could
take δ(t) to rise linearly from 0 at t = −τ , reach a peak value of 1/τ at t = 0, and then fall
linearly to 0 at t = τ . For t <−τ and for t > τ , the function δ(t) is defined to be zero. Take
the limit τ → 0, in which this function is known as the delta function. In other words the
delta function is an infinitely sharp spike. See figure 1.

The δ function is somehow treated as an advanced topic in mathematical physics, but in
fact, as you will see, it is an extremely useful function that I will use extensively in this book,
for example in chapters II.1 and III.6. More properties of the δ function will be introduced
as needed.

Integrating

d2x

dt2
= w

m
δ(t) (4)

from some time t− < 0 to some time t+ > 0, we obtain the change in velocity v ≡ dx
dt

:

v(t+)− v(t−)= w

m
(5)

Note that in this example, neither energy nor momentum is conserved. The lack of
conservation is easy to understand: (4) does not include the agent administering the kick. In
general, a time-dependent force indicates that the description is not dynamically complete.
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28 | I. From Newton to Riemann: Coordinates to Curvature

Example C

A planet approximately described as a point particle of massm goes around its sun of mass
M �m.

This is of course the celebrated problem Newton solved to unify celestial and terrestrial
mechanics, previously thought to be two different areas of physics. His equation now reads

m
d2�r
dt2

= −GMm
�r
r3

(6)

where we use the notation �r = (x , y , z) and r = √�x . �x =√
x2 + y2 + z2.

John Wheeler has emphasized the interesting point that while Newton’s law (1) tells us
how a particle moves in space as a function of time, we tend to think of the trajectory of
a particle as a curve fixed in space. For example, when we think of the motion of a planet
around the sun, we think of an ellipse rather than a spiral around the time axis. Even in
Newtonian mechanics, it is often illuminating to think in terms of a spacetime picture
rather than a picture in space.3

Newton and his two distinct masses

By thinking on it continually.
—Newton (reply given when

asked how he discovered
the law of gravity)

Conceptually, in (6), m represents two distinct physical notions of mass. On the left hand
side, the inertial mass measures the reluctance of the object to move. On the right hand
side, the gravitational mass measures how strongly the object responds to a gravitational
field. The equality of the inertial and the gravitational mass was what Galileo tried to verify
in his famous apocryphal experiment dropping different objects from the Leaning Tower
of Pisa. Newton himself experimented with a pendulum consisting of a hollow wooden
box, which he proceeded to fill with different substances, such as sand and water. In our
own times, this equality has been experimentally verified4, 5 to incredible accuracy.

That the same m appears on both sides of the equation turns out to be one of the
greatest mysteries in physics before Einstein came along. His great insight was that this
unexplained fact provided the clue to a deeper understanding of gravity. At this point, all
we care about this mysterious equality is that m cancels out of (6), so that �̈r = −κ �r

r3 , with
κ ≡GM .

Celestial mechanics solved

Since the force is “central,” namely it points in the direction of �r , a simple symmetry
argument shows that the motion is confined to a plane, which we take to be the (x-y)
plane. Set z= 0 and we are left with
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I.1. Newton’s Laws | 29

ẍ = −κx/r3 and ÿ = −κy/r3 (7)

I have already, without warning, switched from Leibniz’s notation to Newton’s dot notation

ẋ ≡ dx

dt
and ẍ ≡ d2x

dt2
(8)

Since this is one of the most beautiful problems6 in theoretical physics, I cannot resist
solving it here in all its glory. Think of this as a warm-up before we do the heavy lifting
of learning Einstein gravity. Also, later, we can compare the solution here with Einstein’s
solution.

Evidently, we should change from Cartesian coordinates (x , y) to polar coordinates
(r , θ). We will do it by brute force to show, in contrast, the elegance of the formalism
we will develop later. Differentiate

x = r cos θ and y = r sin θ (9)

twice to obtain first

ẋ = ṙ cos θ − r sin θ θ̇ and ẏ = ṙ sin θ + r cos θ θ̇ (10)

and then

ẍ = r̈ cos θ − 2ṙ sin θ θ̇ − r cos θ θ̇2 − r sin θ θ̈

and ÿ = r̈ sin θ + 2ṙ cos θ θ̇ − r sin θ θ̇2 + r cos θ θ̈ (11)

(Note that in each pair of these equations, the second could be obtained from the first by
the substitution θ → θ − π

2 , so that cos θ → sin θ , and sin θ → − cos θ .)
Multiplying the first equation in (7) by cos θ and the second by sin θ and adding, we

obtain, using (11),

r̈ − rθ̇2 = − κ

r2
(12)

On the other hand, multiplying the first equation in (7) by sin θ and the second by cos θ
and subtracting, we have

2ṙ θ̇ + rθ̈ = 0 (13)

I remind the reader again that we are doing all this in a clumsy brute force way to show
the power of the formalism we are going to develop later.

After staring at (13) we recognize that it is equivalent to

d

dt
(r2θ̇ )= 0 (14)

which implies that

θ̇ = l

r2
(15)

for some constant l . Inserting this into (12), we have

r̈ = l2

r3
− κ

r2
= −dv(r)

dr
(16)
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30 | I. From Newton to Riemann: Coordinates to Curvature

where we have defined

v(r)= l2

2r2
− κ

r
(17)

Multiplying (16) by ṙ and integrating over t , we have∫
dt

1
2
d

dt
ṙ2 =

∫
dt ṙ r̈ = −

∫
dt
dr

dt

dv(r)

dr
= −

∫
dr

dv(r)

dr

so that finally

1
2
ṙ2 + v(r)= ε (18)

with ε an integration constant.
This describes a unit mass particle moving in the potential v(r)with energy ε. Plot v(r).

Clearly, if ε is equal to the minimum of the potential vmin = − κ2

2l2 , then ṙ = 0 and r stays
constant. The planet follows a circular orbit of radius l2/κ . If ε > vmin the orbit is elliptical,
with r varying between rmin (perihelion) and rmax (aphelion) defined by the solutions to
ε = v(r). For ε > 0 the planet is not bound and should not even be called a planet.

We have stumbled across two conserved quantities, the angular momentum l and the
energy ε per unit mass, seemingly by accident. They emerged as integration constants,
but surely there should be a more fundamental and satisfying way of understanding
conservation laws. We will see in chapter II.4 that there is.

Orbit closes

One fascinating apparent mystery is that the orbit closes. In other words, as the particle
goes from rmin to rmax and then back to rmin, θ changes by precisely 2π . To verify that this
is so, solve (18) for ṙ and divide by (15) to obtain dr

dθ
= ±(r2/l)

√
2(ε − v(r)). Changing

variable from r to u = 1/r , we see, using (17), that 2(ε − v(r)) becomes the quadratic
polynomial 2ε − l2u2 + 2κu, which we can write in terms of its two roots as l2(umax −
u)(u− umin). Since u varies between umin and umax, we are led to make another change
of variable from u= umin + (umax − umin) sin2 ζ to ζ , so that ζ ranges from 0 to π

2 . Thus,
as the particle completes one round trip excursion in r , the polar angle changes by (note
that umin = 1/rmax and umax = 1/rmin)


θ = 2
∫ rmax

rmin

ldr

r2
√

2(ε − v(r))
= 2

∫ umax

umin

ldu√
2ε − l2u2 + 2κu

= 2
∫ umax

umin

du√
(umax − u)(u− umin)

= 4
∫ π

2

0
dζ = 2π (19)

That this integral turns out to be exactly 2π is at this stage nothing less than an apparent
miracle. Surely, there is something deeper going on, which we will reveal in chapter I.4.
Note also that the inverse square law is crucial here. Incidentally, the change of variable
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I.1. Newton’s Laws | 31

here indicates how the Newtonian orbit∗ (and also the Einsteinian orbit, as we will see in
part VI) could be determined. See exercise 2.

Bad notation alert! In (1), the force on the right hand side should be written as F i(x(t))

(in many cases). In C, the gravitational force exists everywhere, namely F(x) exists as a
function, and what appears in Newton’s equation is just F(x) evaluated at the position of
the particle x(t). In contrast, in A, with a mass pulled by a spring, F(x) does not make
sense, only F(x(t)) does. The force exerted by the spring does not pervade all of space, and
hence is defined only at the position of the particle x(t), not at any old x. I can practically
hear the reader chuckling, wondering what kind of person I could be addressing here, but
believe me, I have encountered plenty of students who confuse these two basic concepts:
spatial coordinates and the location of particles. I may sound awfully pedantic, but when we
get to curved spacetime, it is often important to be clear that certain quantities are defined
only on so-called geodesic curves, while others are defined everywhere in spacetime.

A historical digression on the so-called Newton’s constant

Wouldn’t we be better off with the two eyes we now have plus a
third that would tell us what is sneaking up behind? . . . With six
eyes, we could have precise stereoscopic vision in all directions
at once, including straight up. A six-eyed Newton might have
dodged that apple and bequeathed us some levity rather than
gravity.

—George C. Williams7

Physics textbooks by necessity cannot do justice to physics history. As you probably know, in
the Principia, Newton (1642–1727) converted his calculus-based calculations to geometric
arguments,8 which most modern readers find rather difficult to follow. Here I want to
mention another curious point: Newton never did specifically define what we call his
constant G. What he did with ma = GMm/r2 was to compare the moon’s acceleration
with the apple’s acceleration: amoonR

2
lunar orbit =GMearth = aappleR

2
radius of earth. But to write

GMearth = aappleR
2
radius of earth, he had to prove what is sometimes referred to as the first of

Newton’s two “superb theorems,” namely that with the inverse square law the gravitational
force exerted by a spherical mass distribution acts as if the entire mass were concentrated
in a point at the center of the distribution. (See exercise 4.) Even with his abilities, Newton
had to struggle for almost 20 years, the length of which contributed to the bitter priority
fight he had with Hooke on the inverse square law, with Newton claiming that he had the
law a long time before publication. You should be able to do it faster by a factor of ∼104 as
an exercise.

∗ On the old one pound note, a portrait of Newton together with his orbits appears on the back. Amusingly,
the artist felt compelled to put the sun at the center, rather than one of the foci, of the ellipse.
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32 | I. From Newton to Riemann: Coordinates to Curvature

Knowing the moon’s period and Rlunar orbit, Newton could calculate amoon. Since
Rradius of earth had been known since antiquity, he was thus able to calculate aapple and
obtained agreement∗ with Galileo’s measurement of aapple. This of course represents one
of the most magnificent advances in physics history, with Newton unifying9 the previously
disparate subjects of celestial and terrestrial mechanics in one stroke. I don’t have space
to dwell on this here, but I do want to call your attention to the fact that Newton did not
need to know G and Mearth to perform his feat.

Indeed, G was not measured until 1798 by Henry Cavendish (1731–1810) using equip-
ment built and designed by his friend John Michell (1724–1793), now of black hole fame,
who died before he could carry out the experiment.

Needless to say, what I have presented here should only be regarded as a comic book
version of history.

Appendix 1: Where is hell?

You will find it in this appendix, sort of.
Curiously, contrary to what some textbooks and popular books stated, Cavendish’s goal was not to measure

G, but Mearth and hence the earth’s density. Why this was of more interest to physicists of the time than G is in
itself another interesting tidbit in physics history.

I mentioned that Newton had two superb theorems and that the first triggered his feud with Hooke. His second
superb theorem states that there is no gravitational force inside a spherical shell.10 Are you curious why Newton
would even attack such a problem? An erroneous calculation had convinced him that the earth was much less
dense than the moon, which led his friend Edmond Halley (1656–1742), who by the way published the Principia
at his expense, to propose the hollow earth theory.11 Witness the popularity of the idea in science fiction, notably
Jules Verne’s Journey to the Center of the Earth (1864). The idea may seem absurd to us, but at that time, a location
for hell had to be found, and leading physicists gave serious thought to this pressing problem. Every epoch in
physics has its own top ten problems.

So now we understand Cavendish’s interest in Mearth and hence in the density of the earth rather than in G.
Some textbooks give the impression that people easily obtained Mearth by multiplying the density of rock and the
volume of the earth. Not so easy if you think that the earth might be hollow! We learn from Newton’s second
theorem that there is no gravitational force in hell, so the usual portrayal of the leaping flames can’t be right!

Appendix 2: Fear of indices

Occasionally, a student or two would profess, unaccountably, a “fear of indices.” In fact, there is nothing to
fear.12 At this stage, just stand back and admire how clever the invention of indices is. Instead of giving names
to each coordinate axis, such as x , y , and z, we could pass fluidly between different dimensions by writing xi ,
with i = 1, 2, . . . , D. The length of the alphabet we use does not limit us, and we could easily go beyond 26
dimensions.

When we get to Einstein’s theory, there will be a flood of indices, and we will have to distinguish between
upper and lower indices. In Newtonian mechanics, there is no significance to whether we write the index as a
superscript or a subscript. Have no fear: we will discuss each of these features of indices when the need arises.
At this point, we merely note that a quantity can carry more than one index. In the text, we wrote xia, with
i = 1, 2, . . . , D labeling the different spatial directions, and a = 1, 2, . . . , N labeling the different particles. We
will encounter more examples as we go along.

∗ Newton’s first try did not lead to excellent agreement, because the value for the earth’s equatorial radius was
off. Just a reminder that physics never progresses as smoothly as textbooks say.

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



I.1. Newton’s Laws | 33

With only slight exaggeration, we could say that the invention of indices represents one of the really clever
ideas13 in the history of physics and mathematics, almost a “magic trick” that enables us to deal with as many
particles in as many spatial dimensions as we like with the mere addition of some subscripts and superscripts.

Exercises

1 Show that for some suitably smooth function f (x), the integral
∫∞
−∞ dxδ(x)f (x)= f (0). Then show that

δ(ax)= δ(x)/|a| by evaluating the integral
∫∞
−∞ dxδ(ax)f (x) for some smooth function f (x).

2 Determine the orbit r(θ) by changing variable from r to u= 1/r . We will need the result of this exercise later.

3 Newton thought that light consists of “corpuscles.” Calculate the deflection of light by the sun, applying what
you learned in the text to the case ε > 0. Note that the mass of these minute “particles of light” drops out in
Newtonian theory anyway. We will need this result to compare with Einstein’s theory later in chapter VI.3.

4 Prove Newton’s first superb theorem: the gravitational force exerted by a spherical mass distribution acts as
if the entire mass were concentrated in a point at the center of the distribution.

5 Prove Newton’s second superb theorem.

6 Suppose engineers can build a straight tunnel connecting two cities on earth. Then we could have a free
unpowered “gravity express”14 by simply dropping a railroad car into the tunnel, allowing it to fall from one
city to the other. Use Newton’s two superb theorems to calculate the transit time.

Notes

1. Also introduced by Cauchy, Poisson, Hermite, Kirchoff, Kelvin, Helmholtz, and Heaviside. See J. D. Jackson,
Am. J. Phys. 76 (2008), pp. 707–709.

2. Rigorous mathematicians go berserk at physicists’ use of the word “function” here; they prefer to call it a
distribution, defined as the limit of a function. But working physicists do not give a flying barf about such
niceties. In any case, I do not personally know a theoretical physicist suffering any harm by calling δ(t) a
function.

3. Consider a game of tennis. Compare a hard drive down the line and a soft lob high over the net. In both

cases, we are to solve Newton’s law d2x
dt2

= 0, d
2y

dt2
= −g, with the boundary conditions x(0)= 0, x(T )=L, and

y(0)= y(T )= 0. (The problem is so elementary that we won’t bother to explain the notation, that y denotes
the vertical direction, that y = 0 is the ground, that T is the time of flight before the ball hits the ground,
that L is the length of the tennis court, and so on and so forth. You might want to draw your own figure.)
The solution is x = Lt/T , y = 1

2g(T − t)t . Note that the two types of tennis shots are governed by the same
equation and the same L. Hence we obtain the same solution, but keep in mind that T is small in the case
of the hard drive and that T is large in the case of the soft lob. Now eliminate t to obtain y as a function
of x, namely y(x)= 1

2gT
2(1 − x

L
) x
L

, a parabola in both cases (of course). But compare the curvature of the

two parabolas: we have d2y

dx2 = −g(T /L)2, very small in the case of the hard drive (small T ) and very large in
the case of the lob (large T ). The hard drive down the line barely skimming over the net, and the soft lob
climbing lazily high up into the sky, look and feel totally different pictured in space. In contrast, consider y
as a function of t . We also have two parabolas (of course), namely y(t)= 1

2g(T − t)t , as given earlier. Now

compare the curvature of the two parabolas: we have d2y

dt2
= −g, the same in both cases. The curvature of the

ball’s trajectory in spacetime is universal (universal gravity, get it?). But we tend to see in our mind’s eye the
two parabolas y(x) in space, one for the hard drive and one for the lob, which look quite different, rather than
the parabolas y(t) in spacetime, which have the same curvature. I learned this long ago from John Wheeler.

4. Currently to one part in 1013. The modern round of experiments started with Loŕand Eötvös in 1885 and
continues with the Eöt-Wash experiment led by E. Adelberger in our days.
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5. The equality of the gravitational and inertial mass of the neutron has also been verified to good accuracy
using neutron interferometry.

6. For Newton’s letter to Halley about Hooke on the inverse square, see P. J. Nahin, Mrs. Perkins’s Electric Quilt,
Princeton University Press, 2009.

7. G. C. Williams, The Pony Fish’s Glow, Basic Books, 1997, p. 128.
8. S. Chandrasekhar, Newton’s Principia for the Common Reader, Oxford University Press, 2003.
9. Fearful, pp. 74–75.

10. For a popular account, see Toy/Universe.
11. N. Kollerstrom, “The Hollow World of Edmond Halley,” J. Hist. Astronomy 23 (1992), p. 185.
12. Surely most readers are familiar with indices. My son the biologist informs me that even biologists use indices

routinely; for example, on p. 20 of Genetics and Analysis of Quantitative Traits by M. Lynch and B. Walsh, indices
appear without explanation or apology.

13. A colleague told me to mention that indices are crucial in computer programming, something that many
readers can relate to.

14. Toy/Universe, p. xxix.
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I.2 Conservation Is Good

An integrability condition

Conservation has been important to physics from day one.1 In this chapter, we discuss the
origin of various conservation laws in Newtonian mechanics.

The most important case is when the force F i depends only on x and can be written in
the form

F i(x)= −∂V (x)

∂xi
(1)

for i = 1, 2, . . . , D. As we all learned, V (x) is called the potential.
Suppose such a function V (x) exists; then a clever person might have the insight to

multiply each of Newton’s equations

m
d2xi

dt2
= F i = −∂V (x)

∂xi
(2)

by dxi

dt
to obtain the D equations

m
d2xi

dt2

dxi

dt
= −∂V (x)

∂xi

dxi

dt
, with i = 1, . . . , D (3)

He or she would then recognize that the sum of these D equations could be written as

d

dt

[
1
2
m
∑
i

(
dxi

dt

)2

+ V (x)

]
= 0 (4)

which we could verify by explicit differentiation. Lo and behold, the total energy, defined by

E = 1
2
m
∑
i

(
dxi

dt

)2

+ V (x) (5)

is conserved. It does not change in time.
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36 | I. From Newton to Riemann: Coordinates to Curvature

For D = 1, (1) holds automatically: V (x) is simply given by − ∫ x
dx′F(x′). For D > 1,

the D equations in (1), namely F i(x) = − ∂V (x)

∂xi
, imply the consistency or integrability

condition

∂F i(x)

∂xj
= ∂F j(x)

∂xi
(6)

(Since derivatives commute, both sides of (6) are equal to − ∂2V (x)

∂xi∂xj
.) Thus, given F i(x), we

merely have to check to see whether (6) holds. If not, then V does not exist. If yes, then we
could integrate F i(x)= − ∂V (x)

∂xi
for each i to determine V .

Apples do not fall down

Suppose V (r) depends only on r ≡
(∑D

i=1(x
i)2
) 1

2 . In other words, the potential does not
pick out any preferred direction. We take this for granted nowadays, but it represents one
of the most astonishing insights of physics.2 Newton realized that the apple did not fall
down, but toward the center of the earth.

Differentiating r2 =∑D
i=1(x

i)2, we obtain rdr =∑
i x

idxi (an “identity,” which we will

use again and again in this text) or ∂r

∂xj
= xj

r
, so that

F i = −xi

r
V ′(r) and

∂F i(x)

∂xj
= −1

r
[δijV ′(r)+ xixj

r2
(−V ′(r)+ rV ′′(r))]

which is manifestly symmetric under i ↔ j .
Here we have introduced the Kronecker delta δij , defined by

δkj = 1 if k = j , δkj = 0 if k �= j (7)

(which we can think of as an ancestor of the Dirac delta function3 introduced in chapter I.1).
The important point is not the somewhat involved expression for ∂F i(x)

∂xj
, but that it is a

linear combination of δij and xixj . We haven’t talked about tensors yet (see chapter I.4),
but this result could have been anticipated by a “what else can it be?” type of argument.
Not having any preferred direction, we could only construct an object with indices i and
j out of δij and xixj . We could have seen immediately that the integrability condition (6)
holds.

Note that this discussion holds for any value of D.

Conservation of angular momentum

Suppose the force in (2) points toward the center, so that it has the form F i = f (r)xi

(with f (r)= −V ′(r)/r , as we just saw). Then we obtain angular momentum conservation
immediately. To see this, multiply Newton’s equation (2)

m
d2xi

dt2
= f (r)xi (8)
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I.2. Conservation Is Good | 37

by xj , so that md2xi

dt2
xj = f (r)xixj . Subtract from this the same equation but with i and j

interchanged. Regardless of the function f (r), we find

xj
d2xi

dt2
− xi

d2xj

dt2
= 0 (9)

But this is the same as

d

dt

(
xj
dxi

dt
− xi

dxj

dt

)
= 0 (10)

Clever, eh? I am constantly amazed by how brilliant early physicists were.

The quantity lij ≡
(
xj dx

i

dt
− xi dx

j

dt

)
, the angular momentum per unit mass, is con-

served. Recall that in the preceding chapter, this fact seemingly fell out when we changed
to polar coordinates. Note also that the argument given here holds for any D ≥ 2.

Exercise

1 Let N particles interact according to

ma

d2xi
a

dt2
= − ∂V (x)

∂xi
a

(11)

with a = 1, . . . , N . Suppose V (x1, . . . , xN) depends only on the differences xi
a
− xib, with a , b = 1, . . . , N .

Show that the total momentum
∑

a ma
dxia
dt

is conserved.

Notes

1. Fearful.
2. I once explained this point to humanists using Einstein’s terminology by saying that “The words up and

down have no place in the Mind of the Creator.” See A. Zee, New Lit. Hist. 23 (1992), pp. 815–838. See also
web.physics.ucsb.edu/jatila/supplements/zee lecture.pdf.

3. In the sense that δ(x − y) is zero for x �= y.
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I.3 Rotation: Invariance and Infinitesimal Transformation

Rotation in the plane

My pedagogical strategy for this chapter is to take something you know extremely∗ well,
namely rotations in the plane, present it in a way possibly unfamiliar to you, and go through
it slowly in great detail, “beating the subject to death,” so to speak.

I have already mentioned that Monsieur Descartes had the clever idea of reducing
geometry to algebra. Put down Cartesian coordinate axes so that a point P is labeled by two
real numbers (x , y). Suppose another observer (call him Mr. Prime) puts down coordinate
axes rotated by angle θ with respect to the axes put down by the first observer (call her
Ms. Unprime) but sharing the same origin O. Elementary trigonometry tells us that the
coordinates (x , y) and (x′, y′) assigned by the two observers to the same point P are related
by† (see figure 1)

x′ = cos θ x + sin θ y , y ′ = − sin θ x + cos θ y (1)

The distance from P to the origin O of course has to be the same for the two observers.
According to Pythagoras, this requires

√
x′2 + y′2 =√

x2 + y2, which you can check us-
ing (1).

Introduce the column vectors �r =
(
x

y

)
and �r ′ =

(
x′
y′
)

and the rotation matrix

R(θ)=
(

cos θ sin θ

− sin θ cos θ

)
(2)

so that we can write (1) more compactly as �r ′ = R(θ)�r .

∗ If you don’t know rotations in the plane extremely well, then perhaps you are not ready for this book. A
nodding familiarity with matrices and linear algebra is among the prerequisites.

† For example, by comparing similar triangles in the figure, we obtain x′ = (x/ cos θ)+ (y − x tan θ) sin θ .
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y

O

P

x

y′
x′

θ

Figure 1 The same point P is labeled by (x , y)
and (x′ , y′), depending on the observer’s frame of
reference.

As you recall from a course on mechanics, we can either envisage rotating the physical
body we are studying or rotating the observer. We will consistently rotate the observer.

We have already used the word “vector.” A vector is a physical quantity (for example the
velocity of a particle in the plane) consisting of two real numbers, so that if Ms. Unprime

represents it by �p =
(
p1

p2

)
, then Mr. Prime will represent it by �p′ = R(θ) �p. In short, a

vector is something that transforms like the coordinates
(
x

y

)
under rotation.

Given two vectors �p =
(
p1

p2

)
and �q =

(
q1

q2

)
, the scalar or dot product is defined by �pT .

�q = p1q1 + p2q2. Here T stands for transpose and �pT the row vector (p1, p2). By definition,
rotations leave �p2 ≡ �pT . �p = (p1)2 + (p2)2 invariant. In other words, if �p′ = R(θ) �p, then
�p′2 = �p2. Since this works for any vector �p, including the case in which �p happens to be
the sum of two vectors �p = �u+ �v, and since �p2 = (�u+ �v)2 = �u2 + �v2 + 2�uT . �v, rotation
also leaves the dot product between two arbitrary vectors invariant: the invariance of �p2

implies that �u′T . �v′ = �uT . �v.
Since �u′ = R�u (to unclutter things, we often suppress the θ dependence in R(θ)) and so

�u′T = �uTRT , we now have �uT . �v = �u′T . �v′ = (�uTRT ) . (R�v)= �uT . (RTR)�v. (The transpose
MT of a matrix M is of course obtained by interchanging the rows and columns of M .) As
this holds for any two vectors �u and �v, we must have the matrix equation

RTR = I (3)

where, as usual, I denotes the identity or unit matrix: I =
(

1 0
0 1

)
. Indeed, we could verify

(3) explicitly:

R(θ)T R(θ)=
(

cos θ − sin θ

sin θ cos θ

) (
cos θ sin θ

− sin θ cos θ

)
=
(

1 0

0 1

)
(4)

Matrices that satisfy (3) are called orthogonal.
Taking the determinant of (3), we obtain (det R)2 = 1, that is, det R = ±1. The determi-

nant of an orthogonal matrix may be −1 as well as +1. In other words, orthogonal matrices

also include reflection matrices, such as P =
(

1 0
0 −1

)
, a reflection in the y-axis.
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40 | I. From Newton to Riemann: Coordinates to Curvature

To focus on rotations, let us exclude reflections by imposing the condition (since
det P = −1)

det R = 1 (5)

Matrices with unit determinant are called special.
We define a rotation as a matrix that is both orthogonal and special, that is, a matrix that

satisfies both (3) and (5). Thus, the rotation group of the plane consists of the set of all
special orthogonal 2 by 2 matrices and is known as SO(2).

Note that matrices of the form PR for any rotation R are also excluded by (5), since
det(PR) = det P det R = (−1)(+1) = −1. In particular, a reflection in the x-axis( −1 0

0 1

)
, which is the product of P and a rotation through 90◦, is also excluded.

Act a little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious
but brilliant idea that to rotate through, say, 29◦, you could just as well rotate through a
zillionth of a degree and repeat the process 29 zillion times. To study rotations, it suffices
to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A rotation
through a finite angle could always be obtained by performing infinitesimal rotations
repeatedly. As is typical with many profound statements in physics and mathematics, Lie’s
idea is astonishingly simple. Replace the proverb “Never put off until tomorrow what you
have to do today” by “Do what you have to do a little bit at a time.”

When the angle is small enough, the rotation is almost the identity, that is, no rotation
at all. Thus, we can write

R(θ)� I + A (6)

where A denotes some infinitesimal matrix.
Now suppose we have never seen (2). Indeed, suppose we have never even heard of

sine and cosine. Instead, let us define rotations as the set of linear transformations on
2-component objects �u′ = R�u and �v′ = R�v that leave �uT . �v invariant. Following Lie, we
solve this condition on R, namely (3) RTR = I , by considering an infinitesimal transfor-
mation R(θ) � I + A. Since by assumption, A2 can be neglected relative to A, RTR �
(I + AT )(I + A)� (I + AT + A)= I . We thus obtain AT = −A, namely that A must be
antisymmetric. But there is basically only one 2-by-2 antisymmetric matrix:

J =
(

0 1

−1 0

)
(7)

In other words, the solution of AT = −A is A = θJ for some real number θ . Thus,
rotations close to the identity have the formR = I + θJ +O(θ2)=

(
1 θ

−θ 1

)
+O(θ2). The

antisymmetric matrix J is known as the generator of the rotation group.
An equivalent way of saying this is that for infinitesimal θ , the transformation x′ �

x + θy and y′ � y − θx (you could verify that (1) indeed reduces to this to leading order in

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.
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θ ) obviously satisfies the Pythagorean condition x′2 + y′2 = x2 + y2 to first order in θ . Or,
write x′ = x + δx , y ′ = y + δy and solve xδx + yδy = 0.

Alternatively, simply draw figure 1 for θ infinitesimal. Since we know the transformation
is linear, we could determine the matrixR in (6) by looking at the figure to see what happens
to the two points (x = 1, y = 0) and (x = 0, y = 1) under an infinitesimal rotation.

Now recall the identity ex = limN→∞(1 + x
N
)N (which you can easily prove by differen-

tiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

R(θ)= lim
N→∞ R

(
θ

N

)N
= lim

N→∞

(
1 + θJ

N

)N
= eθJ (8)

The first equality represents Lie’s profound idea. For the last equality, we use the identity
just mentioned, which amounts to the definition of the exponential.

Some readers may not be familiar with the exponential of a matrix. Given a well-behaved
function f with a power series expansion, we can define f (M) for an arbitrary matrix
M using that power series. For example, define eM ≡∑∞

n=0 M
n/n!; since we know how

to multiply and add matrices, this series makes perfect sense. (Whether or not any given
series converges is of course another issue.) We must be careful, however, in using various
identities that may or may not generalize. For example, the identity eaea = e2a for a a real
number, which we could prove by applying the binomial theorem to the product of two
series (square of a series in this case) generalizes immediately. Thus, eMeM = e2M . But for
two matrices M1 and M2 that do not commute with each other, eM1eM2 �= eM1+M2.

This provides an alternative but of course equivalent path to our result. To leading order,

we have every right to write R
(
θ
N

)
= 1 + θJ

N
� e

θJ
N and thus R(θ)= R

(
θ
N

)N = eθJ .

Finally, we easily check that the formula R(θ)= eθJ reproduces (2) for any value of θ .
We simply note that J 2 = −I and separate the exponential series into even and odd terms.
Thus

eθJ =
∞∑
n=0

θnJ n/n! =
( ∞∑
k=0

(−1)kθ2k/(2k)!

)
I +

( ∞∑
k=0

(−1)kθ2k+1/(2k + 1)!

)
J

= cos θ I + sin θ J = cos θ

(
1 0

0 1

)
+ sin θ

(
0 1

−1 0

)
=
(

cos θ sin θ

− sin θ cos θ

)
(9)

which is precisely R(θ) as given in (2). Note this works because J plays the same role as
i in the identity eiθ = cos θ + i sin θ .

Poor Lie, he never made it into the 20th century.

Two approaches to rotation

Notice that I actually gave you two different approaches to rotation. Let us summarize the
two approaches. In the first approach, applying trigonometry to figure 1, we write down (1)
and hence (2). In the second approach, we specify what is to be left invariant by rotations
and hence define rotations by the condition (3) that rotations must satisfy. Lie then tells
us that it suffices to solve (3) for infinitesimal rotations. We could then build up rotations
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42 | I. From Newton to Riemann: Coordinates to Curvature

through finite angles by multiplying infinitesimal rotations together, thus also arriving
at (2).

It might seem that the first approach is much more direct. One writes down (2) and that
is that. The second approach appears more roundabout and involves some “fancy math.”
It might even provoke an adherent of the first “more macho” approach to wisecrack, “Why,
with a bit of higher education, sine and cosine are not good enough for you any more? You
have to go around doing fancy math!” The point is that the second approach generalizes
to higher dimensional spaces (and to other situations) much more readily than the first
approach does, as we will see presently. Dear reader, in going through life, you would be
well advised to always separate fancy but useful math from fancy but useless math.

Before we go on, let us take care of one technical detail. We assumed that Mr. Prime and
Ms. Unprime set up their coordinate systems to share the same origin O. We now show
that this condition is unnecessary if we consider two points P and Q (rather than one point,
as in our discussion above) and study how the vector connecting P to Q transforms.

Let Ms. Unprime assign the coordinates �rP = (x , y) and �rQ = (x̃ , ỹ) to P and Q, respec-
tively. Then Mr. Prime’s coordinates �r ′

P = (x′, y′) for P and �r ′
Q = (x̃′, ỹ′) for Q are then

given by �r ′
P = R(θ)�rP and �r ′

Q = R(θ)�rQ. Subtracting the first equation from the second and
defining 
x = x̃ − x, 
y = ỹ − y, and the corresponding primed quantities, we obtain(


x′


y′

)
=
(

cos θ − sin θ

sin θ cos θ

) (

x


y

)
(10)

Rotations leave the distance between the points P and Q unchanged: (
x′)2 + (
y′)2 =
(
x)2 + (
y)2. You recognize of course that this is a lot of tedious verbiage stating the
perfectly obvious, but I want to be precise here. Of course, the distance between any two
points is left unchanged by rotations. (This also means that the distance between P and
the origin is left unchanged by rotations; ditto for the distance between Q and the origin.)

Invariance and geometry

There is no royal road to geometry.
—Euclid’s advice to a prince

Let no one unversed in geometry enter here.
—Plato’s motto, carved over the

entrance to his academy

Let us take the two points P and Q to be infinitesimally close to each other and replace
the differences 
x′, 
x, and so forth by differentials dx ′, dx, and so forth. Indeed,
2-dimensional Euclidean space is defined by the distance squared between two nearby
points:

ds2 = dx2 + dy2 (11)
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I.3. Rotation: Invariance and Infinitesimal Transformation | 43

Rotations are defined as linear transformations∗ (x , y)→ (x′, y′), such that

dx2 + dy2 = dx′2 + dy′2 (12)

The whole point is that this now makes no reference to the origin O (and whether Mr.
Prime and Ms. Unprime even share the same origin).

The column d �x =
(
dx1

dx2

)
≡
(
dx

dy

)
is defined as the basic or ur-vector, the template for

all other vectors. To repeat, a vector is defined as something that transforms like d �x under
rotations.

So, a vector is defined by how it transforms. An array of two numbers �p =
(
p1

p2

)
is a

vector if it transforms according to �p′ = R(θ) �p.
Sometimes it is very helpful, in order to understand what something is, to be given an

example of something that is not. As a simple example, given a �p, then
(
ap1

bp2

)
is definitely

not a vector if a �= b. (You could easily write down more outrageous examples, such as(
(p1)2p2

(p1)3+(p2)3

)
. That ain’t no vector!) You will work out further examples in exercise 1. An

array of numbers is not a vector unless it transforms in the right way.1

Oh, about the advice Euclid gave to the prince who wanted to know a quick way of
mastering geometry. Mr. E is also telling you that, to master the material covered in this
book, there is no way other than to cogitate over the material until you get it and to work
through as many exercises as possible.

From the plane to higher dimensional space

The reader who has wrestled with Euler angles in a mechanics course knows that the
analog of (2) for 3-dimensional space is already quite a mess. In contrast, Lie’s approach
allows us, as mentioned above, to immediately jump to D-dimensional Euclidean space,
defined by specifying the distance squared between two nearby points (compare this with
(11)), as given by the obvious generalization of Pythagoras’ theorem:

ds2 =
D∑
i=1

(
dxi

)2 =
(
dx1

)2 +
(
dx2

)2 + . . . +
(
dxD

)2
(13)

This is as good a place as any to say a word about indices. As I said in chapter I.1, in
my experience teaching, there are always a couple of students confounded by indices.
Dear reader, if you are not, you could simply laugh and skip to the next paragraph.
Indices provide a marvelous notational device to save us from having to give names to
individual elements belonging to a set. (For example, consider all humans hi now alive,
with i = 1, 2, . . . , P where P denotes the population size.) Take a look at the 19th century
physics literature, before the use of indices became widespread. I am always amazed by

∗ Indeed, most, but not all, of the readers2 of this book are constantly rotating between two coordinate systems.
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the fact that, for example, Maxwell could see through the morass of the electromagnetic
equations written out component by component.

Rotations are defined as linear transformations d �x ′ =Rd �x that leave ds unchanged. The
preceding discussion allows us to write this condition as RTR = I . As before, we want
to focus on rotations by imposing the additional condition det R = 1. The set of D-by-D
matrices R that satisfy these two conditions forms the simple orthogonal group SO(D),
which is just a fancy way of saying the rotation group in D-dimensional space.

Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher
dimensional spaces. All we have to do is satisfy the two conditionsRTR = I and det R = 1.

So let us follow Lie and writeR � I +A. ThenRTR = I is solved by requiringA= −AT ,
namely that A must be antisymmetric. But it is very easy to write down all possible
antisymmetric D-by-D matrices! For D = 2, there is basically only one: the J introduced
earlier. For D = 3, there are basically three of them:

Jx =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎠ , Jy =

⎛
⎜⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎟⎠ , Jz =

⎛
⎜⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎟⎠ (14)

Any 3-by-3 antisymmetric matrix can be written as A= θxJx + θyJy + θzJz, with three
real numbers θx , θy, and θz. At this point, you can verify that R � I + A, with A as given
here, satisfies the condition det R = 1.

The three matrices Jx, Jy, Jz are known as the generators of the 3-dimensional rotation
group SO(3). They generate rotations, but are of course not to be confused with rotations,
which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.

The upshot of this whole discussion is that any 3-dimensional rotation (not necessarily
infinitesimal) can be written asR(θ)= eA and is thus characterized by three real numbers.
As I said, those readers who have suffered through the rotation of a rigid body in a course
on mechanics must appreciate the simplicity of studying the generators of infinitesimal
rotations and then simply exponentiating them.

Index notation and rotations

Some readers will find this obvious, but others might find it helpful if we derive the
condition RTR = I explicitly once again using the index notation. I prefer to go slow here,
since we will need some of the same formalism later when we get to special relativity. Once
the reader feels sure-footed, we could then dispense with indices.

Let me start by reminding the reader that aD-by-D matrixM carries two indices and has
entries Mij , with the standard convention that the first index labels the rows, the second
the column (for i , j = 1, 2, . . . , D). For example, for D = 2, M =

(
M11 M12

M21 M22

)
, and M12 is
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the entry in the first row and the second column, whereas M21 is the entry in the second
row and the first column. Note that the transpose of a matrix M is given by (MT )ji ≡Mij .
Thus, if �v is a column vector with entries vj , then the entries of the column vector �u=M �v
are given by ui =∑

j M
ijvj . For A and B two D-by-D matrices, the product AB is defined

as the matrix with the entries (AB)ij =∑
k A

ikBkj . (If everything here is news to you, see
the first footnote in this chapter.)

Under a rotation,

dx′i =
∑
j

Rijdxj = Ri1dx1 + Ri2dx2 + . . . + RiDdxD (15)

(I have written the sum out explicitly for the benefit of the rare reader afflicted by fear
of indices.) Also, as was mentioned in chapter I.1, at this stage it is completely arbitrary
whether we write upper or lower indices.

Let us pause and recall the Kronecker delta symbol δij introduced in (I.2.7), defined
to be equal to +1 if i = j and 0 otherwise, and which we can also think of as a D-by-D
unit matrix. We will be encountering the highly useful Kronecker delta often in this book.
For example,

∑
j A

jBj =∑
k

∑
j δ

kjAkBj . Since δkj vanishes unless k is equal to j , the
double sum on the right hand side collapses to the single sum on the left hand side. In
other words, the Kronecker delta allows us to write a single sum as a double sum. It seems
like a really silly thing to do, but as we will see presently, it is an extremely useful trick that
we use quite often in this book.

We now determine how the matrix R must be restricted for it to be a rotation. The
statement that ds2 =∑D

i=1(dx
i)2 as defined in (13) is left unchanged by the rotation implies

that (with all indices running over 1, . . . , D)

∑
i

(dx′i)2 =
∑
i

∑
k

∑
j

RikdxkRijdxj =
∑
j

(dxj)2 =
∑
k

∑
j

δkjdxkdxj (16)

In the last step, we used what we just learned.
Since the infinitesimals dxi can take on arbitrary values, to have the second term equal

to the last term in (16), we must equate the coefficients of dxkdxj and demand that

∑
i

RikRij = δkj =
∑
i

(RT )kiRij = (RTR)kj (17)

Indeed, we obtain RTR = I just as in (3), but now in D-dimensional space for any D.
We end this section with a trivial remark. So far in this chapter, we have written the

column vectors as columns. But columns take up so much space, and so for typographical
convenience (editors must be placated!) we will henceforth write the entries of a column
vector as d �x = (dx1, dx2, . . . , dxD), a practice we will indulge in throughout this book.
(If we want to be insufferably pedantic, we could put in a T for transpose: the column
ur-vector d �x = (dx1, dx2, . . . , dxD)T .)

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



46 | I. From Newton to Riemann: Coordinates to Curvature

Einstein’s repeated index summation

Observe that in all those sums in (16) the indices to be summed over always ap-
pear twice, that is, they are repeated. For example, in the second term in (16),∑

i

∑
k

∑
j R

ikdxkRijdxj , the indices i , k, and j all appear repeated. Thus, we could adopt
the so-called repeated index summation convention proposed by Albert Einstein himself:
omit the pesky summation symbol and agree that if an index is repeated, then it is to be
summed over. For example, dx′i =∑

j R
ijdxj can now be written as dx′i = Rijdxj : in the

expression on the right hand side, the index j appears twice and is thus to be summed
over.∗ In contrast, i is a “free” index and does not appear twice in the same expression.
Notice that free indices must match on opposite sides of any equation. It is rightly said
that one of Einstein’s greatest contribution to physics is the repeated index summation
convention.† When we get to Einstein gravity, we will meet lots of indices to be summed
over, and it would be silly to keep on writing the summation symbol.

Vector fields

The vectors we encounter may well vary in space. For example, the flow velocity in a fluid
in general would depend on where we are. We are then dealing with a vector field �V (�x).
Again, consider two observers studying the same vector field. Mr. Prime would see

�V ′(�x′)= R �V (�x) (18)

with �x′ = R�x of course. In other words, the two observers are studying the same vector
field at the same point P. See figure 2. As another example, the familiar electric �E(�x) and
magnetic fields �B(�x) are both vector fields.

Physics should not depend on the observer

Let me stress again why physicists constantly talk about vectors. The laws of physics often
involve the statement that one vector is equal to another, for example, Newton’s law states
m�a = �F . Applying a rotation matrix R(θ), we obtain mR(θ)�a = R(θ) �F . If �F transforms
like a vector, then m�a′ = �F ′. Ms. Unprime and Mr. Prime see the same Newton’s law, and
more generally, the same laws of physics!

This statement, while self-evident, is profound, and in some sense, it is what makes
physics possible. Physics should not depend on the physicist. Ms. Unprime and Mr. Prime

∗ When a pair of repeated indices, such as j here, is summed over, they are often said to be contracted with
each other. In a tiny abuse of terminology, people also say that Rij is contracted with dxj .

† It appeared only in his later work. In 1905, Einstein did not even use vector notation! In one system, the
coordinates were denoted by x , y , z, in the other, by ξ , η, ζ ; the components of the force acting on the electron
were called X , Y , Z. To modern eyes, his notation was a horrific mess.
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y

x

y′

x′P

Figure 2 Two observers studying the same vector field.

see different accelerations �a and �a′, and different forces �F and �F ′, but the same Newton’s
law. We say that Newton’s law is invariant—that is, it does not change—under rotation.∗

We should also remind ourselves that mass is an example of a scalar: a physical quantity
that does not change under rotation. If it does change, Newton’s law would not be invariant
under rotation and one observer would be preferred over another, which is unacceptable.
Physics rests on the democratic ideal.

Let me remind you that the gravitational force in the planetary problem studied in
chapter I.1 is derived from what is sometimes called a central potential, namely one without
a preferred direction: F i(x)= − ∂

∂xi
V (r)= − xi

r
V ′(r). Hence, �F is proportional to �x and

so a fortiori transforms like a vector.
At this point, it may be worthwhile to be a bit more pedantic and professorial. Some

authors give long-winded speeches about covariance versus invariance, and take great pain
to distinguish the two. We should too. The equation m�a = �F is covariant, that is, the two
sides transform the same way under rotations. The physics expressed by Newton’s second
law is, however, invariant, that is, independent of observers related by a rotation. If physics
depends on how you tilt your head, we are in trouble. Physics does not, but the way physics
is expressed, in terms of equations, does.

Here is the profound and trivial statement. Under a certain set of transformations, a
purportedly fundamental equation is said to be covariant if the two sides of the equation
transform in the same way. If so, then that transformation is known as a symmetry of
physics.3 Physics is said to be invariant under that transformation. As we will see, both sides
of Einstein’s field equation transform in the same way, as tensors, under what are known
as general coordinate transformations. I will explain what a tensor is in the next chapter. I
will allow myself the luxury of using the words invariance and covariance interchangeably
and simply trust you to be discerning.

Since we can always move the quantity on the right hand side of an equation to the
left hand side, we can rewrite a physical law of the form �u= �v in the form �w ≡ �u− �v =
0. Physics students sometimes joke that they could already write down the ultimate

∗ The reader who has already been exposed to the special theory of relativity knows that this notion of invariance
represents the essence of Einstein’s insight. We will of course have a great deal more to say about that!
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equation of physics, namely X = 0, whatever X is. Thus, the statement of invariance
merely expresses the mathematically obvious fact that if �w = 0, then R(θ) �w = 0. (Strictly
speaking, the 0 on the right hand side should be written as �0, but we don’t want to be that
pedantic!)

Descartes versus Euclid

I remember how excited I was when I learned about analytic geometry. Surely you were
excited too. What a genius, that Descartes! Henceforth, we could prove geometric theorems
by doing algebra. After Descartes,4 physics can no longer live without the concept of
coordinates,∗ but he also managed to obscure what was once obvious to Euclid. We now
must also insist on invariance. Indeed, the notion of invariance is at the heart of what we
mean by geometry.

For example, suppose somebody hands you a formula for the area of a triangle with
vertices at (a1, b1), (a2, b2), (a3, b3). You better insist that the formula is invariant under
rotation. In fact, this requirement, plus the requirement that the area should scale as the
square of the separation between the three vertices, suffices to determine the formula.
This simple example rings in the central motif of this book.

Appendix 1: Differential operators rather than matrices

Here I have to divide readers into the haves and the have-nots, but only temporarily. What I will say may sound
difficult, but really, it amounts to not much more than a notational triviality.

If you have studied quantum mechanics, you would know that the generators J of rotation studied here
are related to angular momentum operators. You would also know that in quantum mechanics, observables are
represented by hermitean operators. However, in our discussion, the J s come out naturally as antisymmetric
matrices and are thus antihermitean. To make them hermitean, we multiply them by some multiples of i.

If you have not studied quantum mechanics, then the preceding would sound like gibberish to you, but do
not worry. Simply take the attitude that, hey, it is a free country, and we can always invite ourselves to define a
new set of physical quantities by multiplying an existing set of physical quantities by some constant. Heck, we
could multiply by

√
17i if we want.

Even though here we are nowhere near quantum mechanics, we will bow to customary usage and define Jx ≡
−iJx and so forth. From (14) we see that, for example, Jz acting on the column vector (x , y , z) gives i(y , −x , 0).
Thus, instead of using matrices, we could also represent Jz by i(y ∂

∂x
− x ∂

∂y
), since Jzx = i(y ∂

∂x
− x ∂

∂y
)x = iy,

Jzy = i(y ∂
∂x

− x ∂
∂y
)y = −ix, and Jzy = i(y ∂

∂x
− x ∂

∂y
)z = 0. Note that Jz is precisely the z-component of the

angular momentum operators in quantum mechanics. We can naturally pass back and forth between matrices
and differential operators. We will not make use of this differential representation until a later chapter.

∗ Regarding the argument (which I mentioned in a footnote in the preface) between those who live with
coordinates and those who live coordinate free, I would say that the proof of angular momentum conservation,
which I already gave, not once, but twice in the two preceding chapters using coordinates, provides an example in
favor of the latter group: d

dt
�l = d

dt
(�r × �p)=m d

dt
(�r × d�r

dt
)=md�r

dt
× d�r

dt
+m�r × d2�r

dt2
= 0 for rotationally symmetric

potentials. While this indeed looks simpler than the two previous discussions, the former group could also say
that this requires learning “considerable formal math,” such as the cross product and its various properties.
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Appendix 2: Rotations in higher dimensional space

Here we discuss rotations in D-dimensional Euclidean space. As you have no doubt heard, Einstein combined
space and time into a 4-dimensional spacetime. Thus, what you will learn here about SO(4) will be put to good
use.∗ If you prefer, you could skip this discussion and come back to it later.

Start with a D-by-D matrix with 0 everywhere. Generalize (14). Stick a 1 into the mth row and nth column,
and a (−1) into the nth row andmth column. Call this matrix J(mn). We put the subscripts (mn) in parentheses to
emphasize that (mn) labels the matrix. They are not indices to tell us which element of the matrix we are talking
about. As explained before, we define J(mn) = −iJ(mn) so that explicitly

J
ij

(mn)
= −i(δmiδnj − δmjδni) (19)

To repeat, in the symbol J ij
(mn)

, the indices i and j indicate respectively the row and column of the entry J ij
(mn)

of
the matrix J(mn), while the indices m and n, which I put in parentheses for pedagogical clarity, indicate which
matrix we are talking about. The first indexm on J(mn) can take onD values, and then the second index n can take
on only (D − 1) values since, obviously, J(mm) = 0. Also, since J(nm) = −J(mn), we require m> n to avoid double
counting. Thus, there are only 1

2D(D − 1) real antisymmetric D-by-D matrices J(mn), and A could be written as
a linear combination of them: A= i

∑
m>n θmnJ(mn), where θmn denote 1

2D(D − 1) real numbers. (As a check,
for D = 2 and 3, 1

2D(D − 1) equals 1 and 3, respectively.) The matrices J(mn) are known as the generators of the
group SO(D).

Notice a notational peculiarity: for SO(3), the J s could be labeled with one index rather than two indices. The
reason is simple. In this case, the indices m, n take on 3 values, and so we could write Jx = J23, Jy = J31, and
Jz = J12. We will, as we do here, often pass freely between the index sets (123) and (xyz). In general, rotations
are labeled by the plane they occur in, say the (m-n) plane spanned by the mth and nth axes. In 3-dimensional
space, and only in 3-dimensional space, a plane is uniquely specified by the vector perpendicular to it. Thus, a
rotation commonly spoken of as a rotation around the z-axis is better thought of as a rotation in the (1-2) plane,
that is, the (x-y) plane. (In this connection, note that the J in (7) appears as the upper left 2-by-2 block in Jz in
(14).) In contrast, for SO(4) it makes no sense to speak of a rotation around, say, the third axis.

The reader who has studied some group theory knows that the essence of the group is captured by the extent
to which the multiplication of two group elements does not commute. For rotations, everyday observations show
that R(θ)R(θ ′) is in general quite different from R(θ ′)R(θ). See figure 3.

Following Lie, we could try to capture this essence by focusing on infinitesimal rotations. Let R1 � I + A

and R2 � I + B. Then R1R2 � (I + A)(I + B)� I + A+ B + AB +O(A2, B2) (where rather pedantically we
have indicated that to the desired order if we keep AB, we should also keep terms of order O(A2, B2), but we
will see immediately that they are irrelevant). If we multiply in the other order, we simply interchange A and
B, thus R2R1 � (I + A)(I + B)� I + B + A+ BA+O(A2, B2). Hence, R1R2 and R2R1 differ by the amount
[A, B] ≡ AB − BA, a quantity known as the commutator between A and B.

More formally, given two matrices X and Y , to measure how they differ from each other, we could ask how
X−1Y differs from the identity. If X = Y , then this product is equal to the identity. Now, the inverse of a matrix
I +A infinitesimally close to the identity is easy to determine: it is just I −A, since (I −A)(I +A)= I +O(A2).
Thus, let us calculate (R2R1)

−1R1R2:

(R2R1)
−1R1R2 = [I − (B + A+ BA+O(A2, B2))][I + A+ B + AB +O(A2, B2)]

= I + [A, B] + . . . (20)

For SO(3), for example,A is a linear combination of the Jis, known as the generators of the Lie algebra. Thus,
we could write A= i

∑
i θiJi and similarly B = i

∑
j θ

′
j
Jj . Hence [A, B] = i2

∑
ij θiθ

′
j
[Ji , Jj ], and so it suffices

to calculate the commutators [Ji , Jj ].
Recall that for two matrices M1 and M2, (M1M2)

T =MT
2 M

T
1 . Transpose reverses the order. Thus ([Ji , Jj ])T =

−[Ji , Jj ]. In other words, the commutator [Ji , Jj ] is itself an antisymmetric 3-by-3 matrix and thus could be
written as a linear combination of the Jks:

[Ji , Jj ] = icijkJk (21)

∗ Higher dimensional rotation groups often pop up in the most unlikely places in theoretical physics. For
example, SO(4) is relevant for a deeper understanding of the spectrum of the hydrogen atom.5
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(a)

(b)

Figure 3 A marine recruit in a boot camp is standing and facing north. When the drill sergeant
shouts, “Rotate by 90◦ eastward around the vertical axis” our recruit turns to face east. Suppose
the sergeant next shouts, “Rotate by 90◦ westward around the north-south axis.” Our recruit
ends up lying down on his back with his head pointing west, his feet pointing east. But what
would happen if the sergeant reverses his two commands? You could easily verify that our recruit
now ends up lying down on his left elbow, with his head pointing north. The order matters. For
this reason, the study of rotations has been a bête noire for generations of physics students.

for a set of real (convince yourself of this!) numbers cijk. The summation over k is implied by the repeated index
summation convention.

By explicit computation using (14), we find

[Jx , Jy ] = iJz (22)

You should work out the other commutators or argue by cyclic substitution x → y → z→ x. The three commu-
tation relations may be summarized by

[Ji , Jj ] = iεijkJk (23)

We define the totally antisymmetric symbol εijk by saying that it changes sign upon the interchange of any pair
of indices (and hence it vanishes when any two indices are equal) and by specifying that ε123 = 1. In other words,
we found that cijk = εijk.

Lie’s great insight is that the preceding discussion holds for any group whose elements are labeled by a set of
continuous parameters (such as θi , i = 1, 2, 3 in the case of SO(3)), groups now known as Lie groups. Expanding
the group elements around the origin, we arrive at (20) and hence the structure (21) for any continuous group.
The set of all commutation relations of the form (21) is said to define a Lie algebra, with cijk referred to as the
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structure constants of the algebra. The matrices Ji are called the generators of the Lie algebra. The idea is that
by studying the Lie algebra, we go a long way toward understanding the group.

You should now work out (exercise 4), starting from (19), the Lie algebra for SO(D):

[J(mn) , J(pq)] = i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (24)

This may look rather involved to the uninitiated, but in fact it is quite simple. First, the right hand side,
a linear combination of the J s, as required by the general argument above, is completely fixed by the first
term by noting that the left hand side is antisymmetric under three separate interchanges: m↔ n, p ↔ q, and
(mn) ↔ (pq). Next, all those Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in
common, then the commutator vanishes. If they do have an integer in common, you simply “cross off” that
integer. This is best explained by using SO(4) as an example. We have [J(12) , J(34)] = 0, [J(12) , J(14)] = iJ(24),
[J(23) , J(31)] = −iJ(21) = iJ(12), and so forth. The first of these relations says that rotations in the (1-2) plane and
in the (3-4) plane commute, as you might expect. Do write down a few more and you will get it.

Exercises

1 Suppose we are given two vectors �p and �q in ordinary 3-dimensional space. Consider this array of three

numbers:

(
p2q3

p3q1

p1q2

)
. Prove that it is not a vector, even though it looks like a vector. (Check how it transforms

under rotation!) In contrast,

(
p2q3−p3q2

p3q1−p1q3

p1q2−p2q1

)
does transform like a vector. It is in fact the vector cross product

�p × �q.

2 Show that the product of two delta functions δ(x)δ(y) is invariant under rotation around the origin.

3 Using (14) show that a rotation around the x-axis through angle θx is given by

Rx(θx)=
⎛
⎜⎝

1 0 0

0 cos θx sin θx

0 − sin θx cos θx

⎞
⎟⎠

Write down Ry(θy). Show explicitly that Rx(θx)Ry(θy) �= Ry(θy)Rx(θx).

4 Calculate [J(mn) , J(pq)].

5 Given a 3-vector �p, show that the quantity �pi �pj when averaged over the direction of �p is given by
1

4π

∫
dθdϕ cos θ �pi �pj = 1

3 �p2δij .

Notes

1. Outside of physics, people often erroneously call any array of numbers a vector. Of course, people are free to
call anything anything, so let’s not quibble about the word “erroneously.”

2. I say “most, but not all,” because it is conceivable that you are a native speaker of Guugu Yimithirr. See
G. Deutscher, Through the Language Glass, H. Holt and Co., 2010, p. 161.

3. The intellectual precision of our definition of symmetry is necessary lest we make the same mistake as the
ancient Greeks. See Fearful, pp. 11–12 and figure 2.2.

4. According to one story, take it or leave it, Descartes was lying in bed when he noticed a fly buzzing around
the room. He then realized that he could fix the fly’s position given how far the fly was from two intersecting
walls and the ceiling.

5. For example, J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, pp. 265–268.
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I.4 Who Is Afraid of Tensors?

A tensor is something that transforms like a tensor

Long ago, an undergrad who later became a distinguished condensed matter physicist
came to me after a class on group theory and asked me, “What exactly is a tensor?” I told
him that a tensor is something that transforms like a tensor. When I ran into him many
years later, he regaled me with the following story. At his graduation, his father, perhaps
still smarting from the hefty sum he had paid to the prestigious private university his son
attended, asked him what was the most memorable piece of knowledge he acquired during
his four years in college. He replied, “A tensor is something that transforms like a tensor.”

But this should not perplex us. A duck is something that quacks like a duck. Mathemati-
cal objects could also be defined by their behavior. We already saw in the preceding chapter
that a vector is defined by how it transforms: V ′i = RijV j . Consider a collection of “math-
ematical entities” T ij with i , j = 1, 2, . . . , D in D-dimensional space. If they transform
under rotations according to

T ij → T ′ij = RikRjlT kl (1)

then we say that T transforms like a tensor, and hence is a tensor. (Here we are using the
Einstein summation convention introduced in the previous chapter: The right hand side
actually means

∑D
k=1

∑D
l=1 R

ikRjlT kl and is a sum of D2 terms.) Indeed, we see that we
are just generalizing the transformation law of a vector.

Fear of tensors

In my experience teaching, a couple of students are invariably confused by the notion of
tensors. The very word “tensor” apparently make them tense. Dear reader, if you are not
one of these unfortunates, so much the better for you! You could zip through this chapter.
But to allay the nameless fear of the tensorphobe, I will go slow and be specific.
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Think of the tensor T ij as a collection of D2 mathematical entities that transform
into linear combinations of one another. To help the reader focus, I will often spe-
cialize to D = 3. Compounded and intertwined with their fear of tensors, the unfor-
tunates mentioned above are also unaccountably afraid of indices, as mentioned in
chapter I.1. For them, let us list T ij explicitly for D = 3. There are 32 = 9 of them:
T 11, T 12, T 13, T 21, T 22, T 23, T 31, T 32, T 33. That’s it, 9 objects that transform into linear
combinations of one another. For example, (1) says that T ′21 = R2kR1lT kl = R21R11T 11 +
R21R12T 12 + R21R13T 13 + R22R11T 21 + R22R12T 22 + R22R13T 23 + R23R11T 31+
R23R12T 32 + R23R13T 33. This shows explicitly, as if there were any doubt to begin with,
that T ′21 is given by a particular linear combination of the 9 objects. That’s all: the ten-
sor T ij consists of 9 objects that transform into linear combinations of themselves under
rotations.

We could generalize further and define∗ 3-indexed tensors, 4-indexed tensors, and so
forth by such transformation laws as W ′ijn = RikRjlRnmWklm. Here we will focus on 2-
indexed tensors, and if we say tensor without any qualifier, we often, but not always, mean
a 2-indexed tensor. With this definition, we might say that a vector is a 1-indexed tensor
and a scalar is a 0-indexed tensor, but this usage is not common. A scalar transforms as a
tensor with no index at all, namely S′ = S; in other words, a scalar does not transform.

Tensor field

In the preceding chapter, we introduced the notion of a vector field V i(�x), nothing more or
less than a vector function of position. That it is a vector means that it transforms according
to V ′i(�x′)=RijV j(�x). Now consider the derivative of this vector field ∂V j(�x)

∂xk
, which we will

call Wkj(�x).
Use the fact that �x ′ =R�x implies �x =R−1�x′ =RT �x′ and thus ∂xk

∂x′h = (RT )kh =Rhk. (The
O in the rotation group SO(D) is crucial: the inverse of a rotation is its transpose.) Then

∂

∂x′h = ∂xk

∂x′h
∂

∂xk
= Rhk ∂

∂xk
(2)

Thus

W ′hi(�x′)≡ ∂V ′i(�x′)
∂x′h = Rhk ∂

∂xk
(RijV j(�x))= RhkRij ∂V

j(�x)
∂xk

= RhkRijWkj(�x) (3)

Comparing with (1) we see that Wkj(�x) transforms like a tensor and, hence, is a tensor.
Indeed, it is a tensor field.

Notice that a tensor T ij transforms as if it were composed of two vectors viwj , that
is, T ij and viwj transform in the same way. (Compare viwj → v′iw′j = RikvkRjlwl =
RikRjlvkwl with (1).) It is important to recognize that only in exceptional cases does a
tensor T ij happen to be equal to viwj for some v and w. In general, a tensor cannot be

∗ Our friend the Jargon Guy tells us that the number of indices carried by a tensor is known as its rank. (The
Jargon Guy is a new friend of the author; he did not appear in QFT Nut.)
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written in the form viwj . Our tensor field Wkj(�x) offers a ready example: in general, it is
not equal to some vector Uk multiplied by V j(�x).

Also, note in our example that the differential operator ∂

∂xk
transforms (2) like a vector.

For example, if φ′(x′)= φ(x) transforms like a scalar, then ∂φ

∂xk
transforms like a vector.

Indeed, that’s why you have encountered the notation �∇ for the gradient in an elementary
physics course. This remark will be important later when we revisit Newton’s inverse
square law in chapter II.3. Do exercise 1 now.

Representation theory

Go back to the 9 objects T ij that form a tensor. Mentally arrange them in a column⎛
⎜⎜⎜⎜⎜⎝

T 11

T 12

...

T 33

⎞
⎟⎟⎟⎟⎟⎠

The linear transformation on the 9 objects can then be represented by a 9-by-9 matrix
D(R) acting on this column. (Here we are going painfully slowly because of common
confusion on this point. Some authors refer to this column as a 9-component “vector,”
which is a horrible abuse of terminology. We reserve the word “vector” for something that
transforms like a vector V ′i = RijV j . It is not true that any old collection of stuff arranged
in a column is a vector. Don’t call anything with feathers a duck!)

For every rotation, specified by a 3-by-3 matrixR, we could thus associate a 9-by-9 matrix
D(R) transforming the 9 objects T ij linearly among themselves. We say that the 9-by-9
matrix D(R) represents the rotation matrix R in the sense that

D(R1)D(R2)= D(R1R2) (4)

Multiplication of D(R1) and D(R2)mirrors the multiplication ofR1 andR2, as it were. The
tensor T is said to furnish a 9-dimensional representation of the rotation group SO(3).
The 9-by-9 matrices D(R) represent R. Notice that with this jargon, the vector furnishes a
3-dimensional representation of the rotation group, known as the defining or fundamental
representation.

Reducible versus irreducible

Let us now pose the central question of representation theory. Given these 9 entities T ij

that transform into each other, consider the 9 independent linear combinations that we
can form out of them. Is there a subset among them that only transform into each other?
A secret in-club, as it were.

A moment’s thought reveals that there is indeed an in-club. Consider Aij ≡ T ij − T ji.
Under a rotation,
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Aij → A′ij = T ′ij − T ′ji = RikRjlT kl − RjkRilT kl

= RikRjlT kl − RjlRikT lk = RikRjl(T kl − T lk)= RikRjlAkl (5)

I have again gone painfully slow here, but it is obvious, isn’t it? We just verified in (5) that
Aij transforms like a tensor and is thus a tensor. Furthermore, this tensor changes sign
upon interchange of its two indices (Aij = −Aji) and is said to be antisymmetric. The
transformation law (1) treats the two indices democratically, without favoring one over
the other, and thus preserves the antisymmetric character of a tensor: if Aij = −Aji, then
A′ij = −A′ji also.

Let us count. The index i in Aij could take on D values; for each of these values,
the index j could take on only D − 1 values (since the D diagonal elements Aii = 0 for
i = 1, 2, . . . , D, no Einstein repeated index summation here); but to avoid double counting
(sinceAij = −Aji) we should divide by 2. Hence, the number of independent components
inA is equal to 1

2D(D − 1). For example, forD = 3, we have the 3 objects:A12, A23, andA31.
The attentive reader would recall that we did the same counting in the previous chapter.

Obviously, the same goes for the symmetric combination Sij ≡ T ij + T ji. You could
verify as a trivial exercise that S′ij = RikRjlSkl. A tensor Sij that does not change sign
upon interchange of its two indices (Sij = Sji) is said to be symmetric. Evidently, the sym-
metric tensor S has more components than the antisymmetric tensorA. In addition to the
components Sij with i �= j , S also hasD diagonal components, namely S11, S22, . . . , SDD.
Thus, the number of independent components in S is equal to 1

2D(D − 1) + D =
1
2D(D + 1).

For D = 3, the number of components in A and S are 1
2

. 3 . 2 = 3 and 1
2

. 3 . 4 = 6,
respectively. (ForD = 4, the number of components inA and S are 6 and 10, respectively.)
Thus, in a suitable basis, the 9-by-9 matrix referred to above actually breaks up into a 3-
by-3 block and a 6-by-6 block. We say that the 9-dimensional representation is reducible:
it could be reduced to smaller representations.

But we are not done yet. The 6-dimensional representation is also reducible. To see this,
note

S′ii = RikRilSkl = (RT )kiRilSkl = (R−1)kiRilSkl = δklSkl = Skk (6)

where we have used the O in SO(D). (Here we are using repeated index summation:
the indices i and k are both summed over.) In other words, the linear combination
S11 + S22 + . . . + SDD, the trace of S, transforms into itself, that is, does not transform
at all. It is a loner forming an in-club of one. The 6-by-6 matrix describing the linear
transformation of the 6 objects Sij breaks up into a 1-by-1 block and a 5-by-5 block. See
figure 1.

Again, for the sake of the beginning student, let us work out explicitly the 5 objects that
furnish the representation 5 of SO(3). First define a traceless symmetric tensor S̃ by

S̃ij = Sij − δij (Skk/D) (7)

(The repeated index k is summed over.) Explicitly, S̃ii = Sii − D(Skk/D) = 0, and S̃ is
traceless. Specialize to D = 3. Now we have only 5 objects, namely S̃11, S̃22, S̃12, S̃13, S̃23.
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9 → 5 + 3 + 1

Figure 1 How the collection of 9 objects T ij splits up. The figure is meant
to be schematic: the dots do not represent the original 9 objects, but linear
combinations of them, and the positions of the dots are not meaningful.

We do not count S̃33 separately, since it is equal to −(S̃11 + S̃22). Under an SO(3) rotation,
these 5 objects transform into linear combinations of one another, as we just explained.

Let us be specific: the object S̃13, for example, transforms into S̃′13 = R1kR3lS̃kl =
R11R31S̃11 +R11R32S̃12 +R11R33S̃13 +R12R31S̃21 +R12R32S̃22 +R12R33S̃23 +R13R31S̃31

+R13R32S̃32 + R13R33S̃33 = (R11R31 − R13R33)S̃11 + (R11R32 + R12R31)S̃12 + (R11R33 +
R13R31)S̃13 + (R12R32 − R13R33)S̃22 + (R12R33 + R13R32)S̃23, where in the last equality,
we used S̃ij = S̃j i and S̃33 = −(S̃11 + S̃22). Indeed, S̃13 transforms into a linear combina-
tion of S̃11, S̃22, S̃12, S̃13, S̃23.

To summarize, what we found is that if, instead of the basis consisting of the 9 entities
T ij , we use the basis consisting of the 3 entities Aij , the single entity Skk (remember
repeated index summation!), and the 5 entities S̃ij , the 9-by-9 matrix D(R) (that represents
rotation in the sense of (4)) breaks up into a 3-by-3 matrix, a 1-by-1 matrix, and a 5-by-5
matrix “stacked on top of each other.” This is represented schematically as

D(R)= (9-by-9 matrix)→

⎡
⎢⎢⎢⎣

(3-by-3 block) 0 0

0 (1-by-1 block) 0

0 0 (5-by-5 block)

⎤
⎥⎥⎥⎦ (8)

Note that once we chose the new basis, this decomposition holds true for all rotations.
(For the readers who know their linear algebra, the technical statement is that there exists
a similarity transformation that block-diagonalizes D(R) for all R. Incidentally, we will
encounter plenty of similarity transformations later.)

More generally, the D2 representation furnished by a general 2-indexed tensor decom-
poses into a 1

2D(D − 1)-dimensional representation, a ( 1
2D(D + 1)− 1)-dimensional rep-

resentation, and a 1-dimensional representation. We say that in SO(3), 9 = 5 + 3 + 1. (In
SO(4), 16 = 9 + 6 + 1.)

You might have noticed that in this entire discussion we never had to write out R
explicitly in terms of the 3 rotation angles and how the 5 objects S̃11, . . . , S̃23 transform
into one another in terms of these angles. It is only the counting that matters. You might
regard that as the difference between mathematics and arithmetic.
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5 → 2 + 2 + 1

Figure 2 Under SO(3), the 5 objects inside the solid line transform
into linear combinations of each other, but under the smaller group of
transformations SO(2), the objects inside each of the 3 dashed lines
transform into linear combinations of each other. The 5 breaks up as
5 → 2 + 2 + 1. As in figure 1, this figure is meant to be schematic.

Restriction to a subgroup

You definitely do not have to master group theory1 to read this book, but it would be useful
for you to learn a few basic concepts and to be able to count. For instance, the notion of a
subgroup. Consider the group SO(2) that we studied to exhaustion, consisting of rotations
around the z-axis, say. Evidently, SO(2) is a subgroup of SO(3) in that its elements are all
elements of SO(3) and form a group all by themselves. The components of the 3-vector V i

could be split into two sets: (V 1, V 2) and V 3. Under a rotation around the z-axis, (V 1, V 2)

transform as a 2-vector and V 3 as a scalar. We say that upon restriction to the subgroup
SO(2), the irreducible representation 3 breaks up into the representations 2 and 1 of the
subgroup, a decomposition we write as 3 → 2 + 1. All the group theoretic results we need
in this book could be obtained by explicit listing and simple counting.

Look at the 5 objects, S11, S22, S12, S13, S23, that furnish the representation 5 of SO(3).
Now consider a restriction to the subgroup SO(2). In other words, we restrict ourselves to
rotations around the z-axis, that is, rotations under whichV 3 → V ′3 = V 3, namely rotations
with R33 = 1 and R13, R23, R31, R32 all vanishing. Since SO(2) does not touch the index
3, we conclude immediately that the combination S11 + S22 = −S33 does not transform,
or in other words, it transforms as a singlet under SO(2). Similarly, the pair (S13, S23)

transforms as a doublet, since the index 3 is “invisible” to SO(2): the group transforms
the indices 1 and 2 into each other, while leaving the index 3 alone. Indeed, we see that our
earlier expression for S′13 collapses to S′13 =R11S13 +R12S23, as expected. Finally, you can
verify that the remaining combinations (S12, S11 − S22) transform like a doublet. These
results could be summarized by saying that, upon restriction to the subgroup SO(2), the
irreducible representation 5 of the group SO(3) breaks up as 5 → 2 + 2 + 1. See figure 2.

Tensors in Newtonian mechanics

Let us give another example, particularly apt for a book on gravity, of a Newtonian tensor.
Consider two nearby particles moving in a potential. Denote their trajectories by �x(t)
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and �y(t), respectively, determined by d2xi

dt2
= −∂iV (�x) and d2yi

dt2
= −∂iV (�y). (I am also

testing whether there are any readers who do not understand thoroughly the concept of
notational freedom.) We want to know how the separation vector �s ≡ �y − �x changes with
time, keeping terms to leading order in �s:

d2si

dt2
= d2yi

dt2
− d2xi

dt2
= −∂i[V (�y)− V (�x)] = −∂i[V (�x + �s)− V (�x)] � −∂i∂jV (�x)sj

The object Rij (�x)≡ ∂i∂jV (�x) is manifestly a tensor if V (�x) is a scalar. For example, verify
that Rij =GM(δijr2 − 3xixj)/r5 for the gravitational potentialV (�x)= −GM/r . Note that
Rij is a symmetric traceless tensor. Since Rii = ∂i∂iV (�x)= �∇2V , the tracelessness merely
reaffirms the fact that the 1/r potential satisfies Laplace’s equation �∇2V = 0. Also, Rij is
manifestly not the product of two vectors, but it transforms as if it were.

Let us see how rotational covariance works in the equation

d2si

dt2
= −Rij sj (9)

The right hand side has to be linear in the vector �s. Since the left hand side transforms like
a vector, the right hand side must also: indeed, it is given by a tensor R contracted∗ with
a vector �s. A tensor is needed on the right hand side.

Imagine yourself falling toward a spherical planet or star. With no loss of generality,
let your location at some instant be (0, 0, r) along the z-axis. The tensor R written out
as a matrix is then diagonal and is given by (for example, R33 =GM(δ33r2 − 3x3x3)/r5 =
GM(1 − 3)/r3)

R = GM

r3

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ (10)

Thus, the sign of d2�s
dt2

depends on the orientation of �s.
To see why this is so and to understand what tensors are all about, imagine surrounding

yourself with a circular arrangement of balls lying in the (x-z) plane (see figure 3a) and
initially at rest in your frame. Using (9) and (10), we can now write down how the separation
between two balls along different directions changes.

Since we are going to specify the direction, we will denote the separation simply by
s. Along the z-axis, s grows according to (see (9)) d2s

dt2
= −R33s = +2GM

r3 s. The plus sign
indicates that the two balls move away from each other. In contrast, along the x-axis, s de-
creases according to d2s

dt2
= −R11s = −GM

r3 s. The two balls approach each other. (Similarly
for two balls aligned along the y-axis.) (Note that acting on �s on the right hand side of (9)
by a tensor makes it possible for d2s

dt2
to change sign depending on the orientation of �s.)

Inspecting figure 3a, you see why. Look at it as an observer on the planet. In the first case,
one of the two balls, being closer to the planet, is falling faster than the other. Thus, they

∗ When a pair of repeated indices, such as j in (9), is summed over, they are often said to be contracted with
each other (as mentioned in a footnote in the preceding chapter) in the sense that this index no longer appears
in the result, as shown by the left hand side of (9).
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z

(a) (b)

x

Figure 3 A falling ring of balls as seen by an observer on the planet (a), and
as seen by an observer falling with the balls (b).

are moving away from each other. In the second case, the two balls are coming closer due
to spherical symmetry: they are both heading toward the center of the planet. As Newton
pointed out, objects do not fall down to earth, but toward the center of the earth.

In your rest frame (figure 3b) as you fall along with the balls, however, you see a tidal
force acting on the circular ring (or a spherical shell if you prefer) of balls. The force
appears to stretch the ring in the z-direction and to squeeze it in the orthogonal direction.
When we come to Einstein’s prediction of gravitational waves in chapter IX.4, we will see
that gravitational waves act on the detector according to equations analogous to (9) and
(10). Note also for future reference that the tidal force Rij (�x) ≡ ∂i∂jV (�x) involves two
derivatives acting on the gravitational potential V (�x).

Invariant tensors

In D-dimensional space, define the antisymmetric symbol εijk...n carrying D indices to
have the following properties:

ε
...l...m... = −ε...m...l... and ε12...D = 1 (11)

In other words, the antisymmetric symbol ε flips sign upon the interchange of any pair
of indices. It follows that ε vanishes when two indices are equal. (Note that the second
property listed is just normalization.) Since each index can take on only values 1, 2, . . . , D,
the antisymmetric symbol forD-dimensional space must carryD indices as already noted.
For example, for D = 2, ε12 = −ε21 = 1, with all other components vanishing. For D = 3,
ε123 = ε231 = ε312 = −ε213 = −ε132 = −ε321 = 1, with all other components vanishing (as
was already noted in the preceding chapter).
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Using the Kronecker delta and the antisymmetric symbol, we can write the defining
properties of rotations RTR = I and det R = 1 as

δijRikRjl = δkl (12)

and

εijk
...nRipRjqRkr . . . Rns = εpqr

...s det R = εpqr
...s (13)

respectively. In (13) we used the definition of det R. (Verify this for D = 2 and 3.)
Referring to (1), we see that we can describe δij and εijk

...n as invariant tensors: they
transform into themselves. For the rest of this text, we will often use, implicitly or explicitly,
the notion of invariant tensors.

For example, for SO(3), using (13) you can show that εijkAiBj ≡ Ck defines a vector
�C = �A× �B, the familiar cross product. Various identities follow. Consider, for example,

εijkεlnk = δilδjn − δinδjl (14)

To prove this, simply note that both sides transform as invariant tensors with four indices,
and the symmetry properties (such as under i ↔ j ) of the two sides match. Contracting
with Aj , Bl, and Cn, we obtain an identity you might recognize: �A × ( �B × �C) = �B( �A .
�C)− �C( �A . �B).

Closing of Newtonian orbits once again

We can now go back to the apparent mystery in chapter I.1, that the Newtonian orbits in
a 1/r potential close. Out of the conserved angular momentum vector �l = �r × �p = �r × �̇r
(we are using the notation of chapter I.1; we have effectively set the mass to unity and
hence the second equality) we can form the Laplace-Runge-Lenz vector �L ≡ �l × �̇r + κ

r
�r .

Computing the time derivative �̇L, you can verify (see exercise 4) that �L is conserved for
an inverse square central force. When �̇r is perpendicular to �r , which occurs at perihelion
and aphelion, the vector �L points in the direction of �r . We could take the constant vector
�L to point toward the perihelion, and thus the position of the perihelion does not change.

Hence the orbit closes.
This result does not hold in Einstein gravity. The precession of the perihelion of Mercury,

which we will discuss in chapter VI.3, is of course one of the classic tests of general
relativity.

Appendix: Two lemmas for future use

There is a lot more we could say about tensors, but let me mention two simple lemmas that we will happen to
need later.

Let Sij and Aij be two arbitrary and unrelated tensors, symmetric and antisymmetric, respectively. Then
SijAij = 0. (See exercise 5.)
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Tensors can have all kinds of symmetry properties, which you can explore on your own and in the exercises. For
example, a totally antisymmetric 3-indexed tensor T ijk is such that T flips sign under the interchange of any pair
of indices (for example, T ijk = −T jik = +T jki). A multi-indexed tensor can also have symmetry properties under
the interchange of a specific pair, or may have no symmetry at all. Consider, for example, a tensorGkij symmetric
under the interchange of the first pair of indices only, that is, Gkij =Gikj . To be pedantic and absolutely clear,
sometimes I like to put a space or a dot between the indices, thus Gki j or Gki .j to separate the “special” pair
from the other indices. For example, our tensor could happen to be Gki .j = ∂k∂iWj(�x) for some vector field Wj .

Given Gki .j , define Hk.ij ≡Gki .j +Gkj .i . (Note that Hk.ij =Hk.ji by definition, but Hi .kj is in general not
equal to Hk.ij .) Then we can solve for G in terms of H :

Gki .j = 1
2
(Hk.ij +Hi .jk −Hj .ki) (15)

(See exercise 8.)

Exercises

1 Define �∇ ≡
(

∂

∂x1 , ∂

∂x2 , . . . , ∂

∂xD

)
. Show that if φ is a scalar, then ( �∇φ)2 = �∇φ . �∇φ =∑

k

(
∂φ

∂xk

)2
and ∇2φ

transform like a scalar. The Laplacian is defined by

∇2 = �∇ . �∇ = ∂2

∂(x1)2
+ ∂2

∂(x2)2
+ . . . + ∂2

∂(xD)2

2 Show that the symmetric tensor Sij is indeed a tensor.

3 Show that the infinitesimal volume element d3x is a scalar.

4 Show that the Laplace-Runge-Lenz vector is conserved.

5 Show that SijAij = 0 if Sij is a symmetric tensor and Aij an antisymmetric tensor.

6 Let T ijk be a totally antisymmetric 3-indexed tensor. Show that T has 1
3!D(D − 1)(D − 2) components.

Identify the one component for D = 3.

7 Consider for SO(3) the tensor T ijk from exercise 6. Show that it transforms as a scalar.

8 Prove the lemma in (15).

9 Verify (13) for D = 2 and 3.

Note

1. For a concise introduction to some of the group theory needed in theoretical physics, see QFT Nut, appendix B.

(CHAPTER 1 CONTINUES...)
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2 -factor, Einstein’s field equation, and metric tensor

formalism, 76
“1–2” test, 326
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5-dimensional spacetime. See Kałuza-Klein theory

Abbott, E. A., 671
abelian gauge theory, 681n
Abraham, Max, on Newton gravity and Lorentz

invariance, 580
acausality, of universe, 754, 783
“accelerated” thought experiment, 280–283, 286
acceleration: and curvature, 554; Galilean

transformation, 276–277; Galileo’s law of, 140;
and general relativity, 189; and gravity, 269, 271; in
Minkowski spacetime, 190; relativistic particles,
277

accretion disks, 414–415; around Kerr black holes,
474

acoustic peak, microwave background, 523–525,
788n

action: for 2-brane model, 700; constraints in
varying, 755–756; containing two powers of time
derivative, search for, 338–339; different sectors
of matter action, 382–383; dimensions of, 346;
at a distance, of Newton’s gravity, 145; Einstein-
Hilbert (see Einstein-Hilbert action); for elastic
medium, 771; electromagnetic, 244, 250–251, 333;
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action (continued)
for everything else, 347; for fields in spacetime
described by a metric, 770; in flat spacetime, 379;
formulation by metric or vielbein, 785; of free
particle, 162; gravitational time dilation, 284; for
gravity, 339, 344, 346; as infinite series of terms,
766; Kałuza-Klein, in Jordan frame, 686; length
or energy scale dependence of, 710; local, 246;
Lorentz, in Kałuza-Klein theory, 678; of matter
(see matter action); Maxwell, 325, 332, 675–676;
for motion of finite sized objects, 714–715, 716;
Newton-Einstein-Hilbert, quantum gravity limit
of, 444; Newton’s law of action and reaction, 470;
nondependence on metric, 723; nonlocality in
time, 754; nonrelativistic, 241–242, 356; offshell
information carried by, 782; reasons for emphasis
on, 396; relativistic, 284–285, 308; relativistic
string, 210n; scalar field, 332; specification of
dynamical variables, 395; terms of, behavior at
long distances, 722; topological, 720–721; total,
Newtonian world, 145; of universe, 346, 356; as
usually formulated, 783; of world, and energy
momentum tensor, 378; Yang-Mills, 681

action functional, 138
action principle, 155; basics of physics, 136–149;

different notions of, 138; as fundamental principle
of theoretical physics, 783; globality of, compared
to equation of motion, 141; kinetic term in, 140;
and least time principle, 139, 144; metaphor for
life, 140; mystery of, 141, 155; of particles and
fields, 145; theories based on, 383; variational
calculus, 113

action variation, holding dynamical variables fixed,
380

active diffeomorphism, 397
actual biological time, elapsed between event A and

B, 179
addition of velocities. See velocities
ADM (Arnowitt-Deser-Misner) formulation, of

gravitational dynamics, 693
AdS. See anti de Sitter spacetime
affine parameter, 308
Aharonov-Bohm effect, 789n
air resistance, and free fall, 268
airline example, for proving curvature of earth, 66
al-jabr, calculation method, 208n
Al-Khwarizmi, calculation of square roots, 207n
algebra: conformal, 614–623; de Sitter, and

cosmological constant, 755; extensions of, 667;
Lie (see Lie algebra); Lorentz (see Lorentz algebra);
matrix, quick review of, 742–743; Poincaré (see
Poincaré algebra)

algorithm, etymology of the word, 207n
ambitwistors: power of, 738; representation of, 736
American football, relativity of, 171, 172f
“analog Newtonian” equation, 367
analytic continuation: de Sitter to anti de Sitter

spacetime, 664; hyperbolic coordinates, 661; of
stereographic projection, 641

analytic geometry, role of coordinates, 48
Anderson, Phil, on particle physicists, 713n
angles: defined by physicists, 170; hyperbolic, 628;

importance of, 620
angular coordinates: on de Sitter spacetime, 627;

suppressed, 422, 426
angular correlation, cosmic microwave background

fluctuations, 523f
angular deficits: as “measure” of curvature, 727; of

polyhedra, 726–727
angular momentum: around black holes, 412–413,

459; conservation of, 30, 36–37, 48n, 126, 152,
310; Kerr black hole, slow rotation limit, 571; loss,
Penrose process, 471–472; of particle on sphere,
148; of rotating black holes, 442, 465, 576; of
rotating bodies, 563–577; symmetry of, 150

angular velocity: around black holes, 414, 460;
defined by time coordinate, 550; for Kerr black
hole, 462f; slowly rotating gravitational sources,
570; inside stationary limit surface, 471

annihilated spacetime, 785
annihilation operator, 447–448
annus mirabilis, Albert Einstein’s, 265
ant and honey analogy, 5–6, 5f
ant movement, as example of variational calculus,

128
anthropic principle: and cosmological constant

paradox, 751–752, 757; and ultimative theory,
789n

anti de Sitter / conformal field theories (AdS/CFT):
AdS/CFT correspondence, 649, 787; conformal
coordinates of, 654, 654f; and Poincaré half plane,
68

anti de Sitter spacetime (AdS), 606e, 612, 649–
666; for 2-brane model, 702; AdS2 boundaries,
664; boundary of, 655; d-dimensional, 650, 650f;
different forms of, 660; in hyperbolic coordinates,
661; isometry group of, 650; motion of light, 659;
motion of massive particles, 659–660; Poincaré
coordinates, 656; slice of, 658f; stereographic
projection for, 661; table for, 662

anti-gravity, discussion of, 392
anticommutation: of differential forms, 597; Jordan’s

manuscript on, 789n
antimatter: and charge conjugation in Kałuza-

Klein theory, 678; creation of, 205, 206; in early
universe, 528; Feynman diagram of, 206f; in
higher dimensional theories, 683; in quantum
field theory, 476

antiparticles, 26, 437–438
antipodal condition, space of spheres, 646
antisymmetric matrices, introduction of, 40
antisymmetric symbol: in curved spacetime, 723–

725; as invariant tensor, 60; role as metric, 734;
used to contract indices, 719
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antisymmetric tensors: character of, 55;
decomposition of, 236e

antisymmetry: useful relations based on, 608. See
also symmetry

apparent singularities, at Schwarzschild radius, 409
apparent violation of causality, in brane models, 703,

705
apple: falling, 36, 137f, 268; floor rushing up to meet,

270f
area: approximation by small rectangles, 546;

infinitesimal, enclosed by closed curves, 547;
Planck, and entropy of black holes, 442

area and volume, concept of, and coordinate
transformations, 75–76

area theorem, Penrose process, 472
area transformations, in differential forms, 598
Aristotle, comparison to Newton, 140–141
arithmetic, difference from mathematics, in terms of

rotations, 56
arithmetic laws, of working in general relativity, 665
Arkani-Hamed, modified Einstein’s field equation,

754
Arnowitt-Deser-Misner (ADM) formulation, of

gravitational dynamics, 693
arrays, and vectors, 51n
astronomy, with gravitational waves, 563
astrophysical objects: mass and energy for

gravitational waves, 569; Schwarzschild radius to
actual radius relation, 366

asymptotic safety, as approach to quantum gravity,
760

atomic clock, 287
atomic physics, in early universe, 518
atoms, action of, 714–715
attractor, stable, in cosmic diagram, 511f
auxiliary fields, 217n
auxiliary quantities, calculus, 129
averaging, for many particles, 231

baby string theory, 215; and Lorentz transformation,
147

Babylonian tablet, 214, 214f
background radiation. See cosmic microwave

background
bad notation alert: confusion in time dilation, 198;

confusion in relativistic action, 211; geodesic
equation, 555

balls: circularly arranged, falling toward spherical
planet, 58–59; separation between falling, 554; in
train, 160–161, 161f

baryogenesis, 526–528
baryonic matter, 502–503, 506
basic vector: spacetime metrics, 181; (ur-), definition

of, 43
basis vectors: change by moving on surface, 99–100;

for surface, in Euclidean space, 98; variation of,
100

Beer, Gillian, on Lewis Carroll, 173n
Bekenstein-Hawking entropy, 441–442, 444; second

law of black hole thermodynamics, 472
Beltrami, Eugenio, and discovery of Poincaré’s half

plane, 67n
bending of light: “accelerated/dropped” gedanken

experiments, 281–282. See also deflection of light
Bentley, Richard, on existence of God, 520
Bering Strait, “attractive force” of, 275
Berlin Wall, construction of, 476
Bernoulli, Jacob and Johann, brachistochrone

problem, 120
Bessel, Friedrich, Bessel functions, 376n
Besso, Michele, letter of Einstein to son of, 177
Bethe, Hans, and Peierls’ comments on thinking and

calculating, 133
Bianchi identity, 452; constraints on curvature

tensor, 592; contracted, 393, 394; derivation of,
392, 393; and Maxwell’s equations, 724; similarity
to differential forms, 599

Big Bang, 785; analyzed with cosmic potential, 508–
509; in cosmic diagram, 502–503; and cosmic
microwave background, 517; in cosmic potential
diagram, 508f; as creation of space, 498–499, 708;
as point of infinite temperature, 496

Big Crunch, 508–509, 508f, 514
billiard balls, elastic collision of, 165e
binary pulsar, emission of gravitational waves, 563
binary systems, gravitational waves from, 714
binding energy, gravitational, 455–456
biological time, actual, elapsed between event A and

B, 179
Birkhoff, George: Newton-Jebsen-Birkhoff theorem,

453; time dependent spherically symmetric mass
distribution, 373

black body radiation, of black holes, 436
black hole hypothesis, historical, 13
black holes: and 3-D metrics, 77; binary systems of,

714; charged, 477–484; “dangers of extremes,”
484; in de Sitter spacetime, 635; definition of,
410; distance around extremal, 469; dust ball
collapsing into, 422f; entropy of, 15, 436, 441,
448, 766, 788n; estimation of “electric” and
“magnetic” components for, 717; eternal, 421–
422, 426–427, 479; extremal, 467–468, 478, 481;
first and second law of thermodynamics, 472–473;
formation of, 373, 421–423, 422f, 423f, 429–431;
gravitational potential around, 410–411, 411f; and
Hawking radiation, 14–15; horizon of, 416–417,
784; information paradox, 439; internal world
of, 781; just sitting there, 482–483; Kerr black
hole, 462, 464–468; Kruskal-Szekeres diagram,
426; as limit for measuring device, 763–764; local
gravitational field in great distance of, 574; mass
determination, 570; mass of, given by Michell
and Laplace, 366; mystery of, 410, 441; orbits for
light moving around, 416f; orbits with substantial
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black holes (continued)
angular momentum, 412–413; particles and light
around, 409–418; perihelion shift around, 413;
Reissner-Nordström black hole, 479, 483; rotating,
576; Schwarzschild black hole, 429f, 436; stellar
collapse into, 455–456; strangeness of, 764–765;
sub-/transextremal, 478, 483; tilting light cones,
421; and unitarization of graviton scattering, 765.
See also finite sized objects; rotating black holes

blue shift, relativistic, of frequency, 186
blue sky effect: reason for, 715; squared in gravity,

717
bodies, rotating: angular momentum of, 563–577;

slowly, 570; spacetime deformation by, 460
Bogoliubov transformation, 448
boiling vacuum, 437–438
Boltzmann constant, and temperature concept, 16n
boosts: invariance of, 188; Lorentz transformation

for, 169, 187; and rotations, commutation relations
of, 191–192

Born, Max, on Einstein’s gravity, 777
Bose-Einstein condensate, 332
bosons: bound to magnetic monopoles, 789; as open

strings, 696
Boulware, David, curved spacetime, 580
bounce theory, 536n
boundaries: of AdS2, 664; of anti de Sitter spacetime,

655; divergence of metric tensor, 663; numbers of,
664

boundary: of Euclidean anti de Sitter space, 662;
incoming light beam, with Poincaré coordinates,
659; spatial, in anti de Sitter spacetime, 649

boundary conditions, of energy functional, 116
bowl: curvature at bottom of, 85; potential energy of

moving marble, 113–115
box: accelerating, laser light, 281f, 283f; Lorentz

contraction of, 23; particles in, 223f, 227; for
studying physical systems, 649

Boyer-Lindquist coordinates, 476; description of flat
space, 78

brachistochrone problem, 121f; formulated by
Bernoulli, 120

Brahe and Kepler, work of, importance for Newton,
369n

brane worlds, 696–707
branes: 1-brane model, 702; 2-brane model, 700–702;

initially static, 707; Poincaré invariant, 707; waves
from bulk, 703f. See also membranes

breathing circles, 679–680
Bright, Ms. (limerick character), 294
Broglie, Louis de, 773n; particle-wave dualism, 762
Broglie wavelength, particles at Schwarzschild

radius, 442
Bronstein, Matvei, reconstruction of theory of gravity,

764–765
Buchdahl’s theorem, 454
bulk waves, to brane, 703f

Calabi-Yau manifolds, 695
calculus: simplification of, auxiliary quantities, 129;

of variation (see variational calculus)
caloric, historical concept of, 786
Calvino, Italo, Cosmicomics, 554
candles: falling, 268, 271; standard, 359
Carl Friedrich Gauss, and differential geometry,

90–91
Carroll, Lewis: constant notion of time, 173n; on

times, 166
Cartan, Élie, and Lie algebra, 586
Cartan’s equations: anti de Sitter spacetime, 612;

first, index transformations, 603; for maximally
symmetric 3-spaces, 610; in spherically symmetric
static spacetimes, 611; structural, 607, 684

Cartan formalism: calculation of curvature, 602;
curvature and covariant derivative, 605

Carter-Penrose diagrams, 435. See also Penrose
diagram

Cartesian coordinates: change to polar coordinates,
29, 62, 71; change to spherical coordinates, 63

Casimir effect, 748–749, 758n
Cauchy horizon, 404
Cauchy problem, in Einstein gravity, 400
Cauchy surface, initial data on, 402
Cauchy’s theorem, for analytically continuing

integrands into complex plane, 732
causal structure, of de Sitter spacetime, 638, 639f
causal structure of spacetime: domains, 530, 531f;

Hawking radiation, 438; Penrose diagrams, 427,
431

causality, 178; apparent violation of, in brane models,
703, 705; as fundamental principle of theoretical
physics, 783; at Schwarzschild radius, 421; in
special relativity, 204

Cavendish, Henry, measurement of Newton’s
constant, 32

Cavendish experiment, and non-quantized gravity,
771

celestial mechanics, Newton’s solution of, 28–30
censorship, cosmic, 479–480
center-of-mass energy, graviton scattering, 761
central forces, in celestial mechanics, 28
central potential, and invariance, 47
centrifugal force, 278; around black holes, 411; and

curvature of curve, 97
“centrifugal” potential, 126
CFT (conformal field theories), 649n
chain rule, transformation of Christoffel symbols in,

132
Chandrasekhar, Subrahmanyan, Kerr solutions, 481
Chandrasekhar limit, 455
Chang Heng, and concept of coordinates, 62n
charge: conjugation, 678; conservation of,

during antimatter creation, 205; coupling to
electromagnetic field, 250; density of, in Maxwell’s
equations, 252; Lorentz force law, 404; and
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momentum in fifth dimension, 677; notion of,
246–247; quantization in Kałuza-Klein theory, 677

charged black holes, 477–484; Penrose diagram, 480f
charged particles, individual, worldlines of, 715
charged scalar fields, in 5-dimensional theories, 687
Chern-Simons term: in (2+1)-dimensional spacetime,

721; powers of derivatives, 722
Chinese, and concept of coordinates, 62n
Christoffel 1-form, definition of, 604
Christoffel symbol, 129; brute force transformation

of, 329; and comoving coordinates, 290; and
covariant differentiation, 321; and curved
spacetime, 278; definition range in parallel
transport, 544; in Fermi normal coordinates,
560; indices, number of, 131; introduction
of, 99; schematic form of, 342; around
spherically symmetric mass distribution, 310–
311; transformation of, 132, 389; use of symmetry
properties in Fermi normal coordinates, 561;
variation of, 347

circles: breathing, 679–680; of constant
latitude/longitude, on sphere, 105; mistaken for
points, 674f

circular orbit: around black holes, 413–414, 413f;
innermost stable, 414, 474; around massive object,
549

“classical” differential geometry, 96–109
classical field theory, 119; harmonic oscillator in,

361
classical gravity, puzzling, 784
classical mechanics, without Newton’s equation, 145
classical physics, profound difference from quantum

physics, 360–361
classical relativity, not consistent with quantum field

theory, 773n
classicalization of gravity, 766
clock paradox, 194n
clocks: cosmic, 504; invented by Einstein, 166;

observed in different frames, 196f; and rulers,
role in physics, 719–720; slow running, in special
relativity, 197

closed curved space, 681
closed forms, 604
closed orbits, verification of, 30
closed strings, 696
closed timelike curves, 484
closed universe, 296–297, 491; critical density, 497–

498; as de Sitter spacetime, 630; Einstein’s field
equations, 493–494; with positive cosmological
constant, 633

clothed singularities, 479
Cohen, I. Bernard, visit to Einstein, 267
coincidence problem, 499, 778
collapse: dissipative, 520–521; stellar, 455–456
collisions: elastic, of billiard balls, 165e; of particles,

219–220, 438; of photons and electrons, 222f
column vectors, notation of, 45

common sense, to be abandoned for development of
physics, 784

“common to all the things contained in it,” 18n
communication, in expanding universe, 293–294
commutation: and group theory, 49; of matrices, 41
commutation relations, between boosts and

rotations, 191–192
commutators: between A and B, definition, 49;

computation of, cyclic substitution, 50; index-free
representation of vector fields, 319; introduction
of, 340; and Lie derivative, 328; of two covariant
derivatives, 325, 341

comoving coordinates, 290, 298; preferred flow
direction in, 230

comoving observers: and perfect fluids, 229;
spacetime distance of, 174; in universe filled with
perfect fluid, 492–493

compact source approximation, 568
compactification, of extra dimensions, 683
completion: and promotion, of gravitational fields,

218; relativistic, 242–243
complex matrices, and twistors, 730
complex parameters, rescaling of, 733
complexification, of variables, 732
Compton mass, of universe, 747–748
Compton scattering, 222f; inverse, 235e
computational effort, by using action principle, 141
condensed matter physics: dynamical critical

exponent, 657n, 754, 758n; gauge potential of
solid state structures, 721; scale and conformal
invariances, 621

conformal algebra, 614–623; flat spacetime, 615;
generators of, 617; identification of, 618

conformal coordinates: for anti de Sitter spacetime,
654, 654f; for de Sitter spacetime, 638

conformal equivalence, of anti de Sitter spacetime,
654

conformal field theories (CFT), 649n
conformal flatness: of anti de Sitter spacetime, 662;

of de sitter spacetime, 641–642
conformal generators, 615
conformal groups, equality with isometry groups,

656
conformal Killing condition, 614
conformal time, and cosmic time, 632
conformal transformations, 614; generators of, 644;

preservation of angles, 620; as solutions of Laplace
equation, 616

conformally equivalent spacetime, 311
conformally flat metrics, 352e–353e; definition of, 94
conformally flat space, 80–81e; as bad terminology,

94
conformally related spacetimes, 622e
conjugation, charge, 678
connection 1-form, 599–600; indices of, 607
conservation: angular momentum (see angular

momentum); charge, 205; covariant, of energy
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conservation (continued)
momentum tensor, 384; current, 226, 253; energy
(see energy conservation); energy momentum (see
energy momentum conservation); momentum
(see momentum conservation); and relativistic
fluid dynamics, 233; and symmetry, 150–155

conservation laws, 155; from action principle, 141;
and Killing vectors, 589; for motion in curved
spacetime, 310; in Newtonian mechanics, 35–37

conserved quantities: in Newtonian mechanics, 30;
Noether’s theorem, 152

consistency condition, and determination of
potential, 36

constant latitude/longitude, circles of, on sphere, 105
constant vector fields, covariant derivative of, 331
constants, fundamental, 12
constraints on metric, 403
container: of anti de Sitter spacetime, 649; rectilinear,

infinitesimal volume of, 80e
continuity equation, for current conservation, 225
continuum mechanics, notations of coordinates, 117
contracted Bianchi identity, 393; derived from

Einstein-Hilbert action, 394
contraction: of indices, 46n, 345; of repeated indices,

58n; of spacetime indices, metric for, 719; tensors,
316

contravariant indices, 72, 315
contravariant vectors, 183
coordinate differentials, 312
coordinate invariance: general, 305–306, 672; local,

in higher dimensional theories, 682
coordinate patches, to cover entire space, 76
coordinate scalars, to form a metric, 708–709
coordinate singularities: compared to physical

singularities, 91–92; and Einstein-Rosen bridge,
92f; Kerr black holes, 467; Schwarzschild metric,
365–366

coordinate systems: failure of, 76–77; natural, 134
coordinate transformations: 5-dimensional, gauge

transformations as, 673; accelerated frames,
285; change of metric under, 70–71; Christoffel
symbols, by brute force, 329; in curved space
and curved spacetime, 317; in differential forms,
597; freedom of, 62; Galilean, of acceleration,
276–277; general, 68–71, 312, 314, 318, 384; for
gravitational waves, similarity to electromagnetic
gauge transformations, 564; and indices (upper
and lower), 73–74; and Jacobian, 75; and
Mercator map, 79e; nonlinear, 69; as passive
diffeomorphism, 398

coordinates: angular, 422, 426, 627; Boyer-Lindquist,
476; change of, 64–65, 641; choose of appropriate,
631; comoving, 290, 298; concept of, by Descartes,
48; dimensionless, 665; Eddington-Finkelstein,
431; effect of motion on, 160; geometric
significance of, 68; hyperbolic, 661; hyperbolic
radial, 653–654; internal, 675; Kruskal-Szekeres,

424–425, 432–433; Kruskal-Szekeres-like, 635;
light cone, 146–147, 170–171, 427–429, 704;
locally flat, 130, 132, 278, 288, 552, 557; notation,
62n, 117; Painlevé-Gullstrand, 417; poor choice
of, 590; primed and unprimed, 18, 38, 39f, 71–
73; pseudo-time, 657; relations between different,
159; Rindler, 446; role exchange of, at horizon,
419; of specific point, Fermi normal coordinates,
559; static, 634, 636, 652; time, 652; traditional
“names” of, 25; warped polar, 613e

coordinates, “crazy,” 94e
coordinatization, of de Sitter spacetime, 634
Copernican principle, 491
corotation/counterrotation: light rays, 461, 469;

particles, 474
correlation: angular, cosmic microwave background

fluctuations, 474; of quantum fluctuations, 447
coset manifolds, 590; and classification of space and

spacetime, 666; group theory of universe, 644;
and maximal symmetry, 625; and spontaneous
symmetry breaking, 593

cosmic censorship, 479–480
cosmic clock, universe’s ambient temperature as,

504
cosmic coincidence problem, and cosmological

constant paradox, 751
“cosmic conspiracy,” 297
cosmic diagram, 496, 502, 503f; flow in, 510–512;

phase boundaries in, 513–514; stable attractor and
fixed points, 511f

cosmic expansion. See expanding universe
cosmic microwave background, 236e, 517; angular

correlation of fluctuations of, 523f; density
fluctuations in early universe, 521–522; first
acoustic peak, 523–525; fluctuations, effect of
curvature on, 525–526; temperature, 515

cosmic potential, 508f; Big Bang analyzed with,
508–509

cosmic ray particle, lifetime of, 198
cosmic time, 295; and conformal time, 632; and

horizon problem, 530
Cosmicomics (Calvino), 554
cosmological action: derivation of energy momentum

conservation, 387e; variation of, 391
cosmological constant: for 2-brane model, 701; added

by Einstein, 360; in cosmic diagram, 502–503, 513;
in de Sitter spacetime, 456; decaying, 756; and
deceleration of cosmic expansion, 507; deletion
of, Feynman diagrams for, 756–757; dependence
of equation of state parameter on, 359; different
spatial curvature, 634; Einstein’s field equation in
presence of, 357; and Einstein-Hilbert curvature
term, 754; and energy conditions, 557; essential
role played by, 512; and expanding universe, 392;
in inflationary cosmology, 534; introduction of,
356, 393; as Lagrange multiplier for volume of
spacetime, 756; mass scale of, 700; mystery of,
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356, 711, 751, 782; positive, 633; in quantum
world, forbidding removal of, 361; and scale factor
of universe, 496f; scaling of, 753–754; universe’s
equation of state, 497

cosmological constant paradox, 745–759; algebraic
solution of, 754–755; analogies of, 786; anthropic
principle, 751–752, 757; breaking free of local field
theory, 756; as challenge for physics, 712; cosmic
coincidence problem, 751; deeper understanding
of physics, 753; deletion of Feynman diagrams,
756–757; effective action for gravity, 711; and
effective field theory, 782; extreme ultra infrared
regime, 750–751; inflation, 751; largest and
smallest masses, 747–748; linkage between
infrared and ultraviolet regime, 752; naturalness
doctrine, 749–750; omniscience of gravity, 745;
Planck mass, 746–747; potential solution of,
778; quantum fluctuations, 745–746; question
for explanation of vacuum energy, 752–753;
unimodular gravity, 755–756; vacuum energy
density, 749

cosmological distances, 750; scaling at, 753–754
cosmological equation, 501; appropriate units, 633;

and history of universe, 503–504
cosmological principle, 289, 491–492; Einstein’s field

equations, 494; Newtonian mechanical analogies
from, 507, 513

cosmological redshift, 295
cosmological time, in outgoing brane wave model,

706
cosmology: curvature of universe, 490; gases for,

230; golden age of, 491; inflationary, 530–536;
nonlocal, 712; observational, 505; physical history
of early universe, 515–529; proper distances, 296–
297; trans-Planckian, 518; use of scalar fields in,
759n

couch potato problem: action principle, 143; particles
at rest, 142

Coulomb potential, dilation invariance, 620
counting: for characterizing intrinsic curvature, 110;

and group theory, 56–57; of matrix elements,
87–90

coupled Einstein and Maxwell equations, static
solutions, 482–483

coupled ordinary differential equations, relativistic
stellar interiors, 452

coupled partial differential equations, transfer of
spacetimes, 664

covariance: difference from invariance, 47; general,
285

covariant curl, 325; derivation of energy momentum
tensor, 381

covariant curvature, 339
covariant derivatives: along geodesic, 553; in Cartan

formalism, 605; concept of, and differential
geometry, 100–101; constructed by parallel
transport of vectors, 103; Newton-Leibniz rule,

failure for, 342; and objects carrying vectorial
arrow, 109; in parallel transport, 543–544; of
vectors, 340

covariant differentiation, 320–333; and Christoffel
symbol, 321; along curves, 327

covariant divergence, 326; of tensors, 332
covariant indices, 72, 315
covariant vectors, 183
CP (charge conjugation followed by parity) violation,

528; in higher dimensional theories, 683
“crazy” coordinates, 94
creation of space, 498
creation operator, 447–448
critical density, 497–498; and Hubble length, 514;

ratio of energy density to, 505
critical phenomena, theory of, 621
Crommelin, Andrew, and Royal Society expedition,

367
cross-product notation, angular momentum

conservation, 48n
cross section scattering, 715
cube, topology of, 725
cube of physics, 12–13
cubic vertex, 739
curl: covariant, 325; exterior derivative, 599;

relativistic, 252
curled up space, 673–674
current: conservation of, 225, 253; in relativistic

physics, 223; in string theory, 235
curvature, 667; 5-dimensional scalar, 684–685; and

acceleration, 554; angular deficits as “measure”
of, 727; calculated on basis of given metric,
66; calculated with Cartan formalism, 602,
605; calculated with differential forms, 607;
connection with field strength by differential
forms, 602n; constant of scalars, 589; of curve,
89, 97; from curves to surfaces, 106; of cylinders
and spheres, 6; of earth, airline example for
proving, 66; expressing failure of Newton-Leibniz
rule covariant derivatives, 342; extrinsic (see
extrinsic curvature); of “fixed latitude” circle,
80e; intrinsic (see intrinsic curvature); invariant
or covariant description of, 339; and least path
principle, 5–6; measurement of, 89, 547, 548e;
negative, definition of, 85; Riemann (see Riemann
curvature); scalar (see scalar curvature); of space,
65–66; of spacetime (see curved spacetime); spatial,
effect on CMB fluctuations, 525–526; of surface
and curves, 104–105; of universe, 490–491, 495,
748; vanishing, 85

curvature 2-form, 600
curvature density, 504, 512; and flatness problem,

531
curvature tensor: alternative derivation of, 547–548;

anti de Sitter spacetime, 651; computation of, with
symbolic manipulation software, 607; constraints
on, 591; for de Sitter spacetime, 626; directly
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curvature tensor (continued)
from 2-form, 611; Fermi normal coordinates, 560;
fixed by maximal symmetry, 592; and Hawking
radiation, 438; and Kerr metric, 476; in locally flat
coordinates, 553; in maximally symmetric spaces,
589; use of symmetry properties, 561. See also
Riemann curvature tensor

curved rectangle, displacement of vector, 341f
curved space: and change of coordinates, 64–65;

closed, 681; compared to curved spacetime,
91; and coordinate transformations, 68, 317;
determination of curvature, 65–66; embedded in
higher dimensional flat spaces, 85–86; sphere as
example for, 83

curved spacetime: antisymmetric symbol in,
723–725; and change of coordinates, 64–65;
compared to curved space, 91; coordinate
transformations in, 317; determination of
Lagrangian in, based on Einstein’s equivalence
principle, 712; electromagnetism in, 325–326;
energy momentum tensor in, 380; Euclid’s
axiom, 552; general, spatial distance in, 290–
292; geodesic equation for, 277–278; governed
by energy distribution, 390; governed by
gravity, 344–346; and gravity, mystery of, 276;
independence of mass, 258–259; in lab, 332;
Maxwell’s equations, 333; most appreciated,
624; motion in, 289–290, 301–311, 307–309;
Newtonian limit, 302–303; quantum field theory
in, 780; Raychaudhuri equation, 449; spacelike 3-
dimensional hypersurface, 693f; around spherical
mass distribution, metric for, 364; spinors in,
604–605; universality of gravity, 275–276; universe
as, 288–300; visualizations, 296

curved surface: parallel transport of vectors on, 102;
and tangent plane, 83f

curves: of constant latitude, 92, 93; curvature of,
compared to surface, 89n; decomposition of, 545;
in Euclidean space, 96–97; fear of, 82; in geodesic
problem, definition of, 123; length in spherical
coordinates, 127; minimal length of, 128; in
Minkowskian spacetime, 175; parametrized,
and parallel transport, 543; reparametrization
invariance of, 124; on surface, determination of
curvature, 104–105

cutoff: concept of, in quantum field theory, 758n;
instead of infinities in physics, 770

cyclic substitution, computation of commutators, 50
cyclic symmetry, of Riemann curvature tensor, 351e
cylinder: curvature of, 6, 84–85, 107; tangent plane

of, 98; topological, 654

D-branes, Bekenstein-Hawking entropy, 444
d-dimensional Euclidean space, rotations in, 49–51
d-dimensional sphere, definition of, 624
d-dimensional anti de Sitter spacetime, definition of,

650

Damour, Thibault, on Einstein’s application of
Lorentz transformation to physics, 190

“dangers of extremes,” 484
Dao, of many-worlds interpretation of quantum,

788n
dark energy, 359, 627n, 642; coincidence problem

in dark energy–dominated universe, 499; and
cosmological constant paradox, 711, 747, 778; in
de Sitter spacetime, 456; and energy conditions,
557; and Hubble parameter, 391; mystery of,
356; and Nobel Prize in Physics (2011), 361n;
observational evidence for, 503; phase boundaries
in cosmic diagram, 514; and scalar fields, 788n;
struggle with dark matter, 502–503

dark energy density: negative pressure as
consequence of, 360; in spacetime, 356, 359

dark matter: gravitational lensing, 370–371;
observational evidence, 503, 503f, 506; structure
formation in early universe, 522–523; struggle
with dark energy, 502–503

de Broglie, Louis, 773n; particle-wave dualism, 762
de Donder gauge condition, gravitational waves, 564
de Sitter algebra, and cosmological constant, 755
de Sitter horizon, 293, 636f; thermal radiation from,

637
de Sitter-Lanczos-Weyl-Lemâıtre spacetime, 642
de Sitter length, inverse of, Hubble constant, 632
de Sitter metric, history of, 642
de Sitter precession, 549
de Sitter spacetime, 456, 624–648, 625f; angular

coordinates, 627; to anti de Sitter spacetimes, 664;
causal structure of, 638, 639f; containing black
holes, 635; d-dimensional, 625f; different forms of,
629; isometry group of, 625; iterative relationships
of, 640; Kruskal-Szekeres-like coordinates for,
636f; Lemâıtre–de Sitter metric, generalized, 489;
maximal symmetry of, 626; preview of calculation
of, 148; Riemann curvature tensor of, 626; and
space of spheres, 646; stereographic projection
for, 641; table for, 643

decomposition, of groups, 56f; definition of, 56–57
decoupling: of internal and external geometries,

691–692; of matter and radiation in early universe,
516–517

defining representation, of rotation group, 54
deflection of light, 368f; by astrophysical objects,

Soldner’s calculation of, 366–367
degree, subdivision of, proposal by Ptolemy, 368n
degrees of freedom, gravitational waves, 564
degrees of polarizations, gravitational waves, 564
delay, and radar echo experiments, 372
delta function. See Dirac delta function
Denken, before Integration, 133
density fluctuations: in early universe, 521, 523–525;

in inflationary cosmology, 533
density waves, in static relativistic fluid, 234
derivatives: covariant (see covariant derivatives;
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covariant differentiation); exterior, differential
forms, 598; as fractions, 207; of functional,
definition of, 116–117; Lie, 327–328, 331–332,
555; order of taking, 340; taken with respect to
functions, 113; two, in Newton’s force law, 110

Descartes, René: approach to questions in physics,
583n; concept of analytical geometry, 18; and
concept of coordinates, 62n; versus Euclid, 48; and
Euler characteristics, 726; theory of vortices, 578n;
watching a fly, and concept of coordinates, 51n

Deser, Stanley: ADM formulation, 693; curved
spacetime, 580

determinants: antisymmetric, 236; definition of, 60,
719; and intrinsic curvature, 84; introduction of,
39–40; of metric, 215–216; variation of, 381

DeWitt, Cecile, on “vielbein,” 606n
Dialogue Concerning the Two Chief World Systems

(Galileo), 17–18
diffeomorphism, 398
differences, infinitesimal, and Galileo

transformations, 160
differential equations: coupled ordinary, relativistic

stellar interiors, 452; solving problems of motion,
26–27; in variational calculus, 126

differential forms: applications of, 607–613;
calculation of 5-dimensional scalar curvature,
684–685; Cartan’s structural equations, 607;
Hodge star operation on, 723–725; jargon of, 604;
in Kasner universe, 613e; language of, 596; and
magnetic flux, 728; and vielbein, 594–606. See also
topological entries

differential geometry: classical, 96–109, 130; and
concept of covariant derivatives, 100–101; logic
of, 66; pioneering work of Gauss and Riemann,
90–91; of Riemannian manifolds, Cartan’s
formulation of, 599–600

differential operation, definition of, 598
differential operators, 48; Killing vectors as, 587;

shorthand notation for, 72; vector fields as, 319
differentials: coordinate, 312; manipulations of,

161
differentiation: along curves, 327; covariant, 320–

333; dot notation, 96; of functionals, 114; of scalars
and vectors, 318

dilation: conformal generators, 615; generators of,
644

dilation invariance, Coulomb potential, 620
dilaton field, 680; and calculation of 5-dimensional

scalar curvature, 686; in outgoing brane wave
model, 704

dimensional analysis, 120; of action, 346; to
determine power of scattering amplitude, 717;
for effective action of gravity, 711; of graviton
scattering amplitude, 770; Hawking temperature,
14–15; scattering amplitude, 761

dimensions: higher, Poincaré half plane in, 656;
invisible, 672–673; large extra, 696–707

Dirac, P.A.M., and quantization of magnetic flux,
728

Dirac action, in Minkowskian spacetime, 605
Dirac delta function: 3-dimensional generalization,

119; continuous variables in functional variations,
122; in electromagnetism, 251; in higher
dimensions, 698, 701; introduction of, 26–27;
and Kronecker delta, 36; as limit of a sequence of
functions, 27f; momentum conservation, 740; and
smooth functions, 33e; time, 229

Dirac equation, commutation relations, 192
Dirac-Feynman formulation. See path integral

(Dirac-Feynman) formulation
Dirac large number hypothesis, 778
Dirac spinors, 604–605
directional derivative, covariant differentiation and, 331
discretization, of functional variation, 121
disks. See accretion disks
dissipative collapse, 520–521
distance: of cities, and non-flatness of world, 66f; in

Euclidean space, 174; in generally curved spaces,
181; Hubble units, 293; less important than
angles, 620; luminosity, 298; measurement of, in
spacetime, 180; minimal between points, 123–
135; in Minkowskian geometry, 175; operational
definition of, 291, 291f; of points, 174–175; proper,
296–297; shortest, 175, 176f, 545; spatial, in
general curved spacetime, 290–292; of spheres
in 3-spaces, 610; traversed, during lifetime of
particles, 198. See also length; path

distribution, compared to functions, 33
divergence: covariant, 326, 332; notation in

various coordinate systems, 78–79; in spherical
coordinates, 81e; transformation, 321

divergence theorem, generalized to 4-dimensional
spacetime, 386

dome, curvature at top of, 85
dominant energy condition, 557
Donder, Théophile Ernest de, application of action

principle to gravity, 397
Donoghue, J. F., treating general relativity as effective

field theory, 773n
Doppler effect: in accelerated frames, 282; relativistic,

185–186, 222
dot notation, Newton’s, 29, 96
dot product: of four vectors, 182; of vectors, definition

of, 39
dots, as symmetry symbol, 129
“dropped” thought experiment, 280–283, 286
Droste effect (for pictures), 375
Droste’s solution, of Einstein’s field equation, 375
dS/CFT (de Sitter / conformal field theories)

correspondence, 787
duality, electromagnetic, 255, 483
dueling thinkers experiment, 7–9
dust: cosmological, 387e, 495, 514; technical term,

421
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dust ball, collapsing, forming black hole, 422f, 423f
dynamic universes, 489–501
dynamical critical exponent, in condensed matter

physics, 657n, 754, 758n
dynamical variables, 249; in continuum mechanics,

117; holding fixed in variation of action, 380;
independence of, 133; specification of, 395

Dyson, Freeman: on Einstein’s ideas of a field theory
of gravity, 119; on Einstein’s saying about vanity,
777; on loneliness of Einstein, 388; on non-
quantization of gravity, 768–769; on quantization
of gravity, 780, 788n

early universe, 496–497; curvature term, 495; density
fluctuations in, 521; history of, 515–529; structure
formation in, 520, 522–523

earth: center of, and falling apple, 36; density of, 32;
surface of, shortest path on, 275; theory of hollow
sphere, 32

earth-moon distance, accurate measurements of as
test of Einstein gravity, 366n

Eddington, Sir Arthur: and Chandrasekhar limit, 455;
on costs of light, 369; and geometry of universe, 6;
making Einstein a worldwide celebrity, 369–370;
Royal Society expedition, 367

Eddington-Finkelstein coordinates, 431
edges, in topology, 725–727
“effect of inertia,” 276
effective action: for gravity, 711; Weyl’s ansatz, 374
effective field theory, 782; and concept of action,

710; Einstein-Hilbert action, 709; general
relativity treated as, 773n; and graviton scattering
amplitude, 770; of gravity, 766; low energy,
711–712

Ehrenfest, Paul, letters from Einstein: on fears
of going insane, 355; on perihelion motion of
Mercury, 368

eigentime, 179f
eigenvalues, of matrix, usual determination of, 106
eigenzeit, 179f
Einstein, Albert, 150; and action for gravity, 339;

anger at nostrification of his theory of general
relativity, 396; annus mirabilis, explanation of
light, 213; as classical physicist, 360; confusion
concerning the metric, 404; E =mc2, 209, 220–
221, 232; 233f; early work, lack of vector notation,
46n; equivalence principle, 271; ether detection,
experimental set-up for, 163; factor-of-2 error, 367,
370; field equation, 348f; gedanken experiments,
on simultaneity, 7–9; on going beyond space and
time, 787; greatest blunder, 393; and Grossmann,
paper on variational principle for gravity, 396;
happiest thought of life, 265, 278, 302; “hole
argument,” 404; on influence of philosophers,
159; invention of Palatini formalism, 397; legacy
to physics, 253–255; letter from Schwarzschild,
362; letters to Ehrenfest, 355, 368; letters to

Kałuza, 693–694; letters to Sommerfeld, 344, 366,
580; longing, 337; and Lorentz, 168; on magic of
relativity theory, 195; mathematical elegance of
his theory, 777; on mysteries, 778; old man’s toy,
267; penance, 500; on pure thought, 172; repeated
index summation (see summation convention);
“second greatest blunder,” 509–510; separation
from his wife, 399; and Soldner’s calculation,
366–367; stars made of nothing, 456; static
universe, 509–510, 514; summation convention
(see summation convention); understanding of
gravity, equality of inertial and gravitational mass,
28; unfinished symphony, ripples in spacetime,
563

Einstein’s clock, 166–173; in different frames,
167f

Einstein convention, in general relativity, 314
Einstein’s equivalence principle, determination of

Lagrangian in curved spacetime, 712
Einstein’s field equation: 1

2 -factor, and metric
tensor formalism, 76; 5-dimensional, for 2-
brane model, 700; acceleration or deceleration
of cosmic expansion, 506–507; anti de Sitter
spacetime, 651; for charged black holes, 477; for
closed/open/flat universes, 493–494; coupled
to Maxwell’s equations, static solutions, 482–
483; de Sitter spacetime, 627; derived by Palatini
formalism, 395; determination of, 347–349;
Droste’s solution of, 375; easy solutions to,
557; Einstein’s search for, 341–342; for empty
spacetime, 347–348; flipping between spacetimes,
664–665; Kerr solutions on, 464; in Minkowski
metrics, 563; modified by Arkani-Hamed, 754;
non-determinism of, 403; nonlinearity of, 400; in
post-Newtonian approximation, 577; in presence
of cosmological constant, 357; for relativistic
stellar interiors, 451; result of derivation of, 390;
role of two powers of spacetime derivative, 402;
solving, 358; and spacetime thermodynamics,
448–449; time-time component of, 498; traceless
part of, 755; vacuum, 647e; variation of, 350

Einstein gravity: from ambitwistor representation,
739; connection to Yang-Mills theory, 782; cube of
physics, 13f; discord with quantum physics, 768–
769; features of, 777; replaced by something more
fundamental, 785; roads leading to, 578–584

Einstein-Hilbert action: alternative form of,
397; cosmological action added to, 356; and
cosmological constant, 712, 754; derivation of
contracted Bianchi identity, 394; and differential
forms, 725; and effective field theory, 782; effective
field theory approach, 709; finding of, 344–346;
general invariance of, compared to Maxwell action,
394; graviton coupling, 582; higher dimensional,
681; in Kałuza-Klein theory, 675; low dimensional
terms, 782; quantum gravity limit, 444; things
unknown to, 789n; and twistors, 739; variation of,
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388; weak field action without, 572; and Weyl’s
ansatz to Schwarzschild solution, 374

Einstein-Hilbert Lagrangian, determination of
Einstein’s gravity, 581

Einstein potential, compared to Newtonian potential,
planetary orbits, 371

Einstein-Rosen bridge, 433; and coordinate
singularities, 91–92, 92f

Einstein tensor, 388; as result of variation of
Einstein-Hilbert action with respect to metric,
394

Einsteinian mechanics, and cube of physics, 13f
elastic string: as example of variational calculus, 113;

hanging under force of gravity, 114f
electric charge: role for photon, 383. See also charge
electric dipole moment, of atom, and action, 715
electric field, 245; relativistic unification, 247
electrodynamics: initial value problem in, 404. See

also Maxwellian electromagnetism
electromagnetic action, 244, 250–251; in expanding

universe, 333; local, 246. See also Maxwell action
electromagnetic coupling constant, 767
electromagnetic current: conservation of, 225; as flat

space analogous to energy momentum tensor,
379; relativistic form of, 226

electromagnetic duality, 255, 483
electromagnetic field: as collection of infinite

number of harmonic oscillators, 382; coupling to
charged particles, 250; derivation of equation of
motion, 385; determination of, 338, 342n; energy
density of, 255; energy momentum tensor in, 381;
in Kałuza-Klein theory, 691; and Lorentz vector
potential, 244; Maxwell action in Minkowskian
spacetime, 381; and Maxwell’s equations, 252;
motion in curved spacetime, 301; and mystery
of light, 162; at particle position, 246; treated as
superposition of modes, 746

electromagnetic field tensor, 244; dual, 255; gauge
invariance, 249; relativistic curl of a 4–vector,
252

electromagnetic gauge transformations, similarity to
coordinate transformations, 564

electromagnetic interaction, compared to
gravitational interaction, 768

electromagnetic potential, in fifth dimension, 677
electromagnetic waves: cross section for scattering on

atom or molecule, 715; momentum of, derivation
of Einstein’s formula, 232

electromagnetism: 4-dimensional, 720–721; in
curved spacetime, 325–326; described by
differential forms, 598; finite sized objects in,
714–715; fixed gauges, 564; in flat spacetime, 382;
gauge invariant derivative in, 342, 353n; Maxwell’s
laws of, and Galilean transformation, 20;
restrictions imposed on by Lorentz symmetry, 339;
role of signs in, 382; similarities to gravitational
waves, 568; from special relativity, 244–246; theory

of, development of, 253; unification with gravity,
674–676

electromagnetism analogy, Einstein’s search for the
metric, 404

electrons: collisions with photons, 222f; degenerate,
455; delayed recombination in early universe,
516–517

electrostatics, mathematical treatment leading to
Maxwell, 582

electroweak interaction, 527, 765; in M versus R plot,
14f

elementary particles, masses of, 16n
elementary physics, definition of mass, 213
elementary scalar fields, 759n
embedding: of curved spaces in higher dimensional

flat spaces, 85–86; of surface, determination of
curvature, 90

embedding space, geodesics in, 645
Emerson, Ralph Waldo, dictum of, 235n
empty spacetime: Einstein’s field equation for,

347–348; gravity in, 362
energy: dark (see dark energy); elastic, of hanging

string, 113–114; exact meaning of, 383; extraction
from Kerr black holes, 470; of membrane,
rotational invariance, 118; not conserved, 27;
search for minimization function, 114; spatial
density of, 228. See also gravitational energy

energy conditions, 557
energy conservation, 26, 153; historical

considerations, 387n; around rotating black
holes, 459; in static isotropic spacetime, 310

energy density: constant, filling universe, 356;
electromagnetic field, 255; in flat spacetime,
382; ratio to critical density, 505; replacing mass
density, in Newtonian gravitational potential,
379n; as rotational scalar, 226–227; and scale
factor of universe, 496f; of universe, 359, 504;
vacuum, 749. See also dark energy density

energy distribution, governing curvature of
spacetime, 390

energy functional: boundary conditions, 116; of a
membrane, 118; minimization for Newtonian
gravity, 119

energy level splitting, inverse of, at cosmological
time scale, 768

energy momentum, role for graviton, 383
energy momentum conservation, 227; and Bianchi

identity, 393; derivation by using cosmological
action, 387e; and general invariance of matter
action, 383–384; in gravitational field, 386

energy momentum pseudotensor, 386
energy momentum tensor: assumptions about,

557; called stress energy tensor, 228; covariant
conservation of, 384; curved spacetime
generalization of, 380; in electromagnetic field,
381; of electromagnetic field, tracelessness, 381;
under Lorentz transformation, 226–227; “new
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energy momentum tensor (continued)
and improved,” 712; of perfect fluids, 230, 492;
for scalar action, 387e; sign considerations,
380; slowly rotating bodies, 570; as source for
gravitational field, 379; total, disappearance of,
394; and variation of Maxwell action with respect
to metric, 394. See also stress energy tensor

energy per unit mass, as conserved quantity, 30
energy scale: grand unified theory, 767; introduced

by gravity, 770
energy variations, calculated, 115
entanglement: and mysteries of quantum mechanics,

789n; and quantum gravity, 771
entropy: Bekenstein-Hawking, 441–442, 444; of

black holes, 15, 436, 441, 448, 788n; lack of
knowledge behind horizon, 648n; Penrose process
area theorem, 472; per particle, relativistic fluid
dynamics, 234; in spacetime, mystery of, 234; of
universe, 527

Eöt-Wash group, 260
equation of motion, 155; by action principle, 146;

near boundary, 665; electromagnetism, 245–246,
385; energy conservation of, 153; generalized
for particles under external force, 190; particles
in potential of, 135; for universe, 357; from
variational principle, 137

equation of motion approach, to Einstein gravity, 396
equation of state: of ideal gas, 231; of universe, 359,

494, 496–497
equations: E =mc2 (see Einstein); as expression of

physics, 47; versus identities, 403. See also specific
equations

equator, length of, squashed sphere, 80e
equilibrium, hydrostatic, relativistic stellar interiors,

453–454
equilibrium macrostates, Bekenstein-Hawking

entropy, 441, 444
equipartition theorem, Planck and, 789n
equivalence principle, 271; and definition of

energy momentum, 386; falling living room as
example, 265–266; and general covariance, 286;
motion in curved spacetime described by, 302;
nonimpossibilty of deleting Feynman diagrams,
756–757; old man’s toy, 267; predictions of,
280; and relativistic stellar interiors, 451; and
symmetry, 317–318

ergoregion, 467, 469–471
escape: from black hole, 427, 483; from gravity,

nonimpossibility of, 717n
escape problem: in Kałuza-Klein theory, 673–674;

with large extra dimensions, 696–697
eternal black holes, 421–422; Kruskal-Szekeres

diagram, 426–427; Reissner-Nordström, 479
ether: detection experiments, 163; as dynamical

variable, 783
Euclid: and curves, 189; versus Descartes, 48; famous

axiom, and curvature of spacetime, 552; on the

non-existence of royal road to geometry, 42;
shortest path between two points, 4

Euclidean anti de Sitter space, boundary of, 662
Euclidean ball, 663; boundary of, 664
Euclidean geometry: flat, 6; rotation invariance of,

190; specification of, 175
Euclidean group, as symmetry group of physics, 755
Euclidean metric: in hyperbolic spaces, 93; inducing

curved space metric, 86; locally flat, second order
corrections to, 88; for spaces of any dimension, 87

Euclidean plane, conformal Killing vector fields,
623e

Euclidean space: 2-dimensional, definition of, 41;
curves in, 96–97; d-dimensional, 42, 49–51;
described with different coordinates, 62–63;
distance in, 174; as example for Killing vector
fields, 587; object analogs in twistor space, 742;
paths lengths in, 190; surfaces in, 98–109

Euclidean thinking, trap of, 180
Euler, Leonhard, variational calculus, 120
Euler characteristic, 725–726
Euler equation: in fluid dynamics, 164; relativistic

and fluid dynamics, 234
Euler-Lagrange action, for material particles, 207
Euler-Lagrange equation, 116; action principle, 138;

fields, 119; multiple unknown functions, 123;
simplification of, Poincaré half-plane, 133

events: coordinates of, in discussion of simultaneity,
200; definition of in spacetime, 177; horizon
of, 293, 536; of pole in the barn problem, 203;
separation of, 160, 166; spacetime locations, 195;
and worldlines, in special relativity, 195

expanding universe: acceleration or deceleration of
expansion, 499–500, 506–507; closed/open/flat,
494, 497–498; communication in, 293–294;
curved, 489; de Sitter spacetime, 456–457, 627,
630; with differential forms, 608; distances
in, 292–293; earth-moon distance not growing
because of, 289; electromagnetic action in, 333;
expansion rate, discovery of, 359; exponentially
expanding, 293–294, 357–358, 631, 642–643; and
Hubble, 500; light cones in, 294, 294f; metric
tensor of, off-diagonal components, 292; and
positive cosmological constant, 392; without
Einstein’s field equation, 645. See also universe

expansion parameter, determination of, 556
exponential, of matrix, 41
exponential function, and rotations, 41
extended objects, motion of, 714
extensive quantities, 441
exterior derivative, 599; differential forms, 598
external forces, influencing motion in curved

spacetime, 301–302
external potential, translation invariance of, 242
extra dimensions, large, 696–707
extraction of energy, from Kerr black holes, 470
extremal black holes, 467–468; charged, 478, 481;
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“dangers of extremes,” 484; distance around, 469;
first and second law of thermodynamics, 473; just
sitting there, 482–483

extreme ultra infrared regime, 786; and cosmological
constant paradox, 750–751

extremizing a function, with constraint, 109
extremum, determination of type, 117
extrinsic curvature, 5–6; defined by Gauss, 107;

and matrix eigenvalues, 84–85. See also intrinsic
curvature

faces, in topology, 725–727
fall: through event horizon, 412; into rotating black

holes, 463–464, 470, 472
falling apple: from hanging string to, 137f; and Isaac

Newton, 268
falling living room analogy, 265–266
families, of quarks and leptons, 786
family problem, mystery of, 7
far field, of gravitating system, 576
Faraday, Michael: conception of scientists, 9n; flux

picture, 697; and magnetic flux lines, 728
fate of universe, 507–509
Fermat, Pierre, controversy over birth year, 136n
Fermat’s least time principle, 4; as analog to

Einstein-Hilbert action, 789n; teleological flavor
of, 136

Fermi, Enrico, theory of weak interaction, 765
Fermi normal coordinates: locally flat, 558f; metric

in, 559, 561; motivation of, 557
Fermi pressure, and Chandrasekhar limit, 455
Fermi-Walker transport, 193e
fermions: fundamental, 683; as mystery of physics,

781–782; as open strings, 696
Feynman, Richard P., 145; curved spacetime, 580;

“shut up and calculate,” 445
Feynman diagrams: of antimatter, 206f; for

cosmological constant, deletion of, 756–757;
for gluon scattering, 735–736, 738; for graviton
scattering, 738; and worldlines, 237n

Feynman’s path integral formalism. See path integral
(Dirac-Feynman) formulation

Feynman’s path to rescue a drowning girl, 3–4, 4f
Feynman propagator, for graviton, 573
fictitious forces, 278–279
field equations: in Minkowski metrics, 563;

Nordström’s theory, 579. See also Einstein’s field
equation

field strength: connection with curvature, 602n;
relation to electric and magnetic fields, 382

field theory: classical, 119, 361; quantum (see
quantum field theory); topological, 719–728

fields: conceptual jump from many particle case,
400; to describe universe, 384; notion of, 119; and
particles, 145–146; understanding of, 783

fine structure constant, 767
“finger of God” problem, 703, 705

finite sized objects: in electromagnetism, 714–
715; in gravitational field, 716–715; scattering
amplitude for gravitational wave, 717; sensitivity
to variations, 716; and tidal forces, 716–717. See
also black holes

Finkelstein, David, Eddington-Finkelstein
coordinates, 431

first acoustic peak, 523–525; effect of curvature on,
525f

first law of thermodynamics: black holes, 472–473;
and pressure of universe, 360n

first order formalism for gravity, Palatini formalism,
395

first stars, 519
“fixed latitude” circle, curvature of, 80e
fixed points, in cosmic diagram, 511f
flame, of falling candle, 268, 271
flat coordinates, locally, 130, 132; as trick in variation,

389
flat plane, curvature of, 105
flat space, 65; conformally, 80–81e; description by

Boyer-Lindquist coordinates, 78; and everyday life,
82–83; metric, 77

flat spacetime: with conformal algebra, 615;
electromagnetism in, 382; Minkowskian,
governing action of, 581; twistors in, 729–745

flat universes, 296–297, 491; age of, 513; critical
density of, 497–498; curvature effect on CMB
fluctuations, 526; Einstein’s field equations, 493–
494; observational evidence for, 505; stability of,
512

flat world, 88
Flatland (Abbott), 671
flatness, local. See local flatness
flatness problem, 531
floor, rushing up to meet apple, 270f
flow: in cosmic diagram, 510–512; described by

geodesics, 556; going with the, 328
fluctuations: of density in early universe, 521, 523–

525; in inflationary cosmology, 533; quantum,
436, 446–447, 533

fluid dynamics: Euler equation, 164; Galilean
invariance of, 164; symmetry approach to, 164

fluids: incompressible, 454; motion of, 230,
556; perfect, 229, 451, 492–493; 704–705; as
visualizations of vector fields, 327

flux picture, Faraday’s, 697
fly in car, velocity of, 162–163
foamlike structure, of universe, 754, 758n
foliation: Kałuza-Klein theory as, 689–690; spherically

symmetric mass distribution, 305–306
force: central, 28, 36; external, influencing motion in

curved spacetime, 301–302; fictitious, 278–279; as
function of space, 26; as function of time, 26–27;
per unit area, stress as, 228

forms, closed, 604
Fourier analysis, and inverse square law, 697–698
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Fourier space, gravitational field in, 758n
Fourier transformation, of scattering amplitude, 736,

740
fractional quantum Hall effect, fluids, 789n
frame dragging, 460–461, 465–466; deformed

by rotating body, 460f; etymology, 476n; with
Lense-Thirring precession, 550

frame field, 606n
frames. See reference frames
free fall, into rotating black holes, and first and

second law of thermodynamics, 472. See also fall
free Maxwell’s equations, 251
free particles, 302; action of, 143, 162; motion of,

180; noninteracting, 221
“free” variables, in variational calculus, 116
freely falling observers, metric for, 561
Frenet-Serret equations, 97
frequency, seen by different observers, 185
frequency dependence, of scattering of gravitational

wave (or graviton), 717
frequency shift: relativistic, 186; in relativistic

Doppler effect, 222
Freundlich, Erwin, solar eclipse expedition to

Crimea, 370
Friedmann, Aleksandr, 501
Friedmann-Robertson-Walker universes, 296, 491; in

outgoing brane wave model, 704
Frost, Robert, and mass density transformation, 579
functional derivative, definition of, 116–117
functional variation, 114–115; alternative approach,

121–122
functionals: energy, of a membrane, 118; general, of

multiple functions, 123; notation of, 114
functions: and distributions, 33; variational calculus,

115. See also specific functions
fundamental constants, three needed, 12
fundamental equations, on glass windows, 138
fundamental fermions, 683
fundamental interactions: action principle

description of, 141; unification of (see grand
unified theory)

fundamental principles, 12
fundamental representation, of rotation group, 54
funnel analogy, misleading for black holes, 432
fusion, nuclear, compared to accretion disk radiation,

415
future light cone, 177–178; particle movement in,

178f

galaxies: formation in early universe, 519–520;
forming of, and anthropic principle, 757; as
masspoints on geodesics, 554. See also universe

“galaxy far far away,” 241–246
Galilean invariance, and fluid dynamics, 164
Galilean limit, of past light cone, 179f
Galilean transformation, 18–20, 19f, 159–160;

accelerated frames, 276–277; modifications of,

independence from observer, 168; necessary
modification of, 166; observed velocities, 161

Galileo: brachistochrone problem, 120; and free fall,
268; law of acceleration, 140; versus Maxwell, 159;
relativity principle, 17–19, 159; vision on flying of
butterflies, 19f

Galison, Peter, and special relativity theory, 18n
Gamow, George, 177; and Einstein’s great blunder,

393n; stars made of nothing, 456
Gamow principle, 515–529; understanding of

cosmology, 778
gases: for cosmology, 230; nonrelativistic, 231, 454;

relativistic, derivation of speed of sound, 235
gauge: harmonic, 564; transverse-traceless, 565
gauge condition, harmonic, 573
gauge connection, 602
gauge fields, emerging from lattice Hamiltonians,

787
gauge freedom, and initial value: in Einstein gravity,

402; in Maxwell electromagnetism, 401–402
gauge/gravity duality, 649
gauge invariance, 248–250; in Kałuza-Klein theory,

672
gauge invariant derivative, in electromagnetism, 342,

353n
gauge potential: of 2-dimensional solid state

structures, 721; as dynamical variable, and energy
momentum tensor, 381; and spinor fields, 789n;
Yang-Mills, 682, 688

gauge symmetry, local, in higher dimensional
theories, 682

gauge theories: and anthropic principle, 757;
nonabelian, decoupling of geometries, 692;
(non)abelian, 681; topological terms in, 720–721

gauge transformations: as 5-dimensional coordinate
transformation, 673; similarity to coordinate
transformations, 564; strong gravitational sources,
575

Gauss, Carl Friedrich: determination of curvature of
space, 65, 104–105; Theorema Egregium, 90–91

Gauss-Bonnet theorem, 727
Gauss’s equation, definition of, 99
Gauss’s law: and evolving time, 402; and gauge

theory, 401
Gaussian normal coordinates, 298
gears, function of, 109n
gedanken experiments: “accelerated”/“dropped,”

280–283; by Einstein, 166; by Galileo Galilei,
269

Gell-Mann, Murray: on quantization of gravity, 583n;
what is not taboo is a commandment, 361n

general coordinate invariance, 305–306;
determination of action for gravity, 344,
346; in Kałuza-Klein theory, 672

general coordinate transformations, 312, 318;
invariance of physics under, 403

general covariance, 285
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general curved spacetime, spatial distance in,
290–292

general invariance: of Einstein-Hilbert action,
compared to Maxwell action, 394; of matter action,
and conservation of energy momentum, 383–384

general relativity: abstract of, 20; as effective field
theory, 773n; and Hamilton’s principle, Lorentz’s
paper on, 397; modifications with respect to
horizons, 784; solar system tests, 309; tensors in,
312–319. See also gravity

generalized uncertainty principle, 769
generators: breakup into subgroups, 663; of

conformal algebra, 615, 617; of Lie algebra, 49, 51;
of rotation, 192; of rotation group, 40; of SL(4, R)
group, 737, 739; of SO(3) group, 44

genus, in Euler characteristics, 726
GEO600, gravitational wave detector, 577n
geodesic deviation, 552–561, 554; and Lie derivative,

555
geodesic equation, 128; alternative derivation of, 130;

Christoffel symbols of, 129; comoving coordinates,
298; curved spacetime, 277–278; invariance on
rescaling, 559; motion in curved spacetime,
289; and parallel transport, 545; presence of
external forces, 301; rotating black holes, 459;
transformation of Christoffel symbol, 330–331

geodesic problem: free parameters, 124f; variational
calculus, 123

geodesics: at black holes, 426–427; collections of,
554; congruence of, 554; covariant derivative,
553; determination on Poincaré half plane, 133;
distance of two nearby, 552, 553f; in embedding
space, 645, 665; family of, 134; geometric
construction of, 133n; intersection of, 134;
lightlike, 292, 646; on Poincaré half plane, 134f;
separation of, 552; on spheres, 127; timelike, 645

geodetic precession, 549
geometrical entities, in topology, 725–727
geometrical view: of Kałuza-Klein theory, 691–693; of

special relativity, 582
geometrodynamics, in higher dimensional theories,

693
geometry: analytic, role of coordinates, 48;

conversion factor between physics and, 211;
covariant derivative from, 323; dynamics of,
in higher dimensional theories, 693, 693f; and
invariance, 42–43, 48; of Minkowski spacetime,
174–193, 238; non-existence of royal road to,
Euclid’s remarks, 42; of points, isometry, 585; of
relativistic point particle action, 210; of rotation
groups, 191; and significance of coordinates,
68; of a world, 6. See also differential geometry;
Riemannian geometry

Ghostwriter, The (Roth), 254
Gibbons, Gary, discovery of Hawking radiation, 449n
Gibbons-Hawking radiation, 638; mystery of, 637
Gibbons-Hawking-York boundary term, 399n

global character of space, versus local, 76–77
global positioning system (GPS), 287, 291
globe, curves of constant latitude on, 92
gluon scattering: amplitudes for, 785; Feynman

diagrams for, 735–736; in terms of abitwistors,
738; in terms of helicity spinors, 735–736

gluons: in brane models, 696; in early universe, 526
GMT (Greenwich Mean Time), 133n
God: existence of, 520; “What is greater than God?”

puzzle, 789n
Goldberger, Murph, on his aunt, 321n
golden age of cosmology, 491
“golden” guiding principle, in theoretical physics,

338
Gordon, Walter, Klein-Gordon equation, 694
Grace, Louis, constructor of old man’s toy and of war

chariot, 267
graceful exit problem, 534
gradient: definition of, 61; notation of, 54;

transformation of, 320
grand unification, mystery of, 527n
grand unified theory, 527; and charge, 786; in early

universe, 518; energy scale, 767; and higher
dimensional theories, 681; and Kałuza-Klein
theory, 672; in M versus R plot, 14f; magnetic
(anti)monopoles, 532

Grassmann variables, 606n; and supertwistors, 739n
gravitating system, far field of, 576
gravitation, field equation for, Einstein’s search for,

341–342
gravitation law, Einstein’s belief of inconsistency

with principle of causation, 404
gravitational collapse, of spherically symmetric dust

cloud, 373
gravitational constant, 11; time dependent in brane

models, 707
gravitational coupling, 768
gravitational energy, 580–581; binding, 455–456; of

hanging string, 114
gravitational field: classical, quantum particles

in, 771; completion and promotion of, 218;
conservation of energy momentum in, 386;
determination of, 338; dynamics of, 146; and
equivalence principle, 271; finite sized objects in,
716–715; in Fourier space, 758n; in great distance
of black hole, 574; momentum of, 580–581; nature
of, 218–237, 231; quantization of, 582; strong
stationary source, 574; as tensor field, 231

gravitational field limit, Newtonian gravity as, 391
gravitational interaction, 581; compared to

electromagnetic interaction, 768
gravitational Lagrangian, 339
gravitational lensing, 370–371
gravitational mass, equality to inertial mass, 28, 257,

268–269
gravitational potential: action principle, 145; around

black holes, 410–411, 411f; connection to mass
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gravitational potential (continued)
distribution of, 578; Newton’s, 119; satisfying
Poisson’s equation, 708

“gravitational radius,” of massive objects, 764
gravitational redshift, 259; “accelerated”/“dropped”

gedanken experiments, 282–283; at black hole
horizon, 412; measurement of, 284, 287; motion
in curved spacetime, 303–304; and time dilation,
284

gravitational sources: approximations for, 570;
strong: gauge transformations, 574, 575; weak
field approximation, 569–570

gravitational waves, 563–577; astronomy with,
563; from binary systems, 714; degrees of
polarizations, 564; detection of, 566, 577n;
deviating Minkowskian spacetime, 571–572;
emission of, 567; frequency dependence
of scattering of, 717; localized packets of,
577n; propagation of, 566, 568; removal by
coordinate transformation, 577; similarities to
electromagnetism, 568; speed of, 579; time and
gravity, 579. See also gravitons

gravitomagnetic field, 571
graviton coupling: Einstein-Hilbert action of, 582; to

electron line, 756
graviton mass, 785
graviton scattering, 782; frequency dependence, 717;

off each other, 731; scattering amplitude of, 739,
761, 770; unitarization by formation of black hole,
765

graviton spin, quadrupole radiation, 571
gravitons, 566; Feynman propagator for, 573;

fluctuating, 712; from gravitational waves, 780;
Hawking radiation of, 439, 450; interaction
among, 738–739; in large extra dimensions,
696; from lattice system, 787; massless, 718;
as non-bound states, 785; versus photons, 768;
propagator, momentum of, 786; role of energy
momentum for, 383; self interaction, 582; and
spatial direction, 785; of spin 2, 697. See also
gravitational waves

gravity: action for (see Einstein-Hilbert action);
as classical probe, 771; classicalization of, 766;
completely altering causal structure of spacetime,
780; connection with time, 579; container for,
649; cubic vertex for, 744; Dysonian view on
quantization of, 780, 788n; effective action for,
711; effective field theory of, 766; without Einstein-
Hilbert action, 771; in empty spacetime, 362;
as fictitious force, 279; first order formalism
for, 395; high energy behavior of, 767–768, 782;
indifferent to the universe, 778; induced, 770;
inherent instability of, 520; introducing an energy
scale, 770; introducing natural quantities, 764;
linearized, 563–577, 758n; mystery of, 778–779;
“naked” singularities, 480; nonlinearity of, 571;
non-quantization of, 768–769; omniscience of,

and cosmological constant paradox, 745; as part
of larger structure, 786; quantization of, 780;
quantum, 439, 443–444; and spacetime, origins
of, 787; and spacetime curvature, mystery of, 276;
speculative thoughts about, 788; surface, 473;
symmetry imposed on, 254; theory of, as analog
to theory of light, 789n; time and, 257–258; time
dilation caused by, 258–259, 284, 304, 412; true
scale of, 698–700, 702; unification, 674–676, 767–
768, 780; unimodular, 755–756; universality of,
258, 269–270, 275–276. See also general relativity;
Newtonian gravity

gravity attraction, and strong energy condition,
562n

gravity express, 33
gravity potential, particles moving in, tensor notation

of, 57–59
Gravity Probe B, launch of, 551n
great circles, 127; on earth’s surface, 275;

movement of, particle on sphere, 148; on sphere,
determination of curvature, 105

Greek symbols, in tensor notation, 63
Green’s function: different determinations of, 573;

for gravitational waves, 567–568; for quantum
fluctuations, 447

Greenwich Mean Time (GMT), 133n
Grimm stories, and quantum gravity, 773n
Grossmann, Marcel, and Einstein: paper on

variational principle for gravity, 396; search for
field equation for gravitation, 353

ground states: degeneracy of, 723; in string theory,
757

group theory: and commutation, 49; and counting,
56–57; of exponentially expanding universe,
642–643; metric for expanding universe, 645; of
universe, coset manifold, 644

groups: 2-by-2 matrix as generator of, 663;
decomposition of, 56–57, 56f; Eöt-Wash, 260;
Euclidean, as symmetry group of physics, 755;
isometry (see isometry group); Lie, characteristic
of, 50; Lorentz (see Lorentz group); Poincaré,
transformations and translations of, 666;
renormalization, and scaling, 754; representation
of, 225; requirements of, 193; rotation (see rotation
groups); subgroups, 57, 663. See also specific groups

Gullstrand, Allvar, and Painlevé-Gullstrand
coordinates, 417

Gupta, Suraj, and curved spacetime, 580
gyroscopes: gravitational precession of, 465;

launched with satellite, 549; precession of,
549–551

�, explanation of symbol, 773n
Hale, George, proposition of solar eclipse observation

to test Einstein’s theory, 367n
half plane, Poincaré: with differential forms, 608;

and metric, 67–68
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Hamilton’s principle, and general theory of relativity,
Lorentz’s paper on, 397

Hamiltonian: derived from Lagrangian, 144; leading
to gauge fields, 787; of zero value, in quantum
systems, 723

handle, in Euler characteristics, 726
hanging membrane, 118f; as generalization of

hanging string, 118
hanging string: transition to falling apple, 137f; and

variational calculus, 113–123
harmonic gauge condition: in quantum field theory,

573; strong gravitational sources, 575; weak field,
564

harmonic oscillator: actual path of, 148e; annihilation
and creation operators, 447; energy of, 758n;
in field theory (classical and quantum), 361;
in quantum mechanics, 746; symmetry and
invariance, 242

Harrison, E. R., on masks of the universe, 779
Hawking, Stephen, 14
Hawking radiation, 436–450; derived from quantum

field theory, 780; fundamental paper on, 14–15;
of gravitons, 450; history of discovery, 449; as one
key for understanding quantum gravity, 748. See
also Gibbons entries

Hawking temperature: determination of, 444–445;
dimensional analysis, 14–15; and entropy, 441; of
Schwarzschild black hole, 436

heat, understanding of, 786
Heaviside, Oliver, and Maxwell’s equations, 405n
Heisenberg picture, of quantum physics,

consequences for gravity, 771
Heisenberg’s uncertainty principle. See uncertainty

principle
helicity, of gravitational waves, 734
helicity spinors, 731; Lorentz invariance, 734; power

of, 735; scattering amplitude expressed in terms
of, 734–735

helicity states, of graviton in QFT, 566
helium: liquidity at zero temperature, 748; primeval

nucleosynthesis of, 518
hell, and hollow earth theory, 32
Heron of Alexandria, 149n
hierarchy problem, 699
Higgs mass term, 712
Higgs mechanism, 679
high energy behavior, of gravity, 767–768, 782
high-energy physicists, particle physicists renaming

themselves, 713n
high energy physics: linkage to low energy physics,

752; naturalness doctrine in, 749–750
high temperature superconductivity, 789n
higher dimensional Einstein-Hilbert action, 681, 782
higher dimensional metric, 682
higher dimensional spaces: definition of, 43–44;

embedding curved spaces, 85–86; rotation as
freedom left, 88; rotations in, 44–45, 49–51

higher dimensional spheres, metric of, 80e
higher dimensional theories: dynamics of geometry,

693f; Kałuza-Klein / Yang-Mills, 680–682; string
theory, 695

higher energies, larger structure of energy, 786
Hilbert, David, and Einstein-Hilbert action. See

Einstein-Hilbert action
Hilbert-Einstein priority dispute, on field equations,

396
historical digressions, Newton’s constant, 31–32
Hodge star operation, 602; on differential forms,

723–725
hole argument, Einstein’s, 404
“holes,” number of, 726
hollow earth theory, 32
holographic principle, 441; black hole entropy, 15;

mapping of spacetime, 649
homogeneity problem, 531
homogeneous space, 289, 292, 491; definition of

with Killing vectors, 588; in outgoing brane wave
model, 704

horizon: crossing in static coordinates, 635; de
Sitter, 293, 636f; detection by indirect local
measurements, 789n; event vs. particle, 536;
inner, Kerr black holes, 469; outer, Kerr black
holes, 468–469; at Schwarzschild radius, 412, 419,
431–432; sound, 524; as source of confusion, in
Schwarzschild solution, 376n; as switch of Killing
vector, 631

horizon problem, 530–533
“How do you do?” 333
Hoyle, Fred, and Big Bang, 498
Hubble constant, 504, 632; and communication

in expanding universe, 293; determination of,
391; discovered by Lemâıtre, 501; in inflationary
cosmology, 535

Hubble length, and critical density, 514
Hubble parameter. See Hubble constant
Hubble radius, of universe, 711; and photon mean

free path, 517
Hulse, Russell A., detection of binary pulsar, 563
humans: distance between head and toe in spacetime,

658f; existence of, and anthropic principle, 757
hydrogen atom, and SO(4) group, 49n
hydrostatic equilibrium, relativistic stellar interiors,

453–454
hyperbolic coordinates: angle, 628; anti de Sitter

spacetime in, 661
hyperbolic radial coordinate, 653–654
hyperbolic shell, momentum restricted to, 220
hyperbolic spaces, 92–93, 296, 627; as coset

manifolds, 590; cosmological principle, 491; line
element of, 628

hyperboloid, of rotation, de Sitter spacetime, 625
hypersurface, spacelike 3-dimensional, 693f

ideal gas, equation of state of, 231
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identities, versus equations, 403
identity matrix, definition of, 39, 63
illusion, of time, 177
images, method of, 620; conformal algebra for, 620
imaginary time, in derivation of Hawking

temperature, 445–446
impact parameter, light deflection: around black hole,

416; and gravitational lensing, 371; in spacetime,
309, 309f

incompressible fluids, 454
index-free representation of vector fields, 319
index notation: under coordinate transformations,

71–73; fear of, 32, 53; of quantities (in general),
32; and rotations, 44–45; SO(D) group, 49; use of,
43–44

index summation. See summation convention
indexed objects, handling by human mind, 607
indices: changes in general relativity, 547; contraction

of, 46n, 345; conversion with vielbein, 596, 603;
different, 595; explosion of, Einstein’s gravity,
131; of four-vectors, 182; magic of, 140; naming
conventions, 608; object without indices not
transforming as scalar, 719–720; order of,
memorization, 132; repeated, contraction of,
58n; in Riemann curvature tensor, 351; sea of,
and differential forms, 599; summation over (see
summation convention); upper and lower, 64,
314–316; and vectors, scalars and tensors, 73–74.
See also index notation

induced gravity, 770
inertia: “effect” of, 276; law of, action principle, 143;

Sylvester’s law of, 193e
inertial force, 278
inertial frames, and locally flat coordinates, 278
inertial mass: equality to gravitational mass, 28,

34, 257, 268–269; Galilean transformation of
accelerated frames, 276

infinitesimal area, enclosed by closed curves, 547
infinitesimal boosts, of Lorentz transformation, 187
infinitesimal differences, 160
infinitesimal rotations, 40
infinitesimal segments, space and time experience

of, 180
infinitesimal transformations: as generators of

conformal algebra for Minkowski spacetime, 615;
in Lorentz algebra, 187

infinitesimal volume element, and metric tensor
formalism, 75–76

infinity, and human mind, 779
inflation of universe, 534–535; and cosmological

constant paradox, 751; and scalar fields, 788n
inflationary cosmology, 530–536; cosmological

constant in, 534; Hubble parameter in, 535
inflaton field, 534
inflaton potential, 535f
information paradox, of black holes, 439
infrared regime: extreme ultra, and cosmological

constant paradox, 750–751; linkage to ultraviolet
regime, 752

inherent instability in dynamics with higher powers
of time derivative, discovery of, 338

initial value formulation, in numerical relativity, 693
initial value problems: in electrodynamics, 404; and

numerical relativity, 400–405
initial values: on Cauchy surface, 402; evolving

in time, basic scheme of, 400–401; and gauge
freedom, 401–402

initially static branes, 707
inner horizon, of Kerr black holes, 469
innermost stable circular orbit (ISCO), 414, 474
instability, inherent, of gravity, 520
integrability condition, and determination of

potential, 36
integrands, analytically continued into complex

plane, 732
integration: by parts, 115, 326; variational calculus,

116; over volume, at specific time, 226
integration measure, covariant differentiation, 326
interaction: with classical fields, 221n; contained

in matter action, 384; contribution to energy
momentum tensor, 383; as part of matter action,
383

interaction potential, particle movement in, 162
interferometry, detection of gravitational waves, 567
internal coordinates, 675; for points in spacetime,

689f
internal space: emergence of Yang-Mills theory, 688;

spacetime perpendicular to, 689
intersection, of geodesics, 134
intrinsic curvature, 5–6; counting for characterizing

of, 110; as defined by Gauss, 107; determination
without knowledge of embedding of surface, 90;
versus extrinsic, 107–108; and matrix eigenvalues,
84–85; metric as prerequisite to calculate, 90–91;
of spacetime, compared to extrinsic, 85

intrinsic lifetime, of particles, 198
Introduction to the Theory of Relativity (Bergmann),

376n
invariance: coordinate, general, 305–306, 672,

682; CP, violation of, 528, 683; difference from
covariance, 47; Galilean, of Newtonian mechanics,
161; gauge, 248–250, 672; and geometry, 42–
43, 48; local coordinate, in higher dimensional
theories, 682; Lorentz, 242, 253; Noether’s
theorem, 310; of physical laws, 46–48; of physics
under general coordinate transformation, 403;
Poincaré invariant brane, 707; rotational, 118, 697;
scale and conformal, 621; of separation, 623e; of
string action, 216e; and symmetry, 242–243; time
reversal, 416–417, 500; under transformations,
of Poincaré coordinates, 657; translation, 242,
303–304

invariance group of physics, rotation group as, 755
invariant curvature, 339
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invariant scalar products, in parallel transport, 544
invariant tensors, definition of, 59–60
invariants, topological, 725–727
inverse Compton scattering, 235e
inverse length, dimension of, 120
inverse light speed, analogy to cosmological constant

paradox, 754
inverse metric, 315
inverse square law, 120; spatial dimensions, 122
inverse temperature, 445
inversion, of spacetime, 743–744
invisible dimensions, 672–673
irreducible representations, 54–57
ISCO (innermost stable circular orbit), 414, 474
isometric conditions, for metric, 586
isometric spacetime, around rotating black holes,

459
isometry, 585–593; conformal transformations, 614;

hidden underlying, 631; intuitive account of, 589;
light cone coordinates, 631

isometry group: of AdS3, 663; for anti de Sitter
spacetime, 650; of de Sitter spacetime, 625;
equality with conformal groups, 656; and higher
dimensional theories, 682; identical, for de Sitter
spacetimes, 664

isomorphism: between AdS3 and SL(2, R), 663; of
Lie algebra, and conformal algebra, 618

isoperimetrical problem, 149e; Lagrange, solution of,
144

isotropic fluids, seen by comoving observer, 229
isotropic space, 289, 292, 491; definition of with

Killing vectors, 588; in outgoing brane wave model,
704; spherically symmetric mass distribution, 305

isotropic spacetime, static, motion in, 306–307
isotropy problem, 531

Jacobi identity, Bianchi identity derived as special
case of, 393

Jacobian, 216; changes of, 235; and coordinate
transformations, 75; differential forms of, 598

Jacobian determinant, for Lorentz transformations,
188

Jeans, James, structure formation in early universe,
520

Jebsen-Birkhoff theorem: with gravitational waves,
568; Newton-Jebsen-Birkhoff theorem, 453; and
time dependent spherically symmetric mass
distribution, 373–374

Jordan, Pascual: anticommutation manuscript, 789n;
stars made of nothing, 456

Jordan frame, 686

Kałuza, Theodor: letter to Einstein, 671; letters from
Einstein, 693–694

Kałuza-Klein action, 686; in Jordan frame, 686
Kałuza-Klein metric, 676, 680; in vielbein formalism,

690–691

Kałuza-Klein theory, 671–695; charge conjugation
and antimatter in, 678; charge quantization in,
677; coordinate invariance in, 672; Einstein-
Hilbert action in, 675; electromagnetic field in,
691; escape problem in, 673–674; as foliation,
689–690; gauge invariance in, 672; geometrical
view of, 691–693; and grand unified theory, 672;
higher dimensional, 680–682; linking of internal
and external geometries, 691; Lorentz action in,
678; Maxwell action in, 675–676; motion of point
particles, 676; phase angle of wave function in,
678; Planck length and charge quantization in,
677; Planck mass in, 675; transformations in, 672;
and uncertainty principle, 674; visibility problem
in, 673–674; and Weyl, 693–694. See also quantum
gravity; string theory

Kałuza-Klein towers, 679
Kasner universe: as solution of Einstein’s field

equation, 361e; with differential forms, 613e
Kepler’s third law: orbits around black holes,

413–414, 417; precession of gyroscopes, 549
Kerr, Roy, and rotating black hole solution of

Einstein’s field equation, 458, 461
Kerr black holes, 462, 464–467; angular momentum,

465, 571; angular velocity for, 462f; mass
determination, 570; no-hair theorems, 481–
482; and Schwarzschild black holes, 468; Weyl
approach, 473. See also rotating black holes

Kerr metric, 465–466, 475
Kerr-Newman solution, 477
Kerr-Schild form, 476
Kerr spacetime: Killing vectors, 470–471; radiation

from rotating black holes, 473
Killing, Wilhelm, and Lie algebra, 586
Killing condition, conformal, 614
Killing vector fields, 332, 585–593; conformal, 614,

623e; definition of, 586
Killing vectors: admitted by spacetime, 636;

derivation of curvature tensor, 591; emergence
of Yang-Mills theory, 688; great circles, 127n;
and higher dimensional theories, 682; for Kerr
spacetime, 470–471; and Lie algebra, 591; linear
combinations of, 587; in Riemannian manifold,
588; for spacetime around rotating black holes,
459; for spherically symmetric mass distribution,
305; for static isotropic spacetime, 310; timelike
and spacelike, 637; from timelike to spacelike,
631

kinematics, relativistic, 221
Klein, Oskar: Klein-Gordon equation, 694. See also

Kałuza-Klein entries
Kraichnan, Robert: curved spacetime, 580; “particle

physics” approach, 583n
Kretschmann scalar, 365n
Kronecker delta: definition of, 36, 70; discrete

variables in functional variations, 121; indices of,
183; as invariant tensor, 60; use of, 45
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Krupp (munitions manufacturer), financing of solar
eclipse expedition to the Crimea, 370

Kruskal, Joseph B., paper on spherical singularity,
376n

Kruskal coordinates, for elimination of singularity of
Schwarzschild solution, 365

Kruskal-Szekeres coordinates, 424–425; wormholes
in, 432–433

Kruskal-Szekeres diagram, 425–427; of
Schwarzschild black hole, 426f; Unruh
effect, 447

Kruskal-Szekeres-like coordinates, for de Sitter
spacetime, 635, 636f

kung fu stories, 470n

Lagrange, Joseph-Louis: tautochrone problem, 144;
variational calculus, 120

Lagrange multiplier, 148; introduction of, 106; notion
of, 109; for volume of spacetime, cosmological
constant as, 756

Lagrangian: for 2-brane model, 700; in action
principle, 138; in curved spacetime, determination
of, 712; gravitational, 339; infinitesimal
transformation, 151; Maxwellian, 249, 255; of
motion in static isotropic spacetime, 306; in
nonrelativistic mechanics, 138–139; of relativistic
point particle action, 211; Schwarzschild
spacetime, time reversal invariance, 417; terms
added for determination of gravitational with
respect to electromagnetic field, 338; without time
dependence, energy conservation, 153

Lanczos, Kornel, corrections to de Sitter metric, 289,
642

Landau, L. D., Green’s function approach, 577n
Laplace, Pierre-Simon: black hole hypothesis, 13;

Michell-Laplace argument, 409
Laplace’s equation: for strong gravitational sources,

574; and tensor notation, 58
Laplace-Runge-Lenz vector, definition of, 60
Laplacian: definition of, 61; in membrane shape

determination, 118; notation in various coordinate
systems, 78–79

“lapse,” 691, 693
large extra dimensions, 696–707
Large Hadron Collider, 699
Larmor, J., Lorentz transformation, 169n
Laser Interferometer Gravitational Wave Observatory

(LIGO), 577n
Laser Interferometer Space Antenna (LISA), 577n
laser interferometry, detection of gravitational waves,

567
laser light, box hit by, 281f, 283f
Latin symbols, change to Greek symbols, in tensor

notation, 63
lattice gravity, 726n; as approach to quantum gravity,

760
lattice Hamiltonians, leading to gauge fields, 787

laws. See specific laws
Le Verrier, Urbain, prediction of Neptune, 368
Leaning Tower of Pisa, 270
least path principle: and curvature, 5–6. See also path
least time principle, 4, 136; connection with action

principle, 139, 144; Feynman’s path, 3–4. See also
time

Legendre polynomials, 523
legs. See reference frames
Leibniz, Gottfried: brachistochrone problem, 120;

discovery of calculus, 113; notation of action
principle, 138

Lemâıtre, Georges: closed and open universes,
296–297; Hubble constant, 501; as triple winner,
500

Lemâıtre–de Sitter cosmology, 712
Lemâıtre–de Sitter metric, 357; generalized, 489
Lemâıtre–de Sitter spacetime, 642
length: inverse, dimension of, 120; minimization

of, 125; parametrization in general metric, 128;
parametrization independence of, 130; of rulers,
in special relativity, 199; units for, 10, 633

length contraction, 199–200
length element, on unit circle, 80e
length scales: cosmological, physics on, 750; and

cosmological constant, 748; and deviation from
Newtonian gravity, 709; leading to cosmological
constant paradox, 711

Lense-Thirring precession, 550; alternative
derivation, 551

leptogenesis, 526–528
leptons, families of, 786
Levi-Civita symbol, 252; used to contract indices, 719
l’Hospital, Marquis de, brachistochrone problem,

120
Lie, Marius Sophus: infinitesimal rotations, 40;

infinitesimal transformations, 154; method for
derivation of Lorentz transformation, 187–188

Lie algebra: definition of, 50–51; discovered by
Killing, 586; generators of, 49; isomorphism of,
618; and Killing vectors, 591; of rotation groups,
191

Lie derivative, 327–328, 331–332; and geodesic
deviation, 555

Lie’s equation, and emergence of Yang-Mills theory,
688

Lie groups, characteristic of, 50
Lifschitz, E., structure formation in early universe,

520
light: “accelerated”/“dropped” gedanken

experiments, 281–282; least time principle,
4; Maxwell’s explanation, 162; motion around
black holes, 409–418; motion of, 307–309, 416f,
659; propagation of, in medium, 163; theory of,
as analog to theory of gravity, 789n; unification
with material particles, 207–217, 212–213. See also
deflection of light; photons
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light cones: closing up, 420f; coordinates of, 146–147,
170–171, 427–429, 619, 631, 704; in expanding
universe, 294, 294f; past, 177–178, 179f; spanned
in Minkowski space, 177; tilting, at Schwarzschild
radius, 420–421, 421f

light deflection. See deflection of light
light flashes, in trains, 166
light paths: anti de Sitter spacetime, 656; depending

on geodesics, 665
light pulses, dueling thinkers experiment, 7
light rays: corotating/counterrotating, 461, 469; more

fundamental than spacetime events, 741; moving
at 45°, 423; surfaces generated of, 185

light signal trajectories, in static spacetime, 304f
light speed, 162; constancy of, effect on notion of

simultaneity, 8; determined by Maxwell’s theory,
162–163; in expanding universe, 294; inverse, 754;
in metals, ratio to sound speed, 749; as velocity of
massless particles, 213

lightfoot, not a unit of time, 773n
lightlike 4-momenta, 782
lightlike distance, 175
lightlike geodesics, 292, 646
lightlike lines, in general spacetime, 730
lightlike momentum, complex, 733
lightlike vectors, 731
lightsecond, natural unit of distance, 168
lightyear, as length unit, 10
LIGO (Laser Interferometer Gravitational Wave

Observatory), 577n
limit surface, stationary, angular velocity inside,

471
line: of constant time, de Sitter spacetime, 637; in

twistor space, 742. See also straight line; worldlines
line element: 5-dimensional, 676; of hyperbolic

space, 628; square of, and metric, 64
linear combinations, and tensors, 53
linear transformations, rotations as, 68
linearity of transformation matrix, 313
linearity requirement, Galilean transformation, 18
linearized gravity, 563–577, 758n
LISA (Laser Interferometer Space Antenna),

577n
lithium, primeval nucleosynthesis, 519
local action, electromagnetic, 246
local coordinate invariance, in higher dimensional

theories, 682
local curvature, measurement of, 547
local field theory: and cosmological constant paradox,

756; invariance of physics, 621
local flatness: of curved surface, 83; for spaces of any

dimension, 86–87
local gauge symmetry, in higher dimensional

theories, 682
local Lagrangian, in action, 783
local measurements, indirect, detecting horizons,

789n

local observables, 765; absence of, in quantum
gravity, 772

locality: as fundamental principle of theoretical
physics, 783; of physics, 757

locally exact forms, 604
locally flat coordinates, 557; determination of, 132;

and inertial frames, 278; for investigations of
symmetry relations, 343–344; Minkowskian, 288;
nearby geodesics, 552; transformation of polar
coordinates into, 89

locally flat Euclidean metric, second order corrections
to, 88

locations: of events in spacetime, 195; and spatial
coordinates of particles, difference between, 31

long distance behavior, of action terms, 722
long distance expansion, deviation from Newtonian

gravity, 708–709
“long distance physicists,” 713n
loop quantum gravity, 772
Lorentz, Hendrik: and Droste’s solution of Einstein’s

field equation, 375; paper on Hamilton’s principle
and general theory of relativity, 397; paper on
variation of Lagrangian, 396; understanding of
waves, 783–784

Lorentz action, in Kałuza-Klein theory, 678
Lorentz algebra, 187; extension to Poincaré algebra,

192, 617
Lorentz boost: of 4–vector, 230; of mass density, 579;
SL(2, C) group, 730

Lorentz contraction: of box with particles, 23; and
number density, 223f

Lorentz-Fitzgerald length contraction, 199–200; pole
in the barn problem, 202

Lorentz force law, 245, 247; movement of charges,
404

Lorentz group, 188, 218; connection to rotation
group, 192; covered, 729–730; SO(3, 1), 730

Lorentz indices, 594, 608; conversion with vielbein,
603; versus world indices, 595

Lorentz invariance: beyond cosmological length
scale, 754; helicity spinors, 734; Maxwell’s
equations, 253; Newtonian action, 242; of physics,
218; of spacetime, 666

Lorentz scalar: definition of, 218; and density
distribution, 579

Lorentz symmetry, restrictions imposed on
electromagnetism, 339

Lorentz tensors, 188, 243
Lorentz transformation, 166–173; alternative route,

172; within cars, 205; and curved spacetime, 317;
definition in Minkowski spacetime, 181–182;
invariance of, 186; low velocity limit of, 169; sneak
preview of, 147; tensors under, 193e

Lorentz vector, Pauli spinors as “square root” of, 731
Lorentz vector potential, 243, 248
Lorentzian Lagrangian, 249
Lorenz gauge, in electromagnetism, 564
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low energy effects, of quantum gravity, 767
low energy physics: linkage to high energy physics,

752; understanding of, 750
low energy world, neglect of quantum gravity, 766
lower indices, 314–316; introduction of, 64;

transformations in change of coordinates, 71–73
luminosity distance, 297

macrostates, Bekenstein-Hawking entropy, 441, 444
magnetic field, 245; relativistic unification, 247;

Schrödinger equation for (nonrelativistic) charged
particle in, 354n

magnetic flux lines, Faraday’s picture of, 728
magnetic moment, of atom, and action, 715
magnetic monopoles, 81; bosons bound to, 789;

Newtonian approximation of Einstein’s field
equation, 577; relic problem, 532; topological field
theory, 728

Maldacena, Juan, and quantum gravity, 649
manifolds: Calabi-Yau, 695; coset (see coset

manifolds); Riemannian, 599–600; rotations
determined in, 590; topology of, and ground
states, 723; without boundary, 727

many particle case, and fields, 400
many particle systems. See fluids
many worlds interpretation, of quantum, 780
map. See Mercator map
mapping: of heaven and earth, subdivision of degree

(proposal by Ptolemy), 368n; of twistor space to
spacetime, 742

marble, positional variations in bowl, 114
marine recruit in boot camp, following rotation

commands, 50f
mass: changes of, 221; as conversion factor between

geometry and physics, 211; definition of, in
elementary physics, 213; of elementary particles,
16n; gravitational and inertial, 257, 268–269;
Planck (see Planck mass); role of, in action
principle, 142; spherically symmetric distribution,
304–307, 310–311, 409; of universe, 747–748

mass density transformation, under Lorentz boost,
579

mass dimensions: and dimensions of scalar
curvature, 711; role in quantum field theory,
711–712

mass distribution: and gravitational potential, 578;
from point masses, 119; rotating, gravitational
sources, 569; spherically symmetric, 373–374,
569, 571

mass loss, of radiating atoms, 232
mass scale: of cosmological constant, 700; as limit of

understanding of quantum field theory, 746
mass shell condition, 220, 464
massive objects: “gravitational radius” of, 764;

motion of, 659–660, 659f; worldlines of, 175
massless particles, 307–309; accelerated relativistic,

277; gravitons, 718; motion around black holes,

415–416; mystery of, 213; natural parametrization,
308; preferred parameter choice for, 215;
relativistic action principle for, 213; worldlines of,
175

material particles: Euler-Lagrange action of, 207;
unification with light, 207–217, 212–213

mathematical entities, as tensors, 52
mathematical universes, 634
mathematics: difference from arithmetic, in terms of

rotations, 56; as poetry of logical ideas, 150
matrices: antisymmetric, introduction of, 40;

commutation of, 41; exponential of, 41; as group
generator, 663; introduction of, 39–40; and
operators, 48; rotation matrix, definition of, 38; of
spacetime metrics, 183; transpose of, 45

matrix algebra, quick review of, 742–743
matrix differentiation, 322
matrix elements, counting of, 87–90
matrix theory, for relativistic action, 210
matter: baryonic, 502–503, 506; dark (see dark

matter); observational evidence, 503f; spherical
shell of, 423f

matter action: contribution of Maxwell action to, 378;
fields contained in, 384; general invariance of,
and conservation of energy momentum, 383–384;
generic, 386; interaction as part of, 382–383; as
part of action of world, 378; variation of, 378–379

matter-antimatter asymmetry, 528; in higher
dimensional theories, 683

matter density, and scale factor of universe, 496f
matter dominance: and coincidence problem, 499;

and photon decoupling, 788n
matter equation of motion, and matter action,

386
Matthew principle, 520; Birkhoff theorem as example

for, 376n; Lorentz transformation as example for,
169n; the rich inheriting from the wimps, 523

maximal symmetry: anti de Sitter spacetime, 650;
and coset manifold, 625

maximally symmetric spaces, 585–593; negatively
curved, 610

Maxwell, James C., versus Galileo, 159
Maxwell action, 325, 332; Chern-Simons term

added to, 721; contribution to matter action,
378; and differential forms, 724–725; general
invariance, 384, 394; in Kałuza-Klein theory, 675–
676; long-distance behavior, 722; in Minkowskian
spacetime, 381; scale and conformal invariance,
621; vanishing by variation, 384; from weak field
action, 572. See also electromagnetic action

Maxwell’s equations, 252–253; and Bianchi identity,
724; for charged black holes, 477; coupled to
Einstein’s field equations, static solutions, 482–
483; in curved spacetime, 333; free, 251; and
initial value problem, 404

Maxwell field, in terms of Yang-Mills field, 789n
Maxwell Lagrangian, 249, 255, 382
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Maxwell’s laws of electromagnetism, and Galilean
transformation, 20

Maxwellian electromagnetism: differences to
Newtonian gravity, 338; gauge freedom and initial
value, 401–402; speed of light, determined by, 163

Mead, C. Alden, generalized uncertainty principle
and quantum gravity, 769

mean free path of photons, 517
measuring device, collapsing into black hole,

763–764
mechanics: immediate formulation of, 142; least

action formulation of, 139
medium, for propagation of light, 163
membranes: hanging, as generalization of hanging

string, 118; from null surfaces, 185
Mercator, Gerardus, importance of angles, 620
Mercator map: and coordinate transformations, 79e,

94; singularity at poles, 365; of the world, 620
Mercury, perihelion shift, 368–369, 369f
messages, paths through spacetime, 638
metals, ratio of sound speed to light speed, 749
metric: in case of isometry, 586; change under

coordinate transformations, 70–71, 110; chosen
in Riemannian manifold, 88; conformally
flat, 80–81e, 94, 352e–353e; constraints on,
403; for contracting spacetime indices, 719; in
cosmological action, 357; definition range in
parallel transport, 544; determinant of, 215–216;
and different indices, 595; differentiation of, 131;
as dot product of vielbein, 603; for expanding
universe, group theory, 645; in Fermi normal
coordinates, 559, 561; flat space, 77; formed by
coordinate scalars, 708–709; induced by ambient
Euclidean metric, 86; integral over, 770; intrinsic
curvature calculation, 90–91; invariance under
scaling, Poincaré coordinates, 657; Lemaitre–de
Sitter, 357; and line element, 64; for lowering
or raising indices, 74; not related by coordinate,
81e; restriction by isometric condition, 586;
role in differential geometry, 66; Schwarzschild,
discovery of, 364; second order deviation of, 343;
of space, 128; in spacetime, 181, 716; on sphere,
determination of, 65; in spherical coordinates, 108;
for spinor indices, 742; on surface, in Euclidean
space, 99; of surface of sphere, 83–84; time-
independence of, 636; transformation in terms
of matrices, 72–73; two powers of derivatives
acting on, 349; unfamiliar of spheres, 585; on unit
spheres, 80e; variations in spacetime, 716

metric formalism, derivation of divergence and
Laplacian, 78–79

metric tensor: of 3-sphere, 296; covariant derivative,
325; divergence near boundary, 663; and general
coordinate transformations, 314; general static
and isotropic, 306; generalized Lemâıtre–de
Sitter, 489; higher dimensional, 682; inverse, 315;
Kałuza-Klein, 676, 680, 690–691; Kerr, 465–466,

475; Minkowskian (see Minkowski metric); near-
horizon Schwarzschild, 445–446; off-diagonal
components, 292, 459, 466, 474; Rindler, 445–
446; for space measurements, 63–64; spatial,
cosmic expansion, 491; time dependent, 455; time
translation invariance of, 304

Michell, John, black hole hypothesis, 13
Michell and Laplace, mass of black hole, 366,

409
Michelson-Morley experiment, 163; explained by

length contraction, 200
microscopic physics, and topological action, 721
microstates: Bekenstein-Hawking entropy, 441, 444;

in de Sitter spacetime, 638
microwave background, cosmic. See cosmic

microwave background
Mie, Gustav, Newton gravity and Lorentz invariance,

580
Mills, Robert L. See Yang-Mills theory
minimum, as solution of variational calculus, 117
minimum length measurement, limited by special

and general relativity, 763–764
Minkowski, Hermann: “mystical” substitution, 640;

on physical laws between worldlines, 176; on
space, time, and spacetime, 174

Minkowski metric, 317, 391; and Einstein’s field
equations, 563; folded into indices, 182; Rindler
coordinates, 446

Minkowski spacetime: (1+1)-dimensional in light
cone coordinates, 619; accelerated relativistic
particles, 277; acceleration in, 190; coordinate
changes, 192e; curves, in, 175; deviations due to
gravitational waves, 571–572; Dirac action in, 605;
distance in relativistic action, 210; flat, governing
action of, 581; generators of conformal algebra for,
615; geometry of, 175, 191; locally flat coordinates,
288; maximal extension of, 434; Maxwell action for
electromagnetic field in, 381; Penrose diagram,
428f, 434; spherical shell of photons in, 430f;
surfaces in, 184

Minkowskian sphere, including time, 631
Minkowskian time, compared to Newtonian time,

372
minus sign, role of, in energy functional, 139
Misner, Charles W., ADM formulation of gravitational

dynamics, 693
mites: flat space analogy, 6; geometer measuring

curvature, 545
MLT system, reduction to nothing, 11
modes, electromagnetic field treated as superposition

of, 746
molecules, appearance in early universe, 519
momentum: angular (see angular momentum);

energy (see energy momentum entries); exact
meaning of, 383; of gravitational field, 580–581;
of graviton’s propagator, 786; Hamiltonian, 144;
not conserved, 26, 27; physical, and twistors, 731;
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momentum (continued)
restricted to hyperbolic shell, 220; spatial density
of, 228; total, conservation of, 37

momentum conservation, 219; delta function, 740;
derivation of Einstein’s formula, 232; in terms of
helicity spinors, 736

momentum-twistor space, scattering amplitudes as
volumes of polytopes in, 742

monopoles, magnetic. See magnetic monopoles
Morley, Edward. See Michelson-Morley experiment
Mössbauer effect, measurement of gravitational

redshift, 284
mother: of all headaches, plaguing fundamental

physics, 699; of all vectors, 312–313
motion: around black holes, 412–416; in curved

spacetime, 289–290, 301–311; effect on
coordinates of, 160; in fifth dimension, 676; of free
particles, 180; law of, 25; relative, of observers,
168, 181; in static isotropic spacetime, 306–307

movement: at constant speed, of objects under
special relativity, 189; along curve, through vector
field, 544; fuel-economizing, 127

moving observer, fluids, 230
moving trihedron, of smooth curve, 97f
multipole expansion approximations, 568–569
“Must it be? It must be.”: discovery of action for

gravity, 346, 346f
My World Line (Gamow), 177
mysteries: action principle, 141, 155; Bekenstein-

Hawking entropy, 444; Bering Strait, 275; black
holes, 410, 441; caloric, 786; closing orbits,
30, 60; correspondence between quantum
statistical mechanics and quantum field theory,
445; cosmological constant, 356, 711, 751, 782;
cosmos, 778; “crazy” coordinates, 94; dark
energy, 356, 711; Einstein’s field equation, 358;
entropy in spacetime, 234; equality of inertial
and gravitational mass, 28; family problem, 7;
fermions, 781–782; Gibbons-Hawking radiation,
637; grand unification, 527n; gravity, 276,
778–779; holographic principle, 15; light and
electromagnetic field, 162; massless particle,
213; neutrino mass, 359; quantum, 780, 789n;
quantum gravity, 748, 781; as source of beautiful
experience, 778; temperature, 15; three copies of
world, 7; time, 787; universe, 779

“naked” charged black holes, 478
Nambu-Goto action, 216e
naming conventions, for indices, 608
Nash, John, and embedded spaces, 95
Nasty and Vicious, dueling thinkers experiment, 7–9
“natural” coordinate systems, 134
natural parametrization, 308
natural quantities: introduced by gravity, 764; and

unnatural quantities, 218
natural system of units, 10–12

naturalness doctrine, 579; in high energy physics,
749–750; and inverse light speed, 754–755

Navier-Stokes equation, 234; in fluid dynamics, 164
near-horizon Schwarzschild metric, 445–446
negative curvature, definition of, 85
negative pressure, as consequence of constant dark

energy density, 360
negatively curved space, maximally symmetric, 610
neutral objects, impossibility of under gravity, 716
neutrino masses, as mystery, 359n
neutrino oscillations, and cosmological constant

paradox, 747
neutrinos: (non)relativistic, 501; scattering of, 765;

“typical” mass scale of, 700
neutron interferometry, and equality of inertial and

gravitational mass, 34
neutrons: mass of, and anthropic principle, 757;

primeval nucleosynthesis of, 517–518
“new and improved” energy momentum tensor, 712
Newman, Ezra T., Kerr-Newman solution, 477
Newton, Isaac: action principle, 144; apple falling on,

268; comparison to Aristotle, 140–141; discovery
of calculus, 113; existence of God, 520; on his
youth, 25; inherent instability of gravity, 520;
miraculous year, 194n; role of second derivative
in time, 401; shown with orbits on one pound
note, 31; unification of celestial and terrestrial
mechanics, 28

Newton’s constant: Cavendish’s first measurement
of, 32; dimension of, 346; historical digression on,
31–32; and quantum gravity, 761

Newton’s dot notation, 29, 96
Newton-Einstein-Hilbert action, quantum gravity

limit, 444
Newton-Jebsen-Birkhoff theorem, 453
Newton’s laws, 25–34; law of action and reaction,

470; law of gravity, 11, 28; as result of variation
principle, 137; second law, 46–48, 110, 140

Newton-Leibniz rule: breaking of, 340–341; failure
for covariant derivatives, 342

Newton’s superb theorems, 32–33
Newtonian action, 241–242
Newtonian approximation, Einstein’s field equation

in, 577
Newtonian equation, “analog,” 367
Newtonian gravitational potential: around black

holes, 410–411, 411f; compared to Einstein
potential, planetary orbits, 371; dynamical origin
of, 578n; fields, 119; quantum gravity corrections
to, 767; replacement of mass density by energy
density, 379n

Newtonian gravity: cube of physics, 13f; deviation
from, and powers of derivatives, 708–709;
differences from Maxwellian electrodynamics,
338; restriction imposed by symmetry, 339; as
weak gravitational field limit, 391

Newtonian Lagrangian, 249
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Newtonian limit, 302–303
Newtonian mechanical analogies, from cosmological

principle, 507, 513
Newtonian mechanics: and black holes, 13;

conservation laws in, 35–37; cube of physics, 13f;
Galilean invariance of, 161; initial value problem
in, 400; invariance of, 161; invariance under
Galilean transformation, 19; reproduction by
relativistic particle action, 209; role of differential
equations, 26–27; role of signs in, 382; standard
notation of coordinates, 25; tensors in, 57–59

Newtonian orbits: closing of, and tensor notation, 60;
determination of, 31

Newtonian time, compared to Minkowskian time,
372

Newtonian universe, role of time in, 7
no-hair theorems, and Kerr black holes, 481–482
Nobel prize in physics (2011), and dark energy, 361n
Noether, Emmy, 150; spacetime hidden in scattering

amplitude, 739–740
Noether’s theorem: application of, 152; generality

of, 153; motion in static isotropic spacetime, 310;
promotion of physical laws, 221; proof of, 151

non-determinism, of Einstein’s field equations, 403
non-quantization, of gravity, 768–769
nonabelian gauge theory, 681; decoupling of

geometries, 692
noninteracting free particles, 221
nonlinear coordinate transformations, 69
nonlinear gravity, 571
nonlocal cosmology, 712
nonlocal phenomena, removal, 784
nonlocal terms: in action, 751; and cosmological

constant paradox, 751
“nonphysical” degrees of freedom, 783
nonrelativistic action, 241–242
nonrelativistic gases, 454
nonrelativistic matter. See dust
nonrelativistic mechanics, Lagrangian in, 138–139
nonrelativistic particles, in potential, action of, 356
nonrelativistic physics, completion and promotion of

quantities in, 218
nonrelativistic quantum mechanics, 438; in presence

of gravitational field, 12–13
nonrenormalizable interactions, 711–712
Nordström, Gunnar: derivation of Einstein’s gravity,

579. See also Reissner-Nordström entries
Nordström’s theory, road to higher dimensional

theories, 682–683
normal, to surface: at certain point, 99f; as timelike

vector, 184
normal coordinates, Fermi, 557
normal vector, tangent plane rotating around, 100
north pole, and its longitude, 76
notation: of action principle (Leibniz), 138; of column

vectors, 45; confusion in variational calculus, 117;
convenient for vectors, 182; of coordinates, 25,

62n; cross-product, angular momentum, 48n;
for differential operator, 72; dot: as symbol for
symmetry, 29, 96, 129; erroneous, in parallel
transport, 543; of functionals, 114; of gradient,
54; group theory of universe, 644; index (see index
notation); Laplacian, 78–79; of quantities (in
general), 32; spacetime metric, 183; tensor (see
tensor notation)

notation alert, bad: confusion in time dilation, 198;
confusion in relativistic action, 211; geodesic
equation, 555

nothing, waving of, 783
nuclear force, generated by pions, 205
nuclear fusion, compared to accretion disk radiation,

415
nuclear physics, in early universe, 518
nucleons, formulation of strong interaction, 785
nucleosynthesis: primeval, 517–518; stellar, 518–519,

758
null infinities, in Penrose diagrams, 428, 428f
null lines: in general spacetime, 730; in spacetime,

741f
null surfaces, 184; acting as membrane, 185; black

hole horizons as, 422, 468
number current: inside 3–volume, 226f; as 4–vector,

225f
number density: as component of Lorentz-vector, 224;

of particles in box, 223f; relativistic completion of,
223; in relativistic form, 224

numerical relativity: initial value formulation, 693;
and initial value problems, 400–405; setting up, 403

obesity index of universe, Schwarzschild radius and,
443

observables: appearance of antimatter, 205;
Heisenberg picture, 771; local, 765, 772, 781;
quantum mechanics, 48

observational cosmology, 491, 505
observers: accelerated, 193, 446–447; different, 185;

freely falling, metric for, 561; moving and resting,
166–168; relative motion of in spacetime, 181;
role in physics, 46–48; studying vector field, 47f;
uniform relative motion of, 168. See also reference
frames

odd-dimensional space, space reflection in, 721n
offshell information, carried by action, 782
old man’s toy, 267f
Once and Future King, The (White), 361n
one pound note, showing Newton with orbits, 31
open strings, 696
open universes, 296–297, 491, 629; critical density,

497–498; Einstein’s field equations, 493–494; with
positive cosmological constant, 633

operational definition of distance, 291, 291f
operators: annihilation and creation, 447–448;

differential, 48, 72, 319, 588; quantum, 771, 772
orbifolds, 700
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orbits: circular, 413–414, 413f, 549; closed,
verification of, 30; for light moving around black
hole, 416f; properties of, precession of gyroscopes,
550

ordinary differential equations, coupled, relativistic
stellar interiors, 452

orthogonal matrices, definition of, 39
orthonormal frames, 594; erecting, 595f
oscillator, harmonic, 447; symmetry and invariance,

242
osculating plane, of smooth curve, 97f
Ostrogradsky, M. V., discoverer of inherent instability,

338
outer horizon, of Kerr black holes, 468–469
outgoing brane wave model, 704–707

p-form, definition of, 597
Page, Don, Hawking radiation, 449
Painlevé, Paul, 417
Painlevé-Gullstrand coordinates, 417
pair production, 438
Palatini formalism: action for Einstein gravity, 395;

derivation of Einstein’s gravity, 583; invention by
Einstein, 397

Palatini identity, 389–390; mixing up with Palatini
formalism, 397

parabolas, bending in opposite directions, and
negative curvature, 85

paradoxes: pedagogical aspects of special relativity,
203–204. See also cosmological constant paradox

parallel transport, 543–548; precession of gyroscopes,
549; of vectors, 101–102, 102f, 545f

parameter choice for massless particles, 215
parametrization: invariance of: current, 133, 235;

natural, 125, 308; of surface, 98; ultrarelativistic
particle motion, 308

parametrized post-Newtonian (PPN) approximation,
309–310, 311

parity: strong gravitational sources, 574; and space
reflections, 721n

partial differential equations, solving, 708
particle-antiparticle pairs, thermal radiation from

horizon, 637
particle cloud, motion of, described by geodesic, 556
particle collisions, 438; momentum, 219–220
particle decay, conservation, 237n
particle horizon, 536
particle location, versus spacetime, 224
particle mass, as proportionality factor in relativistic

action, 211
particle motion, 198; free, 180; in future light cone,

178f; in interaction potential, 162; law of inertia of,
143; multiple coordinates, generalization of, 140;
in potential, 57–59, 135, 137; simplest case of, 142

particle physicists, renaming themselves high-energy
physicists, 713n

particle physics: approach to gravity, 583n;

baryogenesis and leptogenesis, 526–528; in
early universe, 518; evolving of, 753n; scale and
conformal invariances, 621; standard model of,
683

particle theory, use of scalar fields in, 759n
particles: accelerated: and general relativity, 189,

193e; anti- (see antimatter); birth and death of,
198; around black holes, 409–418; in box, number
density of, 223f; corotating/counterrotating, 474;
de Broglie wavelength at Schwarzschild radius,
442; electromagnetic field acting on, 246, 250;
under external force, 190; and fields, 145–146,
384; of finite size, motion of, 714; free, 302; and
gravitational waves, 566; intrinsic lifetime of, 198;
massive, 659–660, 659f; massless (see massless
particles); near barrier, path integral formalism
for, 781; noninteracting (see dust); notation of
position, 117; point (see point particles); relativistic
action, 208–209; at rest, Newton’s laws, 142;
ring of, responding to gravitational wave, 567f;
scattering of, Lorentz invariance, 236e; separation
of, for different polarizations in gravitational
waves, 566; on a sphere, 148, 645; spin 1, 256;
teleological behavior of, 139; test, 302, 309; wimps,
522; worldlines of, 177f, 211f, 380

partition function of quantum systems, 445
passive diffeomorphism, coordinate transformation

as, 398
path: in 2-dimensional Cartesian space, 123;

actual, extreme value of action, 141; choosing,
as metaphor for life, 139–140; of falling apple,
determination of, 137; Feynman’s, to rescue a
drowning girl, 3–4, 4f; harmonic oscillator, 148e;
least path principle, 3, 5–6; length of, 189, 190; of
light, 175, 656, 665; mean free path of photons,
517; shortest (see shortest path); straight and
narrow, deviation from, 143; through spacetime,
638. See also distance; length

path integral (Dirac-Feynman) formulation:
determining Hawking radiation, 445; and local
observables, 772; quantum gravity, 781, 783;
quantum physics, 770; understanding of quantum
mechanics via, 141

Pauli matrices, in Lorentz algebra, 187
Pauli spinors, as “square root” of Lorentz vector, 731
Peierls, Rudolf, on thinking and calculating, 133
Penrose, Roger, and twistors, 730–731
Penrose diagram, 427–429; black hole formation,

430; for causal structure of de Sitter spacetime,
639f; charged black holes, 480f; de Sitter
spacetime, 638; of Minkowskian spacetime, 428f;
Schwarzschild black hole, 429f; time translation,
620

Penrose process, 449, 469–471; angular momentum
loss, 471–472; area theorem, 472

Penrose’s vision, on role of light rays, 741
Penzias, Arno, cosmic microwave background, 517
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perfect fluids: assumptions during discussion, 237n;
and comoving observers, 229; definition of, 230; in
outgoing brane wave model, 704–705; relativistic
stellar interiors, 451; universe filled with, 492–493

perihelion shift: around black holes, 413; around
Mercury, 368–369, 369f; in Schwarzschild metric,
371–372

perturbation, relevant, in cosmic diagrams, 512
perturbative correction, to electromagnetic scattering

of point charges, 766
perturbative expansion, failure of, 770
perturbed spacetime metric, gravitational sources of,

569
Petrov notation, of Riemann curvature tensor, 352e
phase angle, of wave function, in Kałuza-Klein

theory, 678
phase boundaries, in cosmic diagrams, 513–514
philosophic arguments, power of, 779
photons: collisions with electrons, 222f; compared

to gravitons, 768; decoupling of, and matter
dominance, 788n; depending on geodesics, 665;
frequency shift, in scattering, 222; momentum of,
232; movement along time axis, 665; movement
in dueling thinkers experiment, 7–9; parameter
choice for propagating, 215; in primeval universe,
516f; relativistic action, 212; role of electric charge
for, 383; spherical shell of, 429, 430f; temperature
of gas of, 495. See also light; massless particles

physical momentum, and twistors, 731
physical reasonability, 557
physical singularities: compared to coordinate

singularities, 91–92; and coordinate singularities,
365–366; Kerr black holes, 467, 467f;
Schwarzschild black holes, 418, 425; timelike,
479

physicists: good versus great ones, 167; particle,
renaming themselves high-energy physicists,
713n; physics being independent of, 219

physics: on cosmological distance, 750; cube of, 12–
13; Descartes approach to questions in, 583n;
effectiveness in understanding the universe, 779;
and expression of physics in terms of equations,
difference of, 47; fundamental, Mother of All
Headaches, 699; goal of, 757–758; independence
of physicists, 219; internal consistency of, 780;
linkage between high energy and low energy
physics, 752; most famous equation of, 220–221;
need to be local, 757; present understanding of,
712; quantum (see quantum physics); relevance of
topology to, 728; role of clocks and rulers, 719–
720; role of observer, 46–48; sensitive to topology
of spacetime, 720; start of, 143n; teleological
discussions in, 136; theoretical (see theoretical
physics); translation invariance of, in static
spacetime, 304f; ultimate equation of, 47–48

physics terms, least appropriate, 516
Pioneer anomaly, 311

pions: formulation of strong interaction, 785; mass
prediction of, 205; negatively charged, 206

Pisa, Leaning Tower of, 270
planar coordinates, of expanding universe, 630
Planck, Max: Einstein’s appraisal of his

understanding of general theory of relativity, 370;
personal life, 10; and ultraviolet catastrophe,
789n

Planck area, and entropy of black holes, 442
Planck brane, 700
Planck constant, 11; dependence on mass-energy

scale, 781
Planck length, 11–12; charge quantization in

Kałuza-Klein theory, 677; in effective field theory
approach, 709; and large extra dimensions, 699;
as minimum length to probe quantum effects,
762; as smallest distance experimentalists can
measure, 764

Planck mass, 11–12; amount of, 583; and
cosmological constant paradox, 746–747; in higher
dimensional theories, 681; in Kałuza-Klein theory,
675; as largest mass fundamental physics, 748;
quantum gravity limit, 444

Planck scale, in early universe, 518
Planck time, 11–12
Planck units: and entropy of black holes, 441; and

quantum gravity, 761
plane: flat, curvature of, 105; osculating, of smooth

curve, 97f
planetary orbits, in Schwarzschild metric, 371–372
planets, celestial mechanics, 28
Poincaré, Henri: and Lorentz transformation, 169n;

and special relativity, 190; understanding of waves,
783–784

Poincaré algebra: extension to conformal algebra,
617; generators of, 192

Poincaré coordinates: in anti de Sitter spacetime,
656; numbers of boundaries, 664

Poincaré group, transformations and translations of,
666

Poincaré half plane, 67f; and anti de Sitter / conformal
field theories (AdS/CFT), 68; determination of
geodesics, 127; with differential forms, 608;
finding geodesics of, 133; geodesics on, 134f; in
higher dimensions, 656; and metric, 67–68; and
temporal boundary, 632

Poincaré invariant brane, 707
point charges, electromagnetic scattering of, 766
point of view, local versus global, 141
point particles: action for, relativistic, 208–209, 210;

associated current of, 235; energy and momentum
of, 379–380; motion of, 714, 676; nonrelativistic
action, 241

point-to-line map, from twistor space to spacetime,
742

pointlike particles, worldline length of, 215
points: circles mistaken for, 674f; distance of in space
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points (continued)
and time, 174–175; isometric geometry of, 585; in
spacetime, 177, 689f, 742; in twistor space, 741f

Poisson’s equation: gravitational potential satisfying,
708; membrane shape, 118; for Newton’s gravity,
231

polar coordinates: change from Cartesian
coordinates, 29, 62,71; Christoffel symbols of, 129;
on flat plane, 125; to solve celestial mechanics, 29;
transformation into locally flat coordinates, 89;
warped, 613e

polar-like coordinates, comoving, 298
polarization tensor, of gravitational waves, 565
polarization vectors, written in terms of helicity

spinors, 735n
polarizations: degrees of, in gravitational waves,

564; different, in gravitational waves, 566; of
gravitational waves, 734; as helicity states of
graviton, 566

Polchinski, J., deletion of Feynman diagrams, 756
pole in the barn problem: spacetime view of, 202f; of

special relativity, 201, 201f
poles, and their longitudes, 76
polyhedra, angular deficits of, 726–727
polytopes in momentum-twistor space, and

scattering amplitudes, 742
position, of particles: as general space coordinate, 26;

notation, 117
position determination, and position of measuring

device, 763–764
positive cosmological constant, and expanding

universe, 392
post-Newtonian approximation: Einstein’s field

equation in, 577; parametrized, 309–310, 311
potential: central, 36; and consistency or integrability

condition, 36; cosmic, 508–509, 508f; definition
of, 35; electromagnetic, in fifth dimension, 677;
external, translation invariance, 242; gauge,
emergence of Yang-Mills theory, 688; gravitational,
578; inflaton, 535f; introduced into relativistic
action, 209; linear, 139; Newtonian, around
black holes, 410–411; particles moving in, tensor
notation of, 57–59; rotationally invariant, 150;
translation invariant, particle movement in, 151;
vector, 243, 248; Yang-Mills gauge, 682

potential energy, of a marble in a bowl, 113
potential energy functional, action principle, 146
power series: expansion of functional, 115–116;

introduction of, 41
powers of derivatives, deviation from Newtonian

gravity, 708–709
Poynting vector, emergence of, 382
PPN (parametrized post-Newtonian) approximation,

309–310, 311
precession: of gyroscopes, 465, 549–551; Lense-

Thirring, 550; in Schwarzschild spacetime,
549

precession angle, 550
predictions, verified for Einstein’s theory, 777
pressure: Fermi, Chandrasekhar limit, 455;

relativistic energy contribution of, 230; of
universe, relation to energy density, 359

pressure gradient: of relativistic stellar interiors, 453;
in universe filled with perfect fluid, 493

primed coordinates, 18, 38; metric with, 71–73
primed frames, in algebra, 196
primeval nucleosynthesis, 517–518
primeval universe, 516f
“primeval” vectors, and coordinate transformations,

73
Princeton University, fundamental physical

equations on glass windows, 138
principles: action (see action principle); anthropic (see

anthropic principle); of causation, and gravitation
law, 404; Copernican, 491; cosmological
(see cosmological principle); equivalence (see
equivalence principle); fundamental, 12; Galileo’s
relativity principle, 17–19, 159; “golden” guiding,
338; holographic (see holographic principle); least
path (see least path principle); least time (see least
time principle); locality (see locality); of presumed
innocence, 299; uncertainty (see uncertainty
principle)

problem: of not enough time, 521–522, 531;
prototype of solutions, 222

Professor Flat: discusses Christoffel symbols,
132–133; on local flat coordinates, 130

projection: stereographic, 80–81e, 81f, 641; of vectors
on tangent plane, 102

projective space, integrating over, 740
promotion, law of, 219
propagator, for graviton, 573
proper distances, 296–297
proper time, 181; definition of and motion of light,

659; for different observers, twin paradox, 189; in
electromagnetism, from special relativity, 244; in
Minkowskian spacetime, 179; parameter choice
for massless particles, 215

proper time duration, of particle, 210
proper time interval, invariance of, 199
proton decay, 527; analogy to cosmological constant

paradox, 753–754; and anthropic principle, 757
protons: delayed recombination of, 516–517;

primeval nucleosynthesis of, 517–518
Proust, Marcel, on time, 205
pseudo-Euclidean spaces, 653
pseudo-time coordinate, 657
pseudospheres. See hyperbolic spaces
pseudotensor, energy momentum, 386
psychological time, 175n
Ptolemy: and concept of coordinates, 62n; and the

term “second” used in measuring angles, 368n
pulsars, emission of gravitational waves, 563
pulsating mass distribution, 571
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pulsating stars, 304
punctured surfaces, 726
puzzle, “What is greater than God?” 789n
Pythagoras: calculation of length of hanging string,

113; motion in static isotropic spacetime, 305, 309
Pythagoras theorem, for space and time, 167
Pythagorean time, and radar echo delay, 372

QFT. See quantum field theory
quadratic derivatives, added to Lagrangian, 338
quadrupole formula, derivation of, 576e
quadrupole radiation, gravitational, 571
quantities: auxiliary, calculus, 129; conserved:

and Noether’s theorem, 30, 152; definition of
conceptually natural, 219; extensive, 441; index
notation of, 32; natural, introducing to gravity,
764; transformation of, 218; without qualities,
scalar fields as, 788n

quantization: of electromagnetic field, 764; of
gravitational field, 582; of gravity, 780, 788n

quantum: dependence of action, 783; mystery of, 780
quantum chromodynamics, 526, 785
quantum electrodynamics, difficulties in, 764
quantum field theory (QFT), 247; antimatter in,

476; calculating vacuum energy by, 752–753;
commutation relations, 192; correspondence
with quantum statistical mechanics, mystery of,
445; cube of physics, 13f; in curved spacetime,
780; cutoff in, 758n; in de Sitter spacetime, 648;
harmonic oscillator in, 361; as low energy effective
theory, 711–712; motivation for development
of, 384; motivation for studying twistors, 731;
not consistent with classical relativity, 773n;
questions on, 781; restless vacuum in, 436–438;
understanding of, 746; use of scalar fields in, 759n

quantum fields, appearance in action, 213n
quantum fluctuations: contributing to vacuum

energy density, 746; of fields, 784; Hawking
radiation originating from, 436; in inflationary
cosmology, 533; thermal radiation from horizon,
637; Unruh effect, 446; vacuum as boiling sea of,
745–746

quantum gravity: anti de Sitter spacetime, container
for, 649; cube of physics, 13f; divergent behavior
of, 766; fundamental scales, appearance of, 760–
761; governed by attractive ultraviolet fixed point,
773n; handwaving arguments for, 769; Hawking
radiation, 439, 443–444; heuristic thoughts about,
760–774; as Holy Grail of physics, 12; impossibility
as a quantum field theory, 765; as local field theory,
781; local observables, absence of, 772, 781; loop,
772; mystery of, 748, 781; “naked” singularities,
480; Newtonian potential, corrections to, 767;
nonperturbative treatment of, 770; path integrals,
781; Planck length as minimum length to probe,
762; and problem of knowing the position of
measuring device, 763–764; and Schrödinger’s cat

experiment, 771; and “strangeness” of black holes,
764–765; taming of, 731; thought to follow from
quantum electrodynamics, 764; trouble by Planck
mass, 761; and ultraviolet completion, 765; from
world described by “matter fields” and a metric,
770. See also Kałuza-Klein theory; string theory

quantum Hall effect, fractional, 789n
quantum Hall fluid, and ground state degeneracy,

723
quantum hydrodynamics, analogy to quantum

gravity, 759n
quantum mechanics: cube of physics, 13f; derivation

of Hawking temperature, 445; special relativity
and, 437; spin 1 particles, 256; use of operators in,
48

quantum of gravity. See gravitons
quantum of light. See photons
quantum operators, 771, 772
quantum particles, in classical gravitational field, 771
quantum physics: difference from classical physics,

360–361; discord with Einstein gravity, 768–769;
equivalent formulations for, 770; observables in,
772. See also physics

quantum statistical mechanics, correspondence with
quantum field theory, mystery of, 445

quantum systems: on torus, 723n; with zero
Hamiltonian, 723

quantum tunneling, and Hawking radiation, 449
quarks: baryogenesis, 526; families of, 786; masses

of, and anthropic principle, 757–758
quotient theorem, 316–317

r , use of letter in different situations, 95
radar echo delay experiments, 373f; as test of Einstein

gravity, 372–373
radar ranging, 291
radial coordinates, hyperbolic, 653–654
radiation: accretion disk, compared to nuclear

fusion, 415; background (see cosmic microwave
background); black body, of black holes, 436;
Gibbons-Hawking, 449, 638; Hawking (see
Hawking radiation); quadrupole, graviton spin,
571; role in dissipative collapse, 521; from rotating
black holes, 473–475; thermal, from de Sitter
horizon, 637; universe dominated by, 495–497

radiation density, and scale factor of universe, 496f
radion field, 680; calculation of 5-dimensional scalar

curvature, 686
radius, role of, in Schwarzschild metric, 364–365
rapidity, of boosts, 188
Raychaudhuri equation, 449, 555–556
A la recherche du temps perdu (Proust), 205
recombination, delayed, 516–517
rectilinear container, infinitesimal, 80e
redshift: cosmological, 295; gravitational, 259, 282–

283, 303–304, 412; infinite, outside Kerr black
holes, 462, 466, 469; relativistic, of frequency, 186
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redshift factor, 295
redshift formula, 299, 490; as cosmic clock, 504
reducible representations, 54–57
Reed, Ishmael, stellar nucleosynthesis, 518
reference frames: change of, and covariant derivative,

103; comoving, preferred flow direction, 230;
different, for Einstein’s clocks, 167f; dueling
thinkers experiment, 7–8; and falling ring of
balls, 59f; nearby, connected by 1-forms, 600;
orthonormal, 594, 595f. See also observers

reflections, space, 721n. See also rotations
refraction, as principle phenomenon, 4
Regge calculus, 726n
Reissner-Nordström black holes, subextremal, 483
Reissner-Nordström spacetime, 477–478
relativistic action: accelerated frames, 285;

gravitational time dilation, 284; matrix theory, 210
relativistic completion, 218, 242–243; of current, 223
relativistic curl, 4–vector, 252
relativistic Doppler shift, 185–186, 222
relativistic fluid dynamics, 233
relativistic kinematics, 221
relativistic matter. See also radiation
relativistic particles. See massless particles
relativistic stellar interiors, 451–457
relativistic strings, generalization of action for, 210n,

215
relativistic unification, 247
relativistic wave equation, standard, 565
relativity: in American football, 172f; concept of, 17–

20; definition of, 17; Galileo’s principle of, 17–19,
159; general (see general relativity); numerical,
400–405, 693; special (see special relativity)

relativity principle, Galilean, 159
relevant events, time dilation, 197
relevant perturbation, in cosmic diagrams, 512
relic photons, 517
relic problem, 532
renormalizable interactions, 711–712
renormalization group flow, 511
renormalization group ideas, and scaling, 754
reparametrization invariance, variational calculus,

123
repeated index summation. See summation

convention
representation: ambitwistor, 736, 739; defining, of

rotation group, 54; fundamental, of rotation group,
54; of groups with subgroups, 225; index-free, of
vector fields, 319; reducible versus irreducible,
54–57

representation theory, 54
repulsion, between like electric charges, 707
rescaling: of complex parameters, 733; invariance

on, 559
rest frame: of gyroscope in parallel transport, 549;

length contraction, 199; with proper time, 179
restless vacuum, in quantum field theory, 436–438

restrictions: of groups to subgroups, 57; by Lorentz
symmetry, 339; of metric, by isometric condition,
586; of momentum, to hyperbolic shell, 220

Ricci-Curbastro, Gregorio, 345
Ricci tensor, 449; for 2-brane model, 701; in anti de

Sitter spacetime, 612; calculation of 5-dimensional
scalar curvature, 685; for charged black holes, 478;
combined with scalar tensors, 388; computation
of, 357–358, 362; cosmic expansion, 490–491;
derivation of Raychaudhuri equation, 556;
introduction of, 345; proportional to metric,
492; for relativistic stellar interiors, 451–452; in
Schwarzschild solution, 363–364; for spherically
symmetric static spacetimes, 611; vanishing of,
348; variation of, 390, 395

Riemann, Bernhard: determination of curvature
of space, 65; pioneering work in extending
differential geometry, 91; quest for curvature, 339

Riemann curvature: components of, in Einstein
gravity, 89; as found by Riemann, 90–91; and
parallel transport, 545. See also curved spacetime

Riemann curvature tensor, 546; alternative
derivation of, 547–548; anti de Sitter spacetime,
651; computation of, 349–350, 362, 607;
constraints on, 591; cyclic symmetry of, 351e; for
de Sitter spacetime, 626; derivation of variation
of, 389; determination of, 341–343; directly
from 2-form, 611; form of, 90; formation of
scalar curvature from, 345–346; on geodesic,
in Fermi normal coordinates, 560; Hawking
Radiation, 438; indices, number of, 131; of Kerr
metric, 476; in locally flat coordinates, 553; in
maximally symmetric spaces, 589; structure of,
351; symmetry properties of, 343, 561; vanishing
of, 348; variation of, 347; and variations of metric
in spacetime, 716

Riemann normal coordinates. See locally flat
coordinates

Riemannian, manifolds, 599–600
Riemannian geometry, 280; determination of weak

field action, 572; fear of, 82
Riemannian manifolds: Cartan formulation of,

601; choice of metric, 88; definition of, 95;
Killing vectors of, 588; nearby geodesics on, 552;
specification of curvature of, 89

Riemannian spacetime: fundamental scalars in, 365;
generalization of parallel transport to, 543

Rindler coordinates, 193f, 660
Rindler metric, 446
Rindler transformation, in Minkowski spacetime,

192e
ripples in spacetime, 563; propagation of, 667
RNA folding, and punctured surfaces, 728
Robertson, Howard P.: rejecting Einstein’s article,

564. See also Friedmann-Robertson-Walker
universes

Rogers, Eric, neighbor of Einstein, 267
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Rosen, Nathan: Einstein-Rosen bridge, 433;
gravitational waves, 563n

Rosenfeld, L., nonconsistency of quantum field
theory and classical relativity, 773n

rotating black holes, 414, 458–476; angular
momentum of, 576; and Boyer-Lindquist
coordinates, 78; frame dragging, 460f; offdiagonal
metric component, 459; Penrose process, 449; as
sources of radiation, 473–475; ’t Hooft’s bound,
442. See also Kerr black holes

rotating bodies: angular momentum of, 563–577;
slow velocity of, 570; spacetime deformation by,
460

rotating mass distributions, 569
rotation groups, 317; generalized, 191; generators of,

40, 192; as invariance group of physics, 755; Lie
algebra of, 191; representation of, 54; subgroup of
Lorentz group, 192. See also specific groups

rotation matrix: and covariant differentiation, 321;
definition of, 38

rotational invariance, 118; inverse square law, 120,
697; in Newton’s second law, 140

rotations: approach generalizing to higher
dimensional spaces, 42; under coordinate
transformations, 72–73; definition of, in matrix
form, 40; determination in manifolds, 590; and
exponential function, 41; as freedom left in higher
dimensional space, 88; in higher dimensional
spaces, 44–45, 49–51; hyperboloid of, 625; and
index notation, 44–45; as invariant transformation,
186; as linear transformations, 68; order of, 50f;
in plane, 38–40; similarity to metrics, 181; in
spacetime, 174

Roth, Philip, The Ghostwriter , 254
Royal Society, expeditions to test Einstein’s theory,

367
rubber sheet analogy, misleading for black holes, 432
rulers, observed in different frames, 199f
Rumford, Count (Benjamin Thomson), energy

conservation, 387n

saddle point, determination of surface curvature,
105f

Sakharov, Andrei D., grand unified theory, 529
Sandage, Allan, closed and open universes, 296–297
satellites: onboard gyroscope measurements, 549;

radar echo delay experiments, 373
scalar action, energy momentum tensor for, 387e
scalar check, of Schwarzschild metric, 365
scalar curvature: for 2-brane model, 700; 5-

dimensional, 684–686; constant, of maximally
symmetric spaces, 589; of expanding universe,
609; formation from Riemann curvature tensor,
345–346; and mass dimensions, 711; and other
coordinate scalars to form a metric, 708–709

scalar fields: action, 332; in AdS/CFT correspondence,
665; charged, in 5-dimensional theories, 687;

Lagrangian in, 712; as quantities without qualities,
788n

scalar product: of four vectors under Lorentz
transformation, 182; invariant in parallel
transport, 544; of vectors, definition of, 39

scalar tensors, combined with Ricci tensor, 388
scalars: and coordinate transformations, 73;

differentiation, 318; in general relativity, 315;
and invariance, 47; objects without indices not
transforming as, 719–720; rotational, 225

scale and conformal invariances: and naturalness
doctrine, 750; in particle physics, 621

scale factor of universe, 289, 293, 489; and Big
Bang, 499f; cosmological equation, 633; and
energy density, 496f; in inflationary cosmology,
534; primeval density fluctuations, 524; redshift
formula, 299

scales, 750; physics on different length, 750
scaling: at cosmological distances, 753–754; metric

invariant under, 657
scaling dimensions, of terms in action, 713n
scattering: 4-gluon, 744e; Compton, 222f, 235e;

electromagnetic, of point charges, 766; of
electromagnetic wave on atom or molecule,
715; gluons, Feynman diagrams for, 735–736;
of gravitons (see graviton scattering); impact
parameter for, 309, 309f, 416; of neutrinos,
765; particle, Lorentz invariance, 236e; photons,
frequency shift in, 222

scattering amplitudes: 4-gluons, 738; ambitwistor
representation for, 737; dimensional analysis,
717, 761, 770; and effective field theory, 770;
expressed in terms of helicity spinors, 734–
735; Fourier transformation of, 736; gluons,
785; for gravitational wave on finite sized
object, 717; gravitons (see graviton scattering);
spacetime hidden in, 739–740; in terms of helicity
spinors, 735–736; as volume of polytopes in
momentum-twistor space, 742

scattering cross section, electromagnetic wave on
atom or molecule, 715

Schild (Kerr-Schild form), 476
Schrödinger’s cat experiment, quantum gravity,

771
Schrödinger equation, for (nonrelativistic) charged

particle in magnetic field, 354n
Schwarzschild, Karl: letter to Einstein, 362; meaning

of name, 363
Schwarzschild black holes: escape from, 427;

Hawking temperature of, 436; and Kerr black
holes, 468; Kruskal-Szekeres coordinates,
635; Kruskal-Szekeres diagram of, 426f; mass
determination, 570; Penrose diagrams, 429f

Schwarzschild–de Sitter spacetime, 375e, 635
Schwarzschild-Droste metric, and solar system tests

of Einstein gravity, 362–371
Schwarzschild metric: derivation of, 347; discovery
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Schwarzschild metric (continued)
of, 364; Kruskal-Szekeres diagram for, 425–
427; near-horizon, 445–446; Painlevé-Gullstrand
coordinates, 417; perihelion shift in, 371–372;
planetary orbits in, 371–372

Schwarzschild radius, 409; in Kerr solutions, 461,
465; relation to actual radius, 366; role in metric,
364–365; of universe, 514; and universe’s obesity
index, 443

Schwarzschild singularity: coordinate, 365–366;
impossibility of, in toy model of spherical cluster
of noninteracting particles, 376n

Schwarzschild solution: as limit of Kerr solution,
466; with charged central mass (see charged black
holes); Kruskal coordinates as extension to, 433;
time-dependent mass distribution, 374; Weyl’s
way to, 374

Schwarzschild spacetime, 292; precession in, 549;
spherical shell of photons in, 430f

“second,” meaning of term used in measuring
angles, 368n

second derivative in time, role for dynamics,
Newton’s insight, 401

second law of black hole thermodynamics, 472
second order corrections, to locally flat Euclidean

metric, 88
segments, infinitesimal, space and time experience

of, 180
self-interacting scalar field, 387e
self-tuning, 706
semi-circles, as geodesics, 133
Shapiro, Irwin I., radar echo delay experiments,

372–373
sheets, swept out by strings, 216f
“shift,” 691, 693
shortest path: in curved spacetime, 276;

determination of, 155; on earth’s surface,
275; and parallel transport, 545; in spacetime,
176f. See also geodesics; path

“shut up and calculate,” 445
sign: most significant in physics, 176; role in

electromagnetism, 382
sign error, in action variation, 380
sign function, in Green’s function, 573
signature, of spacetime, changing of, 732–733
Silberstein, Ludwik, understanding of Einstein’s

theory, 369–370
similarity transformations, definition of, 56
simultaneity: dependence on observer, 8; Einstein’s

gedanken experiments, 7–9; failing of, 166; fall of,
200

single particles, ignoring gravitational waves, 566
singularities: at Big Bang, 498; clothed, 479;

coordinate, 91–92, 365–366, 467, 467f; physical,
418, 425, 467, 479; at poles of Mercator map,
365; Schwarzschild, impossibility of, 376n; at
Schwarzschild radius, 409; of Schwarzschild
solution, 365; spacetime, at Big Bang, 498;

spherical, paper by Kruskal, 376n; with trapped
surfaces, 484

sink, in cosmic diagram, 511
sky, reason for being blue, 715
SL(2, C) group, 730
SL(4, R) group: explanation of, 739; and twistors,

737
slow roll scenario, 535–536
slow rotation limit, Kerr black hole, 571
smooth functions, and delta function, 33e
Snell’s law, 9e
SO(3, 1) group, 730
SO(3) group, generators of, 44
SO(3) transformations, 57f
SO(6) group, 619
SO(D) group: index notation of, 49; Lie algebra for,

51; Minkowski spacetime, 191
soft photon theorems, 217n
solar eclipse expeditions, 367; praise by J. J.

Thomson, 369
solar system, tests of Einstein gravity, and

Schwarzschild-Droste metric, 309, 362–371
Soldner, Johann, calculation of deflection of light by

astrophysical objects, 366–367
solid state structures: gauge potential of, 721. See also

condensed matter physics
solitons, included in quantum field theory, 781
SO(m, n) groups, and complexification, 732
Sommerfeld, Arnold: introduction of fine structure

constant, 767; letters from Einstein, 344, 366, 580
sound horizon, 524
sound speed: in metals, ratio to light speed, 749; in

static relativistic fluid, 234
south-pointing carriage: function of, 109; modern

version of, 104f
south pole, and its longitude, 76
space: closed curved, 681; conformally flat, 80–81e;

creation of, 498, 787; curled up, 673–674, 674f;
determination of curvature, 65–66; dimensionality
and inverse square law, 697; homogeneous, 289,
292, 491, 588, 704; hyperbolic, 296, 491, 590, 627,
633; internal, 688, 689; isotropic, 289, 292, 305,
491, 588, 704; local versus global character of, 76–
77; maximally symmetric, 585–593, 588; metric
in geodesic equation, 128; negatively curved,
maximally symmetric, 610; replacing time, 137;
and spacetime, classification of, 666; of spheres,
and de Sitter spacetime, 646; spherical, of closed
universe, 633; and time, lyrical confounding of,
174n

space coordinates: as dynamical variable, and energy
momentum tensor, 381; notation, 25

space measurements, metric tensor for, 63–64
space reflections, in odd-dimensional space, 721n
spacelike 3-dimensional hypersurface, 693f
spacelike curves, 175
spacelike distance, 175
spacelike events, temporal ordering of, 204
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spacelike geodesics, tentacles of, 558
spacelike hypersurfaces. See Cauchy surface
spacelike infinity, 428, 428f
spacelike Killing vector, 637
spacelike surfaces, 184
spaceship: ball of whiskey in, 270; in orbit around

earth, 266
spacetime(s): 4-dimensional, divergence theorem

generalized to, 386; 5-dimensional (see Kałuza-
Klein theory); annihilated, 785; anti de Sitter,
612, 702; boundary of, 399n; causal structure of,
427, 431, 438, 530, 531f, 780; changing signature
of, 732–733; circles mistaken for points, 674f;
conformally equivalent, 311; conformally related,
622e; constancy of dark energy density in, 359;
constructed by piling sheets, 689f; curved (see
curved spacetime); dark energy density in, 356;
de Sitter, 456, 624–648; deformation by rotating
bodies, 460; discretization of, 773n; disguises of
anti de Sitter, 654; distance measurements in,
180; distance of comoving observers, 174; divided
into regions, 635; Einstein’s equivalence principle,
271; empty, 347–348, 362; event, definition
of, 177; flat, with conformal algebra, 615; four
dimensional, 174; geometry of, 174–193; and
gravity, origins of, 787; how to generate, 338;
human in, 658f; inside stars, 453; inversion of,
743–744; isometric, around rotating black holes,
459; Kerr, 470–471, 473; Lagrange multiplier
for volume of, 756; and large extra dimensions,
697; mapping of, holographic principle, 649;
Minkowskian, 277, 434; Minkowskian metric for,
181; next steps of understanding of, 784; null
lines in, 741f; number current as 4–vector in,
225f; paths lengths, 189; perpendicular to internal
space, 689; propagation of ripples, 667; pulsation
communicated to outside, 571; Pythagoras
theorem of, 167; regions of, 635; ripples in,
563; Schwarzschild, 292; Schwarzschild–de
Sitter, 375e; separation of events in, 160; “sewing
together” of two distinct, 429–431; shortest path in,
176f; singularity at Big Bang, 498; small enough
region of, and Einstein’s equivalence principle,
712; spherically symmetric, time dependent, 311;
around spherically symmetric mass distribution,
304–307, 310–311, 409; spinors in curved, 604–
605; static, 61, 303–304; static isotropic, motion
in, 306–307; stretching of, 615; thermodynamics
of, 448–449; topology of, physics sensitive to, 720;
as a triangle, 428, 434; twistor space point-to-
line mapped to, 742; and twistors, 739–740; and
variations of metric in, 716

spacetime curvature. See curved spacetime
spacetime derivative, two powers of, role in Einstein

field equation, 402
spacetime dimensions, four, 174
spacetime events, light rays being more fundamental

than, 741

spacetime fluctuations, 762
spacetime metric: around spherical mass

distribution, Schwarzschild solution, 363–364;
around stars, 62; formal similarity to rotation, 181;
notation of, 183; perturbed, gravitational sources
of, 569. See also metric

spacetime picture, thinking in terms of, 28
spatial boundaries, 655; in anti de Sitter spacetime,

649
spatial coordinates: in continuum mechanics, 117;

emerging in AdS/CFT correspondence, 787;
growing from boundary, 660; and location of
particles, difference between, 31

spatial curvature: for closed, flat, and open universes,
634; effect on CMB fluctuations, 525–526

spatial distance, in general curved spacetime,
290–292

spatial metric, and cosmic expansion, 491
special matrices, 40
special relativity: abstract of, 20; accelerated particles,

193e; applied, 195–206; counterintuitivity, 204;
electromagnetism from, 244–246; in everyday
life, 205; geometrical view of, 582; pedagogically
correct presentation, 203; performance of young
Einstein, 783; problems in, foolproof method for
solving, 195; and quantum mechanics, 437; time,
different rates of, 196

speed limit, existence of, 172
speed of light. See light speed
spheres: in 3-spaces, distances of, 610; curvature of

surface of, by Gauss’s strategy, 105; d-dimensional,
definition of, 624; in de Sitter spacetime, 624;
determination of metric on, 65; as example
for curved space, 83; generalized, 92; higher
dimensional, metric of, 80e; and hyperbolic
spaces, 93; “at infinity,” 428; intersecting, 647f;
intrinsic and extrinsic curvature of, 6, 85; metric
of surface of, 83–84; squashed, 469; stereographic
projection of, 80–81e, 81f; tangent plane of, 98;
topology of, 727; unfamiliar metrics of, 585

spherical blobs, 725f; growing a trunk, 726
spherical coordinates: change from Cartesian

coordinates, Euclidean spaces, 63; introduction of,
108

spherical shell of photons, 429; in Minkowski
spacetime and Schwarzschild spacetime, 430f

spherical symmetry, comoving coordinates, 298
spherically symmetric mass distribution, 304–307;

around black holes, 409; Christoffel symbols,
310–311; foliation, 305–306; Killing vectors
for, 305; Schwarzschild solution for spacetime
metric around, 363–364; time dependent, and
Jebsen-Birkhoff theorem, 373–374. See also stars

spherically symmetric spacetime: static, 61; time
dependent, 311

spin 1 particles, 256
spin connection, for index transformation, 603
spin fields, in terms of spinor field, 789n
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spin vector: parallel transport of, 549; precession of
for particle in orbit, 550

spinor fields, and gauge potential, 789n
spinor indices, “metric” for, 742
spinors: complexified, 732; in curved spacetime,

604–605
splitting of energy levels. See energy level splitting
spooky action, Newton’s, 146
spring oscillations, equation of motion, 26
square root: calculation of, 207; of Lorentz vector, 731
squashed sphere, length of equator, 80e
stacked entities, 56
standard candles, 359
standard model of particle physics, 683
standard notation, of coordinates, 25
standard relativistic wave equation, 565
Stark, Johannes, on Einstein, 216n
stars: collapse into black holes, 455–456; first, 519;

made of nothing, 456; pulsating, 304; relativistic
interiors, 451–457; Riemann curvature tensor
around, 362; Schwarzschild radius of sun, 409;
stellar nucleosynthesis, 518–519

static coordinates, 634; definition of, 652;
time-independence of metric, 636

static fields, classical theory, 119
static isotropic spacetime, motion in, 306–307
static solutions, for coupled Einstein and Maxwell

equations, 482–483
static spacetime, 303–304; spherically symmetric, 61;

translation invariant physics in, 304f
static universe, Einstein’s, 509–510, 514
stationary limit surface, 461–463; angular velocity

inside, 471; Kerr black hole, 462f; outer, 469
stationary phase approximation, 770
“stationed” observer, around black hole, 412
stellar nucleosynthesis, and anthropic principle, 758
stereographic projection: for anti de Sitter spacetime,

661; for de Sitter spacetime, 641; of sphere,
80–81e, 81f

straight line: appearance of, curved coordinates,
130–131; distance of, in Minkowskian spacetime,
175; form dependence of coordinate systems,
127; geodesic problem, solutions of, 124; most
complicated description of, 125; and parallel
transport, 545; as shortest path between two
points, 4; in twistor space, 742; between two
points, 66, 90

stress energy tensor, 386e; in outgoing brane wave
model, 704–705. See also energy momentum
tensor

string: action of, 146; boundary conditions for energy
of, 115; elastic, hanging under force of gravity, 113;
hanging, and variational calculus, 113–123; with
nonuniform force distribution, 117; relativistic,
action for, 210n

string action, invariance of, 147, 216e
string theory: and anthropic principle, 757;

Bekenstein-Hawking entropy and, 444; current of,

235; dilaton field in, 680; in early universe, 518;
and extremal black holes, 467; and generalized
uncertainty principle, 769; as higher dimensional
theory, 695; and Kałuza-Klein / Yang-Mills
theories, 682–683; large extra dimensions in, 696;
minimal, 147; sheets created from strings, 216f

string vibrations, speed of propagation of, 147
strong energy condition, 557; and gravity attraction,

562n
strong force, generated by pions, 205
strong interaction, 526; understanding of, 785
structural equations, Cartan’s, 684
structure formation, in early universe, 520, 522–523
subextremal black holes: charged, 478–479;

Reissner-Nordström, 483
subgroups, restriction of groups to, 57
subscript, index notation, 32
subtraction, of vectors, in Euclidean space, 101, 101f
summation convention, 46, 184, 316; and general

coordinate transformations, 71; in general
relativity, 314; and Greek symbol notation, 63–
64; Lorentz transformation of, 186; Minkowski
metric, 182; and tensors, 52; and upper and lower
indices, 64

summation variables, dummy, 184n
sums, notation of, Kronecker delta, 45
sun: ratio of Schwarzschild radius to actual radius,

367; Schwarzschild radius, 266, 409
superb theorems, Newton’s, 33
superconductivity, high temperature, 789n
superrenormalizable interactions, 711–712
superscript, index notation, 32
supersymmetry: Bekenstein-Hawking entropy and,

444; Yang-Mills theory, 621
supertwistors, 739n
suppressed angular coordinates, 422, 426
surface curvature: compared to curved line, 89n;

determination of, Gauss’s strategy, 104–105
surface parametrization, 98
surface vectors: basis for, in Euclidean space, 98;

normal, 184; parallel transport of, 543
surfaces: in 3-dimensional Euclidean space, 98–

109; generated of light rays, 185; gravity at,
473; “inside” and “outside” of, 85; metric on,
in Euclidean space, 99; normal to, at certain
point, 99f; “one way” in spacetime metrics, 185;
punctured, 726; spacelike, 184; stationary limit,
461–463, 469; tangent plane of, in Euclidean
space, 98–99; trapped, 484, 789n; triangulation of,
726

Sylvester, James Joseph, 210; law of inertia, 193e
symbolic manipulation software, computation of

curvature tensor, 607
symmetric mass distribution. See spherically

symmetric mass distribution
symmetric spaces, maximally, 585–593, 588;

curvature tensor in, 589; negatively curved,
610
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symmetric spacetimes, spherically, 611
symmetric tensors, character of, 55
symmetry: of angular momentum, 150; approach

to fluid dynamics, 164; and conservation, 150–
155; and curvature tensor, 561; cyclic, of Riemann
curvature tensor, 351e; deduction of physics
from, 254; dot notation, 129; and equivalence
principle, 317–318; Fermi normal coordinates,
561; and Fermi normal coordinates, 561; gauge,
in higher dimensional theories, 682; and gauge
invariance, 249; hidden, of nature, 210; imposed
on gravity, 254; and invariance, 242–243; local
gauge, in higher dimensional theories, 682;
Lorentz, restrictions on electromagnetism,
339; matter-antimatter, violation of, 528, 683;
maximal, 592, 625, 626, 650; physical, definition
of, 47; as property of tensors, 61; restrictions on
Newtonian gravity, 339; of Riemann curvature
tensor, 343, 561; in spatial indices, 609; of spheres
in spacetime, 585; spherical, 298, 304–307, 310–
311, 373, 409; supersymmetry, 444, 621. See also
antisymmetry; rotations

symmetry breaking, spontaneous, 593, 784
symmetry group, Euclidean group as, 755
symmetry relations, investigations of, in locally flat

coordinate system, 343–344
system of units, natural, 10–12
Szekeres, George. See Kruskal-Szekeres entries

’t Hooft, Gerard: bound on entropy of black
holes, 442–443; naturalness doctrine, 750; and
Yang-Mills field, 789n

tangent plane: and curved surface of sphere, 83–84,
83f; and normal to surface, 99f; rotating around
normal vector, 100; of surface in Euclidean space,
98–99

tangent vectors: of curves, 96, 327; to geodesic,
555; spacetime surfaces, 185; to straight lines,
130

tautochrone problem, Lagrange, 144
Taylor, Joseph H., detection of binary pulsar, 563
Taylor coefficients, and Riemann curvature, 91
Tegmark, Max, inflationary cosmology, 536
teleological discussions, in physics, 136
temperature: ambient, of universe, 504; concept of,

15; of cosmic microwave background, 515, 521–
522; Hawking, 436, 441; inverse, 445; mystery of,
15; for nonrelativistic gas, 231; of photon gases,
495

temporal boundary, and Poincaré half plane, 632
temporal coordinate: in boundary theory, 660;

dependence of spatial coordinate, 652
temporal ordering: in antimatter creation, 206; in

different frames, 204
tennis ball trajectories, in space and spacetime, 33
tensor, notation, Greek symbols in, 63
tensor decomposition, 236e
tensor density, definition of, 75n

tensor fields, 243; electromagnetic, 244; gravity, 257;
introduction of, 53–54

tensor notation: gravity potential, 57–59; Greek
symbols in, 63; and Laplace’s equation, 58;
Newtonian orbits, 60; particle motion, 57–59

tensors: antisymmetric and symmetric character
of, 55; construction of, 313; contraction, 316;
covariant derivative as, 322; covariant derivative of,
324; covariant divergence of, 332; definition of, 52;
differentiation, 318; fear of, 52–53; form invariant,
592–593; in general relativity, 312–319; and indices
(upper and lower), 74; invariant, definition of, 59–
60; Lie derivative, 328, 331; Lorentz, 188, 243;
under Lorentz transformation, 193e; in Newtonian
mechanics, 57–59; of polarization, gravitational
waves, 565; and representation theory, 54; Ricci
(see Ricci tensor); of slowly rotating bodies, 570;
stress energy (see energy momentum tensor);
symmetry properties of, 61, 343; trace of, 55;
transformation of, 132; and vectors, interplay of,
53–54

tentacles, consisting of spacelike geodesics, 558
terrestrial and celestial mechanics, Newton’s

unification of, 28
test, “1–2,” 326
test particle, 302; PPN approximation, 309
tetrahedra: glued together, 725f; topology of, 725
Theorema Egregium, 90–91
theorems. See specific theorems
theoretical physics: and cosmological constant

paradox, 753; Einstein mode of, 778; fundamentals
of, 783; “golden” guiding principle in, 338; impact
of Einstein gravity, 777; unified perspective on,
170. See also physics; quantum physics

theories. See specific theories
thermal radiation, from de Sitter horizon, 637
thermocouples, Einstein’s ether detection,

experimental set-up, 163
thermodynamics: first and second law of, for black

holes, 472–473; first law of, and pressure of
universe, 360n; of spacetime, 448–449

Thomson, J. J., praise for solar eclipse expeditions,
369

Thomson, Benjamin (Count Rumford), energy
conservation, 387n

Thoreau, Henry David, deeds for old and young
people, 788

thought experiments. See gedanken experiments
tidal forces, 554; and finite sized objects, 716–717;

gravitational waves, 567, 567f; introduction of, 59
tilting light cones, at Schwarzschild radius, 420–421,

421f
time: in 4-dimensional matrix, 210; connection with

gravity, 579; cosmic, 295, 530, 632; cosmological,
in outgoing brane wave model, 706; cosmological
problem of not enough, 521–522, 531; creation of,
787; different rates of, in special relativity, 196;
and gravity, 257–258; imaginary, in derivation of
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time (continued)
Hawking temperature, 445–446; lines of constant,
637; in Minkowskian sphere, 631; mystery of,
787; in Newtonian universe, 7; psychological,
175n; and space, unifying, 174–175; specific, in
integrals, 228–229; transit time, minimization,
139; translation invariance in, 303–304; units for,
10; unwound, 653

time coordinates: multiple, 666n; notation, 25; two,
652

time delta function, 229
time dependence: disappearing in static coordinates,

635; Lagrangian without explicit, 153; of metric,
455; in physics, 137–138; of spherically symmetric
mass distributions, 373–374; of spherically
symmetric spacetime, 311

time dilation, 197; gravitational, 258–259, 284, 412,
304; lifetime of particles, 198

time evolution, of universe, 511f
time evolution equations, importance in Newtonian

mechanics, 400–401
time reversal, strong gravitational sources, 574
time reversal invariance, 416–417; accelerated

expansion, 500
time translation, in Penrose diagram, 620
timelike curves, closed, 484; violating physics, 653
timelike distances, 175
timelike geodesics, 645; behavior of, 554–555;

congruence of, 555; dense collection of, 555
timelike infinities, 428, 428f
timelike Killing vectors, 631, 637
timelike physical singularity, 479
Tinseau, D’Amondans Charles de, introduction of

osculating plane, 97
Tolman-Oppenheimer-Volkoff equation, 453, 457
top ten worst physics terms, 767
topological action, 720–721
topological cylinder, anti de Sitter spacetime, 654
topological field theory, 719–728
topological invariants, 725–727
topological quantization, 723
topological terms, in gauge theories, 720–721
topology. See differential forms
torsion, of curves, 97
torsion pendulum, and non-quantized gravity, 771
torus, systems on, 723n
total action, Newtonian world, 145
total energy: conservation of, 35; Hamiltonian, 144
total energy momentum tensor, disappearance of,

394
total momentum, conservation of, 37
totally antisymmetric symbol, definition of, 50
toy model, of spherical cluster of noninteracting

particles, 376n
trace: of matrix, and intrinsic curvature, 84; of tensor,

55
trans-Planckian cosmology, 518
transextremal charged black holes, 478

transformation invariance: of action principle, 147;
of Poincaré coordinates, 657

transformation matrix, 312; linearity, 313
transformations, 80–81e; compared to variations,

389; conformal, 614, 616; coordinate, 62, 68–70,
564; Galilean, 18–20; gauge, as 5-dimensional
coordinate transformation, 673; importance of,
in theoretical physics, 75; infinitesimal, 187, 615;
in Kałuza-Klein theory, 672; as pervasive theme
of theoretical physics, 68; under SO(3), 57f; and
vectors, 42

transit time, minimization of, 139
translation, generators of, 644
translation invariance, 242; of physics, in static

spacetime, 304f; in time, 303–304
translation operator, introduction of, 340
transport, Lie, 328
transpose: of matrix, 45; of vector or matrix,

definition of, 39
transverse-traceless (TT) gauge, 565
trapped surface, 484; presence of, 789n
triangulation, of a surface, 726
trihedron, moving, of smooth curve, 97f
trunk, grown from spherical blob, 726
Tsai, Ming-liang, What Time Is It over There? 514
TT (transverse-traceless) gauge, 565
tunneling, quantum, and Hawking radiation, 449
Twain, Mark, on truth of knowledge, 410n
twin paradox, 189, 194e
twistor space: analogs of Euclidean space objects in,

742; geometry of, 741–742; point-to-line mapped
to spacetime, 742; points in, 741f

twistors: ambitwistor representation, 736;
complexification of variables, 732; covered Lorentz
group, 729–730; and Einstein-Hilbert action, 739;
freedom to rescale, 733; geometric essence of,
739–740; and interaction among gravitons, 738–
739; introduction to, 730–745; Lorentz invariance,
734; motivation for studying, from quantum field
theory, 731; polarization and helicity, 734; and
power of helicity spinors, 735; and Roger Penrose,
730–731; and SL(4, R) group, 737; and spacetime,
739–740

“Tycho Brahe day,” 369n

ultimate theory, dream of, 789n
ultrarelativistic particles. See massless particles
ultraviolet catastrophe, 781; Planck and, 789n
ultraviolet completion, of quantum gravity, 765
ultraviolet regime, linkage to infrared regime, 752
umveg test, 9n
uncertainty principle, 206n; antimatter creation,

205; generalized, 769; and Kałuza-Klein theory,
674; and minimum length, 763; quantum field
theory, 437; and quantum gravity, 762; and the
three natural units, 11–12; and zero point energy,
745–746

unification: fundamental interactions (see grand
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unified theory, string theory); of gravity and other
interactions, 767–768, 780; relativistic, 247; weak
interaction and electromagnetic interaction, 765

unified language, for different physical phenomena,
186

unified notation, of Lorentz transformation,
186

unimodular gravity, and cosmological constant
paradox, 755–756

unit circle, length element on, 80e
unit determinants, 40
unit matrix, definition of, 39
unit spheres, metric on, 80e
unit tangent vector, of a curve, 96
unitarization, and ultraviolet completion, 765
units: change of using, 16n; of distance, 168; Hubble,

293; for length and time, 10; natural system of,
10–12; royal and “revolutionary,” 163n. See also
Planck units

universal clock: in Newtonian physics, 25; set-up of,
172

universality of gravity, 258, 269–270; curved
spacetime, 275–276

universe: 2-dimensional map of, 506–507; acausality
of, 754; acceleration or deceleration of expansion,
506–507; action of, 346, 356; age of, 512–513;
ambient temperature as cosmic clock, 504; critical
density, 497–498; curvature of, 490–491, 526, 748;
dominated by (nonrelativistic) matter, 495–496,
514; dominated by radiation, 495–496; dynamic,
489–501; early (see early universe); energy density
of, 504; entropy of, 527; equation of motion for,
357; equation of state of, 359; expanding (see
expanding universe); fate of, 507–509; filled with
constant energy density, 356; filled with perfect
fluids, 492–493; filtered through human mind,
779; foamlike structure of, 754, 758n; and gravity,
778; hidden acausality of, 783; history of, 496,
502, 503f, 515–529; homogeneity and isotropy
problem, 531; Hubble radius of, and photon mean
free path, 517; inflationary, 534–535; intrinsic
curvature, 6; length scale of, characteristic, 788n;
mass of, 747–748; obesity index of, 13; open, 629;
open or flat, troubling Wheeler, 779; as perfect
fluid, 231; with positive cosmological constant,
633; scale factor of (see scale factor of universe);
Schwarzschild radius of, 514; time evolution of,
511f

universes: closed/open/flat, 296–297, 491, 493–494,
497–498; as curved spacetime, 288–300; different
from de Sitter spacetime, 633; with different laws
of physics, 757; Friedmann-Robertson-Walker,
296, 491, 704; mathematical, 634; static, 509–510,
514

unprimed coordinates, 18, 38; metric with, 71–73
Unreasonable Effectiveness of Mathematics in Physics,

The (Wigner), 446
Unruh effect, 446–447

upper indices, 314–316; and introduction of
lower indices, 64; transformations in change of
coordinates, 71–73

ur-vector, 312; definition of, 43; with lower index,
318; spacetime metrics, 181

vacuum: as boiling sea of quantum fluctuations,
745–746; restless, 436–438

vacuum Einstein equation, solution of, 647e
vacuum energy, 746; driving inflation, 751;

explanation of, 752–753; in outgoing brane wave
model, 706; proofs of, 748

vacuum energy density, upper bound to, 749
vacuum state, 447
variables: dynamical, 249; “free,” in variational

calculus, 116; in functional variations, 121–122
variation: of action: for electromagnetism, 244,

250–251, 380; of basis vectors, 100; compared to
transformation, 389

variational calculus, 155; of brachistochrone
problem, 120; compromises in finding extreme
values, 115; functional, 114–115; and hanging
string, 113–123; integration by parts, 116; of
several unknown functions, 123; solution of
geodesic problem, 125

variational principle: equation of motion from, 137;
for gravity, Einstein and Grossmann, 396

vector fields: constant, covariant derivative of,
331; differentiation of, 100–101; index-free
representation of, 319; introduction of, 46;
movement through, 544; studied by observers,
47f; visualized as fluids, 327f

vector potential, Lorentz, 243, 248
vector subtraction, in Euclidean space, 101, 101f
vectors: and arrays, 51n; basic or ur-, definition of,

43; column, notation of, 45; and construction of
tensors, 313; contravariant, 183; covariant, 183,
340; definition of, 39; definition of, representation
theory, 54; differentiation, 318; displacement of,
in curved rectangle, 341f; and indices (upper
and lower), 73–74; lightlike, 731; Mother of All,
312–313; notation for, 182; parallel transport of,
101–102, 545f; projected on tangent plane, 102;
solution of isometric condition, 586; of spacetime
metrics, 181; on surface, parallel transport
of, 543; and tensors, interplay of, 53–54; and
transformations, 42; transporting via alternative
routes, 548

velocities: addition of, 160–161, 163, 171, 173e;
angular: around rotating black holes, 460, 471;
completion and promotion of, 218–219; Fermi-
Walker transported, 193e; Galilean law for addition
of, 19; low limit of Lorentz transformation, 169;
measurements in trains, 166; of objects in cars,
162–163; observed in Galileo transformation, 161;
rotating bodies, 570

velocity vector: of curves, 327; along geodesic, 330
vertices, in topology, 725–727
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Vicious and Nasty, dueling thinkers experiment, 7–9,
8f

vielbein: 1-form, 600; and differential forms, 594–
606; Kałuza-Klein metric, 690–691; as square roots
of metric, 596

VIRGO, gravitational wave detector, 577n
virial theorem, relativistic generalization, 255
visibility problem: in Kałuza-Klein theory, 673–674;

with large extra dimensions, 696–697
Voigt, W., Lorentz transformation, 169n
Volovik, G., solution of cosmological constant

paradox, 759n
volume element, generalized, determination for any

curved space, 75–76
Vulcan (predicted planet), 368

Walker, Arthur G. See Friedmann-Robertson-Walker
universes

“wanting the cake and eating it too” syndrome, 751
war, ancient art of, 103–104
warp function, 701
warped polar coordinates, 613e
wave equation: derivation of speed of sound, 235;

standard relativistic, 565
wave function, phase angle of, in Kałuza-Klein

theory, 678
wave guide, 694
wave vectors, by different observers, 185
wavelength, de Broglie, particles at Schwarzschild

radius, 442
waves: bulk, to brane, 703f; gravitational (see

gravitational waves); understanding of, 783–784
weak energy condition, 57
weak field, 564
weak field action, determination of, without

Riemannian geometry, 572
weak field approximation, for gravitational sources,

569–570
weak interaction, 526; CP violation in, 528, 683;

Fermi’s theory of, 765; of massive particles, 522;
ultraviolet completion of, 765

Weinberg, Steven: primeval nucleosynthesis, 528;
quantum gravity governed by attractive ultraviolet
fixed point, 773n; upper bound for cosmological
constant, 757; very weak version of anthropic
principle, 752; from weak field to Einstein gravity,
580

Weinberg-Witten theorem, 787
Weingarten, Julius, equation of, 106
wet dog, effect of inertia, 276
Weyl, Hermann: corrections to de Sitter metric, 289,

642; and Kałuza-Klein theory, 693–694; “Raum
und Zeit,” 175n; way to Schwarzschild solution,
374

Weyl approach, to Kerr black holes, 473
Weyl-Eddington terms, in effective field theory

approach, 710

Weyl equation, commutation relations, 192
Weyl tensor, properties of, 352e
Weyl transformation, introduction of, 94
“What is greater than God?” puzzle, 789n
What Time Is It over There? (film, Tsai), 514
Wheeler, John A.: Einstein’s late comments on space

and time, 787; geometrodynamics, 693; Hawking
radiation, 440; Kruskal-Szekeres coordinates,
434; mentorship of, 435; no-hair theorems, 482;
“Pushing forward the many fingers of Time,” 691;
spacetime picture, thinking in terms of, 28; tossed
ball test, 501; troubled by open or flat universe,
779; wormholes, 433

whiskey, ball of, in spaceship, 269–270
White, T. H. (Terence Hanbury), The Once and Future

King , 361n
Wick rotation, 192, 640n
Wigner, Eugene, The Unreasonable Effectiveness of

Mathematics in Physics, 446
Williams, George C., on Newton’s gravity, 31
Wilson, Ken, effective field theory approach, 709
Wilson, Robert, cosmic microwave background,

517
wimps, 522
world: mysteries of three copies of, 7; non-flatness

of, 66f
world indices, 608; conversion with vielbein, 603;

definition of, 594; versus Lorentz indices, 595
world sheets, created from strings, 216f
worldline action, 207–217
worldline length, for pointlike particle in baby string

theory, 215
worldlines: and causality in de Sitter spacetime,

639–640; and events, in special relativity, 196; of
individual charged particles, 715; of particles, 175,
177f, 211f; for problems in special relativity, 201

wormholes: and coordinate singularities, 91–92; in
Kruskal-Szekeres coordinates, 432–433

worst physics terms, top ten, 767
Wright, Edward, and Mercator map coordinate

transformation, 79e

Yang-Mills action, 681
Yang-Mills field: complexity of, 584n; strength of,

342n, 691–692, 694
Yang-Mills gauge potential, 682
Yang-Mills theory, 672; connection to Einstein

gravity, 782; emergence of, 688–689, 691–693; and
graviton interaction, 744n; higher dimensional,
680–682; supersymmetric, 621

Yau, Shing-Tung, Calabi-Yau manifolds, 695
Yukawa, Hideki, mass prediction of pion, 205

Zel’dovich, Y. B., vacuum energy, 749
zero-g environment, 266
zero point energy, 745–746; proofs of, 748
zero-sized objects, 717n
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