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Chapter I.1 

Who Needs It? 

Who needs quantum field theory? 

Quantum field theory arose out of our need to describe the ephemeral nature of 
life. 

No, seriously, quantum field theory is needed when we confront simultaneously 
the two great physics innovations of the last century of the previous millennium: 
special relativity and quantum mechanics. Consider a fast moving rocket ship close 
to light speed. You need special relativity but not quantum mechanics to study its 
motion. On the other hand, to study a slow moving electron scattering on a proton, 
you must invoke quantum mechanics, but you don’t have to know a thing about 
special relativity. 

It is in the peculiar confluence of special relativity and quantum mechanics that 
a new set of phenomena arises: Particles can be born and particles can die. It is 
this matter of birth, life, and death that requires the development of a new subject 
in physics, that of quantum field theory. 

Let me give a heuristic discussion. In quantum mechanics the uncertainty 
principle tells us that the energy can fluctuate wildly over a small interval of time. 
According to special relativity, energy can be converted into mass and vice versa. 
With quantum mechanics and special relativity, the wildly fluctuating energy can 
metamorphose into mass, that is, into new particles not previously present. 

Write down the Schrödinger equation for an electron scattering off a proton. 
The equation describes the wave function of one electron, and no matter how you 
shake and bake the mathematics of the partial differential equation, the electron 
you follow will remain one electron. But special relativity tells us that energy 
can be converted to matter: If the electron is energetic enough, an electron and a 
positron (“the antielectron”) can be produced. The Schrödinger equation is simply 
incapable of describing such a phenomenon. Nonrelativistic quantum mechanics 
must break down. 

You saw the need for quantum field theory at another point in your education. 
Toward the end of a good course on nonrelativistic quantum mechanics the inter­
action between radiation and atoms is often discussed. You would recall that the 
electromagnetic field is treated as a field; well, it is a field. Its Fourier components 
are quantized as a collection of harmonic oscillators, leading to creation and an­
nihilation operators for photons. So there, the electromagnetic field is a quantum 
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I. Motivation and Foundation

Figure I.1.1 

field. Meanwhile, the electron is treated as a poor cousin, with a wave function 
W(x) governed by the good old Schrödinger equation. Photons can be created or 
annihilated, but not electrons. Quite aside from the experimental fact that electrons 
and positrons could be created in pairs, it would be intellectually more satisfying 
to treat electrons and photons, as they are both elementary particles, on the same 
footing. 

So, I was more or less right: Quantum field theory is a response to the ephemeral 
nature of life. 

All of this is rather vague, and one of the purposes of this book is to make 
these remarks more precise. For the moment, to make these thoughts somewhat 
more concrete, let us ask where in classical physics we might have encountered 
something vaguely resembling the birth and death of particles. Think of a mattress, 
which we idealize as a 2-dimensional lattice of point masses connected to each 
other by springs (Fig. I.1.1) For simplicity, let us focus on the vertical displacement 
[which we denote by q (t)] of the point masses and neglect the small horizontal a

movement. The index a simply tells us which mass we are talking about. The 
Lagrangian is then 

1 2 − . . .)L = 2 ( mq̇
a − kabqaqb − gabcqaqbqc (1) 

a a ,b a ,b ,c 

Keeping only the terms quadratic in q (the “harmonic approximation”) we haveL
the equations of motion mq̈ = − . Taking the q’s as oscillating with a b kabqbL 
frequency ω, we  have kabqb =mω2 q . The eigenfrequencies and eigenmodesb a

are determined, respectively, by the eigenvalues and eigenvectors of the matrix 
k. As usual, we can form wave packets by superposing eigenmodes. When we
quantize the theory, these wave packets behave like particles, in the same way that
electromagnetic wave packets when quantized behave like particles called photons.
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Since the theory is linear, two wave packets pass right through each other. But 
once we include the nonlinear terms, namely the terms cubic, quartic, and so forth 
in the q’s in (1), the theory becomes anharmonic. Eigenmodes now couple to each 
other. A wave packet might decay into two wave packets. When two wave packets 
come near each other, they scatter and perhaps produce more wave packets. This 
naturally suggests that the physics of particles can be described in these terms. 

Quantum field theory grew out of essentially these sorts of physical ideas. 
It struck me as limiting that even after some 75 years, the whole subject of 

quantum field theory remains rooted in this harmonic paradigm, to use a dreadfully 
pretentious word. We have not been able to get away from the basic notions of 
oscillations and wave packets. Indeed, string theory, the heir to quantum field 
theory, is still firmly founded on this harmonic paradigm. Surely, a brilliant young 
physicist, perhaps a reader of this book, will take us beyond. 

Condensed matter physics 

In this book I will focus mainly on relativistic field theory, but let me mention 
here that one of the great advances in theoretical physics in the last 30 years 
or so is the increasingly sophisticated use of quantum field theory in condensed 
matter physics. At first sight this seems rather surprising. After all, a piece of 
“condensed matter” consists of an enormous swarm of electrons moving nonrel­
ativistically, knocking about among various atomic ions and interacting via the 
electromagnetic force. Why can’t we simply write down a gigantic wave function 
W(x1, x2, . . .  , xN), where xj denotes the position of the j th electron and N is 
a large but finite number? Okay, W is a function of many variables but it is still 
governed by a nonrelativistic Schrödinger equation. 

The answer is yes, we can, and indeed that was how solid state physics was first 
studied in its heroic early days, (and still is in many of its subbranches.) 

Why then does a condensed matter theorist need quantum field theory? Again, 
let us first go for a heuristic discussion, giving an overall impression rather than 
all the details. In a typical solid, the ions vibrate around their equilibrium lattice 
positions. This vibrational dynamics is best described by so-called phonons, which 
correspond more or less to the wave packets in the mattress model described above. 

This much you can read about in any standard text on solid state physics. 
Furthermore, if you have had a course on solid state physics, you would recall that 
the energy levels available to electrons form bands. When an electron is kicked 
(by a phonon field say) from a filled band to an empty band, a hole is left behind 
in the previously filled band. This hole can move about with its own identity as a 
particle, enjoying a perfectly comfortable existence until another electron comes 
into the band and annihilates it. Indeed, it was with a picture of this kind that Dirac 
first conceived of a hole in the “electron sea” as the antiparticle of the electron, the 
positron. 

We will flesh out this heuristic discussion in subsequent chapters. 
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Marriages 

To summarize, quantum field theory was born of the necessity of dealing with the 
marriage of special relativity and quantum mechanics, just as the new science of 
string theory is being born of the necessity of dealing with the marriage of general 
relativity and quantum mechanics. 
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Chapter I.2 

Path Integral Formulation 
of Quantum Physics 

The professor’s nightmare: a wise guy in the class 

As I noted in the preface, I know perfectly well that you are eager to dive into 
quantum field theory, but first we have to review the path integral formalism 
of quantum mechanics. This formalism is not universally taught in introductory 
courses on quantum mechanics, but even if you have been exposed to it, this chapter 
will serve as a useful review. The reason I start with the path integral formalism 
is that it offers a particularly convenient way of going from quantum mechanics 
to quantum field theory. I will first give a heuristic discussion, to be followed by a 
more formal mathematical treatment. 

Perhaps the best way to introduce the path integral formalism is by telling a 
story, certainly apocryphal as many physics stories are. Long ago, in a quantum 
mechanics class, the professor droned on and on about the double-slit experiment, 
giving the standard treatment. A particle emitted from a source S (Fig. I.2.1) at time 
t = 0 passes through one or the other of two holes, A1 and A2, drilled in a screen 
and is detected at time t = T by a detector located at O. The amplitude for detection 
is given by a fundamental postulate of quantum mechanics, the superposition 
principle, as the sum of the amplitude for the particle to propagate from the source 
S through the hole A1 and then onward to the point O and the amplitude for the 
particle to propagate from the source S through the hole A2 and then onward to 
the point O. 

Suddenly, a very bright student, let us call him Feynman, asked, “Professor, 
what if we drill a third hole in the screen?” The professor replied, “Clearly, the 
amplitude for the particle to be detected at the point O is now given by the sum 
of three amplitudes, the amplitude for the particle to propagate from the source S 
through the hole A1 and then onward to the point O, the amplitude for the particle 
to propagate from the source S through the hole A2 and then onward to the point 
O, and the amplitude for the particle to propagate from the source S through the 
hole A3 and then onward to the point O.” 

The professor was just about ready to continue when Feynman interjected again, 
“What if I drill a fourth and a fifth hole in the screen?” Now the professor is visibly 
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S 

O 
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A2 

Figure I.2.1 

losing his patience: “All right, wise guy, I think it is obvious to the whole class that 
we just sum over all the holes.” 

To make what the professor said precise, denote the amplitude for the particle 
to propagate from the source S through the hole Ai and then onward to the point 
O as A(S → Ai → O). Then the amplitude for the particle to be detected at the 
point O is 

A(detected at O)= A(S → Ai → O) (1) 
i 

But Feynman persisted, “What if we now add another screen (Fig. I.2.2) with 
some holes drilled in it?” The professor was really losing his patience: “Look, can’t 
you see that you just take the amplitude to go from the source S to the hole Ai in 
the first screen, then to the hole Bj in the second screen, then to the detector at O , 
and then sum over all i and j?” 

Feynman continued to pester, “What if I put in a third screen, a fourth screen, 
eh? What if I put in a screen and drill an infinite number of holes in it so that the 

A1 

A2 

A3 

B1 

B2 

B3 

B4 

Figure I.2.2 
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S 

O 

Figure I.2.3 

screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of 
material to cover in this course.” 

But dear reader, surely you see what that wise guy Feynman was driving at. 
I especially enjoy his observation that if you put in a screen and drill an infinite 
number of holes in it, then that screen is not really there. Very Zen! What Feynman 
showed is that even if there were just empty space between the source and the 
detector, the amplitude for the particle to propagate from the source to the detector 
is the sum of the amplitudes for the particle to go through each one of the holes 
in each one of the (nonexistent) screens. In other words, we have to sum over the 
amplitude for the particle to propagate from the source to the detector following 
all possible paths between the source and the detector (Fig. I.2.3). 

A(particle to go from S to O in time T )  = ( )
A particle to go from S to O in time T following a particular path (2) 

(paths) 

L 
Now the mathematically rigorous will surely get anxious over how is(paths) 

to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. I.2.4), 
approximate it by straight line segments, and let the segments go to zero. You can 
see that this is just like filling up a space with screens spaced infinitesimally close 
to each other, with an infinite number of holes drilled in each screen. 

S 

O 

Figure I.2.4 
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Fine, but how to construct the amplitude A(particle to go from S to O in time T 
following a particular path)? Well, we can use the unitarity of quantum mechanics: 
If we know the amplitude for each infinitesimal segment, then we just multiply 
them together to get the amplitude of the whole path. 

In quantum mechanics, the amplitude to propagate from a point qI to a point qF 
in time T is governed by the unitary operator e −iHT, where H is the Hamiltonian. 
More precisely, denoting by |q) the state in which the particle is at q, the amplitude 
in question is just (qF | e −iHT |qI ). Here we are using the Dirac bra and ket 
notation. Of course, philosophically, you can argue that to say the amplitude is 
(qF | e −iHT |qI ) amounts to a postulate and a definition of H . It is then up to 
experimentalists to discover that H is hermitean, has the form of the classical 
Hamiltonian, et cetera. 

Indeed, the whole path integral formalism could be written down mathemat­
ically starting with the quantity (qF | e −iHT |qI ), without any of Feynman’s jive 
about screens with an infinite number of holes. Many physicists would prefer a 
mathematical treatment without the talk. As a matter of fact, the path integral for­
malism was invented by Dirac precisely in this way, long before Feynman. 

A necessary word about notation even though it interrupts the narrative flow: We 
denote the coordinates transverse to the axis connecting the source to the detector 
by q , rather than x , for a reason which will emerge in a later chapter. For notational 
simplicity, we will think of q as 1-dimensional and suppress the coordinate along 
the axis connecting the source to the detector. 

Dirac’s formulation 

Let us divide the time T into N segments each lasting δt = T/N . Then we write 

( | e −iHT | ) = ( | e −iHδt e −iHδt . . .  e −iHδt | )qF qI qF qI 
Now use the fact that |q) forms a complete set of states so that dq |q)(q| = 1. 

−Insert 1 between all these factors of e iHδt and write 

(qF | e −iHT |qI ) 
N−1   

= ( dqj)(qF | e −iHδt |qN−1)(qN−1| e −iHδt |qN−2) . . .  

j=1

. . .  (q2| e −iHδt |q1)(q1| e −iHδt |qI ) (3) 

Focus on an individual factor (qj+1| e −iHδt |qj). Let us take the baby step 
of first evaluating it just for the free-particle case in which H = p̂ 2/2m. The 
hat on p̂ reminds us that it is an operator. Denote by |p) the eigenstate of p̂, 
namely p̂ |p) = p |p). Do you remember from your course in quantum mechanics 
that (q|p) = eipq? Sure you do. This just says that the momentum eigenstate is 
a plane wave in the coordinate representation. (The normalization is such that 
(dp/2π) |p)(p| = 1.) So again inserting a complete set of states, we write 
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dp(qj+1| e −iδt ( p̂2/2m) |qj) =  (qj+1| e −iδt ( p̂2/2m) |p)(p|qj)2π 

dp= e −iδt (p2/2m)(qj+1|p)(p|qj)2π 

dp −iδt (p2/2m) ip(qj+1−qj )= e e
2π 

Note that we removed the hat from the momentum operator in the exponential: 
Since the momentum operator is acting on an eigenstate, it can be replaced by its 
eigenvalue. 

The integral over p is known as a Gaussian integral, with which you may already 
be familiar. If not, turn to Appendix 1 to this chapter. 

Doing the integral over p, we get  

  1 −i2πm  2 (qj+1| e −iδt ( p̂2/2m) |qj) = e[im(qj+1−qj )2]/2δt 

δt  1 −i2πm  2 
iδt (m/2)[(qj+1−qj )/δt]2 = e

δt

Putting this into (3) yields 

  N N−1 
−iHT | −i2πm  2 iδt (m/2)bN−1[(qj+1−qj )/δt]2 (qF | e qI ) = dqje j=0 

δt
j=0 

with q0 ≡ qI and qN ≡ qF . 
We can now go to the continuum limit δt → 0. Newton and Leibniz taught us LN−1 Tto replace [(qj+1 − qj)/δt]2 by q̇2, and δt by dt . Finally, we define the 

j=0 0 
integral over paths as 

  N N−1−i2πm  2 

Dq(t) = lim dqj . 
N→∞ δt

j=0 

We thus obtain the path integral representation 

T 2 −iHT | i dt 2
1 mq̇(qF | e qI ) =  Dq(t) e 0 (4) 

This fundamental result tells us that to obtain (qF | e −iHT |qI ) we simply inte­
grate over all possible paths q(t) such that q(0) = qI and q(T ) = qF . 

As an exercise you should convince yourself that had we started with the 
Hamiltonian for a particle in a potential H = p̂ q) (again the hat on 2/2m + V ( ˆ
q̂ indicates an operator) the final result would have been 

T 

(qF | e −iHT |qI ) =  Dq(t) ei 0 
dt[ 2

1 mq̇
2−V (q)] (5) 
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We recognize the quantity 2
1 mq̇2 − V (q)  as just the Lagrangian L(q̇ , q). The 

Lagrangian has emerged naturally from the Hamiltonian. In general, we have 

T −iHT |qI i dtL(q̇ ,q)(qF | e ) =  Dq(t) e 0 (6) 

To avoid potential confusion, let me be clear that t appears as an integration variable 
in the exponential on the right-hand side. The appearance of t in the path integral 
measure Dq(t) is simply to remind us that q is a function of t (as if we need 
reminding). Indeed, this measure will often be abbreviated to Dq . You might recall 

Tthat 0 dtL(q̇ , q) is called the action S(q) in classical mechanics. The action S is 
a functional of the function q(t). 

Often, instead of specifying that the particle starts at an initial position qI and 
ends at a final position qF , we prefer to specify that the particle starts in some 
initial state I and ends in some final state F . Then we are interested in calculating 
(F | e −iHT |I ), which upon inserting complete sets of states can be written as 

dqF dqI (F |qF )(qF | e −iHT |qI )(qI |I ), 

which mixing Schrödinger and Dirac notation we can write as 

dqF dqIWF(qF ) 
∗(qF | e −iHT |qI )WI(qI). 

In most cases we are interested in taking |I ) and |F ) as the ground state, which 
we will denote by |0). It is conventional to give the amplitude (0| e −iHT |0) the 
name Z. 

At the level of mathematical rigor we are working with, we count on the 
T 2

i dt[ 2
1 mq̇ −V (q)]path integral Dq(t) e 0 to converge because the oscillatory phase 

factors from different paths tend to cancel out. It is somewhat more rigorous to 
perform a so-called Wick rotation to Euclidean time. This amounts to substituting 
t → −it and rotating the integration contour in the complex t plane so that the 
integral becomes 

T 2− dt[ 2
1 mq̇ +V (q)]

Z = Dq(t) e 0 , (7) 

known as the Euclidean path integral. As is done in Appendix 1 to this chapter with 
ordinary integrals we will always assume that we can make this type of substitution 
with impunity. 

One particularly nice feature of the path integral formalism is that the classical 
limit of quantum mechanics can be recovered easily. We simply restore Planck’s 
constant h in (6): 

T −(i/h)HT |qI ) =  (i/h) dtL(q̇ ,q)(qF | e Dq(t) e 0 
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and take the h → 0 limit. Applying the stationary phase or steepest descent method 
T 

c c(i/h) dtL( q̇ ,q )(if you don’t know it see Appendix 2 to this chapter) we obtain e 0 , 
where q (t) is the “classical path” determined by solving the Euler-Lagrange c

equation (d/dt)(δL/δ ̇q) − (δL/δq) = 0 with appropriate boundary conditions. 

Appendix 1 

+∞ − 1 2 
I will now show you how to do the integral G ≡ −∞ dxe

2 x . The trick is to square the 
integral, call the dummy integration variable in one of the integrals y, and then pass to polar 
coordinates: 

+∞ +∞ +∞2 222 − 2
1 x − 2

1 y − 2
1 r

G = dx e dy e = 2π dr  re
−∞ −∞ 0 

+∞ −w= 2π dw e = 2π
 
0
 

Thus, we obtain 

+∞ − 2
1 x 2 √ 

dx e = 2π (8) 
−∞ 

Believe it or not, a significant fraction of the theoretical physics literature consists 
of performing variations and elaborations of this basic Gaussian integral. The simplest 
extension is almost immediate: 

1+∞ − 2
1 ax 2 2π 2 

dx e = (9) 
−∞ a 

√ 
as can be seen by scaling x → x/ a. 

Acting on this repeatedly with −2(d/da) we obtain 

+∞ − 2
1 ax 2 2n 

−∞ dx e x 1(x 2n) ≡ = · 1 (10)(2n − 1)(2n − 3) . . . 5 · 3 +∞ − 2
1 ax2 na−∞ dx  e

The factor 1/an follows from dimensional analysis. To remember the factor (2n − 1)!! ≡ 
(2n − 1)(2n − 3) . . . 5 · 3 · 1 imagine 2n points and connect them in pairs. The first point 
can be connected to one of (2n − 1) points, the second point can now be connected to one of 
the remaining (2n − 3) points, and so on. This clever observation, due to Gian Carlo Wick, 
is known as Wick’s theorem in the field theory literature. Incidentally, field theorists use the 
following graphical mnemonic in calculating, for example, (x 6) : Write (x 6) as (xxxxxx)
and connect the x’s, for example 

〈xxxxxx 〉 

The pattern of connection is known as a Wick contraction. In this simple example, since 
the six x’s are identical, any one of the distinct Wick contractions gives the same value 
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a −3 and the final result for (x 6) is just a −3 times the number of distinct Wick contractions, 
namely 5 · 3 · 1 = 15. We will soon come to a less trivial example, in which we have distinct 
x’s, in which case distinct Wick contraction gives distinct values. 

An important variant is the integral 

1+∞ − 2
1 ax 2+Jx  2π 2 

J 2/2adx e = e (11) 
−∞ a 

To see this, take the expression in the exponent and “complete the square”: −ax 2/2 + Jx  = 
−(a/2)(x2 − 2Jx/a) = −(a/2)(x − J/a)2 + J 2/2a. The x integral can now be done by 

1 
shifting x → x + J/a, giving the factor of (2π/a) 2 . Check that we can also obtain (10) by 
differentiating with respect to J repeatedly and then setting J = 0. 

Another important variant is obtained by replacing J by iJ : 

1+∞ − 1 2π 2 
2 ax 2+iJ x −J 2/2adx e = e (12) 

−∞ a 

To get yet another variant, replace a by −ia: 

1+∞ 21 iax2+iJ x 2πi  −iJ 2/2adx e 2 = e (13) 
−∞ a 

Let us promote a to a real symmetric N by N matrix Aij and x to a vector xi (i , j = 
1, . . .  , N). Then (11) generalizes to 

1+∞ +∞ +∞ 2− 2
1 x·A·x+J ·x (2π)N 1 J ·A−1·J. . .  dx1dx2

. . .  dxN e = e 2 (14) 
−∞ −∞ −∞ det[A] 

where x · A · x = xiAij xj and J · x = Jixi (with repeated indices summed.) To see this, 
diagonalize A by an orthogonal transformation O: A = O−1 · D · O where D is a diagonal 
matrix. Call yi = Oij xj . In other words, we rotate the coordinates in the N dimensional 
Euclidean space over which we are integrating. Using 

+∞ +∞ +∞ +∞ 
. . .  dx1

. . .  dxN 
. . .  dy1

. . .  dyN = 
−∞ −∞ −∞ −∞ 

we factorize the left-hand side of (14) into a product of N integrals of the form in (11). The 
result can then be expressed in terms of D−1, which we write as O · A−1 · O−1. (To make 
sure you got it, try this explicitly for N = 2.) 

Putting in some i’s (A → −iA, J → iJ ), we find the generalization of (13) 

+∞ +∞ +∞ 
(i/2)x·A·x+iJ ·x. . .  dx1dx2

. . .  dxN e−∞ −∞ −∞ 

1 
(2πi)N 2 −(i/2)J ·A−1·J= e (15)
det[A] 

The generalization of (10) is also easy to obtain. We differentiate (14) with respect to J 
repeatedly and then setting J → 0. We find 
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−1 −1(xixj . . .  xkxl) =  (A . . .  (A (16))ab )cd 
Wick 

where we have defined 

. . .  xkxl(xixj ) 
+∞ +∞ +∞ − 2

1 x·A·x. . .  dx1dx2
. . .  dxN e . . .  xkxlxixj−∞ −∞ −∞ = (17)+∞ +∞ +∞ − 1 . . .  −∞ dx1dx2

. . .  dxN e 2 x·A·x 
−∞ −∞ 

and where the set of indices {a , b, . . . , c, d} represent a permutation of the set of indices 
{i , j , . . . , k , l}. The sum in (16) is over all such permutations or Wick contractions. It is 
easiest to explain (16) for a simple example (xixjxkxl). We connect the x’s in pairs (Wick 
contraction) and write a factor (A−1)ab if we connect x to xb . Thus, a 

−1 −1 −1 −1 −1 −1(xixjxkxl) =  (A )ij (A )kl + (A )il(A )jk  + (A )ik(A )jl  (18) 

(Recall that A and thus A−1 are symmetric.) Note that since (xixj ) =  (A−1)ij , the right-
hand side of (16) can also be written in terms of objects such as (xixj ). Please work out 
(xixjxkxlx x ); you will become an expert on Wick contractions. Of course, (16) reduces m n

to (10) for N = 1. 
Perhaps you are like me and do not like to memorize anything, but some of these formulas 

might be worth memorizing as they appear again and again in theoretical physics (and in 
this book). 

Appendix 2 

+∞To do an exponential integral of the form I = dqe−(1/h)f (q) we often have to resort −∞ 
to the steepest-descent approximation, which I will now review for your convenience. 
In the limit of h small, the integral is dominated by the minimum of f (q). Expanding 
f (q)  = f (a)  + 2

1 f rr(a)(q − a)2 + O[(q − a)3] and applying (9) we obtain 

1 12−(1/h)f (a) 2πh −O(h 2 )I = e e (19) 
f rr(a) 

For f (q)  a function of many variables q1,  . . .  ,  qN and with a minimum at qj = aj , we  
generalize immediately to 

1 

−(1/h)f (a) −O(h 2 )2πh 2 1 

I = e e (20)
det f rr(a) 

Here f rr(a) denotes the N by N matrix with entries [f rr(a)]ij ≡ (∂2f/∂qi∂qj)| . In many q=a 
situations, we do not even need the factor involving the determinant in (20). If you can derive 
(20) you are well on your way to becoming a quantum field theorist! 

Exercises 

I.2.1. Verify (5). 

I.2.2. Derive (16). 
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Chapter I.3 

From Mattress to Field 

The mattress in the continuum limit 

The path integral representation 

i 
T
dt[ 1 q 2−V (q)]

Z ≡ (0| e −iHT |0) =  Dq(t) e 0 2 m ˙ (1) 

which we derived for the quantum mechanics of a single particle, can be general­
ized almost immediately to the case of N particles with the Hamiltonian 

H = 
1 
p̂2 + V (q̂1, q̂2, . . .  , q̂N). (2)
a2maa 

We simply keep track mentally of the position of the particles q with a = 1, 2, . . . ,a 
N . Going through the same steps as before, we obtain 

Z ≡ (0| e −iHT |0) =  Dq(t) eiS(q) (3) 

with the action 

T ( )
S(q) = dt 2

1 m q̇2 − V [q1, q2, . . .  , qN ] . 
a a 

0 a 

The potential energy V (q1, q2,  . . . ,  qN) now includes interaction energy between 
particles, namely terms of the form v(q − qb), as well as the energy due to an a 
external potential, namely terms of the form w(q ). In particular, let us now write a

the path integral description of the quantum dynamics of the mattress described in 
Chapter I.1, with the potential 

1 . . .V (q1, q2,  . . . ,  qN) = kabqaqb +2 
ab 

We are now just a short hop and skip away from a quantum field theory! Suppose 
we are only interested in phenomena on length scales much greater than the lattice 
spacing l (see Fig. I.1.1). Mathematically, we take the continuum limit l → 0. In 

16 
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I.3. From Mattress to Field 17 

this limit, we can replace the label a on the particles by a two-dimensional position 
vector xx , and so we write q(t , x (t). It is traditional to replace the x) instead of qa
Latin letter q by the Greek letter ϕ . The function ϕ(t , xx) is called a field. L 

1 2 1The kinetic energy q̇ now becomes d2 x σ(∂ϕ/∂t)2. We replace a 2 ma a 2 L 
by 1/l2 d2 x and denote the mass per unit area m /l2 by σ . We take all a a

the m ’s to be equal; otherwise σ would be a function of xx , the system would be a

inhomogeneous, and we would have a hard time writing down a Lorentz-invariant 
action (see later). 

We next focus on the first term in V = 
L 

1 qb + . . .. Write 2q qb = ab 2 kabqa a
2 2(q − qb)2 − q − q . Assume for simplicity that kab connect only nearest neigh-a a b 

bors on the lattice. For nearest-neighbor pairs (q − qb)2 � l2(∂ϕ/∂x)2 + . . .  ina 
the continuum limit; the derivative is obviously taken in the direction that joins the 
lattice sites a and b. 

Putting it together then, we have 

T 

S(q) → S(ϕ) ≡ dt d2 xL(ϕ) 
0 

= 
T 

dt d2 x 
1 
 
σ 

∂ϕ  2 

− ρ
 
∂ϕ  2 

+ 
∂ϕ  2

 
0 2 ∂t  ∂x  ∂y 

−τϕ2 − ςϕ4 + . . .
} 

(4) 

where the parameters ρ and τ are determined by kab and l . The precise relations 
do not concern us. 

Henceforth in this book, we will take the T → ∞ limit so that we can integrate 
over all of spacetime in (4). 

We can clean up a bit by writing ρ = σc2 and scaling ϕ → ϕ/ 
√ 
σ , so that 

the combination (∂ϕ/∂t)2 − c 2[(∂ϕ/∂x)2 + (∂ϕ/∂y)2] appears in the Lagrangian. 
The parameter c evidently has the dimension of a velocity and defines the phase 
velocity of the waves on our mattress. It is interesting that Lorentz invariance, with 
c playing the role of the speed of light, emerges naturally. 

We started with a mattress for pedagogical reasons. Of course nobody believes 
that the fields observed in Nature, such as the meson field or the photon field, are 
actually constructed of point masses tied together with springs. The modern view, 
which I will call Landau-Ginzburg, is that we start with the desired symmetry, say 
Lorentz invariance if we want to do particle physics, decide on the fields we want 
by specifying how they transform under the symmetry (in this case we decided on 
a scalar field ϕ), and then write down the action involving no more than two time 
derivatives (because we don’t know how to quantize actions with more than two 
time derivatives). 

We end up with a Lorentz-invariant action (setting c = 1) 

  
1 1 g λ 

dd 2 − 2 2 − 3 − 4 + . . .S = x (∂ϕ) m ϕ ϕ ϕ (5)
2 2 3! 4! 
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where various numerical factors are put in for later convenience. The relativistic 
notation (∂ϕ)2 ≡ ∂ ϕ∂µϕ = (∂ϕ/∂t)2 − (∂ϕ/∂x)2 − (∂ϕ/∂y)2 was explained inµ

the note on convention. The dimension of spacetime, d , clearly can be any integer, 
even though in our mattress model it was actually 3. We often write d =D + 1 
and speak of a (D + 1)-dimensional spacetime. 

We see here the power of imposing a symmetry. Lorentz invariance together 
with the insistence that the Lagrangian involve only at most two powers of ∂/∂t 

1immediately tells us that the Lagrangian can only have the form1 L = 2 (∂ϕ)
2 − 

V (ϕ)  with V a polynomial in ϕ . We will have a great deal more to say about 
symmetry later. Here we note that, for example, we could insist that physics 
is symmetric under ϕ → −ϕ , in which case V (ϕ)  would have to be an even 
polynomial. 

Now that you know what a quantum field theory is, you realize why I used the 
letter q to label the position of the particle in the previous chapter and not the more 
common xx . In quantum field theory, xx is a label, not a dynamical variable. The xx 
appearing in ϕ(t , x (t) in quantum mechanics.x) corresponds to the label a in qa
The dynamical variable in field theory is not position, but the field ϕ . The variable 
xx simply specifies which field variable we are talking about. I belabor this point 
because upon first exposure to quantum field theory some students, used to thinking 
of xx as a dynamical operator in quantum mechanics, are confused by its role here. 

In summary, we have the table 

q → ϕ 

a → xx 
qa(t) → ϕ(t , xx) = ϕ(x) L 

a 
→ dD x 

(6) 

Thus we finally have the path integral defining a scalar field theory in d = (D + 1) 
dimensional spacetime: 

i ddx( 1 (∂ϕ)2−V (ϕ))
Z = Dϕe 2 (7) 

Note that a (0 + 1)-dimensional quantum field theory is just quantum 
mechanics. 

1 Strictly speaking, a term of the form U(ϕ)(∂ϕ)2 is also possible. In quantum mechanics, 
a term such as U(q)(dq/dt)2 in the Lagrangian would describe a particle whose mass 
depends on position. We will not consider such “nasty” terms until much later. 
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The classical limit 

As I have already remarked, the path integral formalism is particularly convenient 
for taking the classical limit. Remembering that Planck’s constant h has the dimen­
sion of energy multiplied by time, we see that it appears in the unitary evolution 
operator e(−i/h)HT. Tracing through the derivation of the path integral, we see that 
we have to simply divide the overall factor i by h to get 

(i/h) d4 xL(ϕ) 
Z = Dϕe (8) 

In the limit with h much smaller than the relevant action we are considering, 
we can evaluate the path integral using the stationary phase (or steepest descent) 
approximation, as I explained in the previous chapter in the context of quantum 
mechanics. We simply determine the extremum of d4 xL(ϕ). According to the 
usual Euler-Lagrange variational procedure, this leads to the equation 

δL δL 
∂ − = 0 (9)µ 
δ(∂µϕ) δϕ 

We thus recover the classical field equation, exactly as we should, which in our 
scalar field theory reads 

2(∂2 +m )ϕ(x) + g 
ϕ(x)2 + 

λ
ϕ(x)3 + . . .  = 0 (10)

2 6 

The vacuum 

In the point particle quantum mechanics discussed in Chapter I.2 we wrote the path 
integral for (F | eiHT |I ), with some initial and final state, which we can choose 
at our pleasure. A convenient and particularly natural choice would be to take 
|I ) =  |F ) to be the ground state. In quantum field theory what should we choose 
for the initial and final states? A standard choice for the initial and final states 
is the ground state or the vacuum state of the system, denoted by |0), in which, 
speaking colloquially, nothing is happening. In other words, we would calculate 
the quantum transition amplitude from the vacuum to the vacuum, which would 
enable us to determine the energy of the ground state. But this is not a particularly 
interesting quantity, because in quantum field theory we would like to measure 
all energies relative to the vacuum and so, by convention, would set the energy 
of the vacuum to zero (possibly by having to subtract an infinite constant from 
the Lagrangian). Incidentally, the vacuum in quantum field theory is a stormy sea 
of quantum fluctuations, but for this initial pass at quantum field theory, we will 
not examine it in any detail. We will certainly come back to the vacuum in later 
chapters. 

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



  

20 

Copyrighted Material 

I. Motivation and Foundation 
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Figure I.3.1 

Disturbing the vacuum 

We would like to do something more exciting than watching a boiling sea of 
quantum fluctuations. We would like to disturb the vacuum. Somewhere in space, 
at some instant in time, we would like to create a particle, watch it propagate for 
a while, and then annihilate it somewhere else in space, at some later instant in 
time. In other words, we want to create a source and a sink (sometimes referred to 
collectively as sources) at which particles can be created and annihilated. 

To see how to do this, let us go back to the mattress. Bounce up and down 
on it to create some excitations. Obviously, pushing on the mass labeled by a 
in the mattress corresponds to adding a term such as J (t)q to the potential a a L 
V (q1, q2, . . .  , qN). More generally, we can add J (t)q . When we go to field a a a

theory this added term gets promoted to J (x)ϕ(x) in the field theory Lagrangian, 
according to the promotion table (6). 

This so-called source function J (t , xx) describes how the mattress is being 
disturbed. We can choose whatever function we like, corresponding to our freedom 
to push on the mattress wherever and whenever we like. In particular, J (x)  can 
vanish everywhere in spacetime except in some localized regions. 

By bouncing up and down on the mattress we can get wave packets going off 
here and there (Fig. I.3.1). This corresponds precisely to sources (and sinks) for 
particles. Thus, we really want the path integral 

i d4 x[ 1 (∂ϕ)2−V (ϕ)+J (x)ϕ(x)]
Z = Dϕe 2 (11) 
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Free field theory 

The functional integral in (11) is impossible to do except when 

1 2L(ϕ) = [(∂ϕ)2 − m ϕ2] (12)2 

The corresponding theory is called the free or Gaussian theory. The equation of 
motion (9) works out to be (∂2 +m 2)ϕ = 0, known as the Klein-Gordon equation.2 

i(ωt−kx·xBeing linear, it can be solved immediately to give ϕ(xx , t)  = e x) with 

2 2ω = kx2 + m (13) 

In the natural units we are using, h = 1 and so frequency ω is the same as energy 
hω and wave vector kx is the same as momentum hkx. Thus, we recognize (13) as 
the energy-momentum relation for a particle of mass m, namely the sophisticate’s 
version of the layperson’s E = mc 2. We expect this field theory to describe a 
relativistic particle of mass m. 

Let us now evaluate (11) in this special case: 

i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]+Jϕ}
Z = Dϕe 2 (14) 

Integrating by parts under the d4 x and not worrying about the possible contri­
bution of boundary terms at infinity (we implicitly assume that the fields we are 
integrating over fall off sufficiently rapidly), we write 

i d4 x[− 1 ϕ(∂2+m 2)ϕ+Jϕ]
Z = Dϕe 2 (15) 

You will encounter functional integrals like this again and again in your study 
of field theory. The trick is to imagine discretizing spacetime. You don’t actu­
ally have to do it: Just imagine doing it. Let me sketch how this goes. Replace 
the function ϕ(x) by the vector ϕi = ϕ(ia) with i an integer and a the lattice 
spacing. (For simplicity, I am writing things as if we were in 1-dimensional space-
time. More generally, just let the index i enumerate the lattice points in some 
way.) Then differential operators become matrices. For example, ∂ϕ(ia)  → (1/a) L 
(ϕi+1 − ϕi) ≡ j Mij ϕj , with some appropriate matrix M . Integrals become L4sums. For example, d4xJ (x)ϕ(x) → a Jiϕi .i 

Now, lo and behold, the integral (15) is just the integral we did in (I.2.15) 

2 The Klein-Gordon equation was actually discovered by Schrödinger before he found 
the equation that now bears his name. Later, in 1926, it was written down independently by 
Klein, Gordon, Fock, Kudar, de Donder, and Van Dungen. 
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+∞ +∞ +∞ 
(i/2)q·A·q+iJ ·q. . .  dq1dq2

. . .  dqN e−∞ −∞ −∞ 

1 
(2πi)N 2 −(i/2)J ·A−1·J= e (16)
det[A] 

The role of A in (16) is played in (15) by the differential operator −(∂2 + m 2). 
−1The defining equation for the inverse A · A−1 = I or Aij A becomes in the jk  = δik 

continuum limit 

2 + m 2−(∂ )D(x − y) = δ(4)(x − y) (17) 

−1We denote the continuum limit of Ajk  by D(x − y) (which we know must be a 
function of x − y , and not of x and y separately, since no point in spacetime is 
special). Note that in going from the lattice to the continuum Kronecker is replaced 
by Dirac. It is very useful to be able to go back and forth mentally between the 
lattice and the continuum. 

Our final result is 

−(i/2) d4xd4yJ (x)D(x−y)J (y) ≡ CeiW(J ) Z(J ) = Ce (18) 

with D(x) determined by solving (17). The overall factor C, which corresponds to 
the overall factor with the determinant in (16), does not depend on J and, as will 
become clear in the discussion to follow, is often of no interest to us. As a rule I 
will omit writing C altogether. Clearly, C = Z(J = 0) so that W(J)  is defined by 

Z(J ) ≡ Z(J = 0)eiW(J ) (19) 

Observe that 

W(J)  = −  
1 

d4xd4yJ (x)D(x − y)J (y) (20)
2 

is a simple quadratic functional of J . In contrast, Z(J ) depends on arbitrarily high 
powers of J . This fact will be of importance in Chapter I.7. 

Free propagator 

The function D(x), known as the propagator, plays an essential role in quantum 
field theory. As the inverse of a differential operator it is clearly closely related to 
the Green’s function you encountered in a course on electromagnetism. 

Physicists are sloppy about mathematical rigor, but even so, they have to be 
careful once in a while to make sure that what they are doing actually makes sense. 
For the integral in (15) to converge for large ϕ we replace m 2 → m 2 − iε so that 
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−ε d4xϕ2 
the integrand contains a factor e , where ε is a positive infinitesimal3 we 
will let tend to zero later. 

We can solve (17) easily by going to momentum space and recalling the repre­
sentation of the Dirac delta function 

d4k 
δ(4) ik(x−y)(x − y) = e (21) 

(2π)4 

The solution is 

ik(x−y)d4k e
D(x − y) = (22) 

(2π)4 k2 − m2 + iε 

which you can check by plugging into (17). Note that the so-called iε prescription 
we just mentioned is essential; otherwise the k integral would hit a pole. 

To evaluate D(x) we first integrate over k0 by the method of contours. De­/xfine Jωk = + k2 + m2. The integrand has two poles in the complex k0 plane, at 
0± ω2 − iε, which in the ε → 0 limit is equal to +ωk − iε and −ωk + iε. For  xk 

positive we can extend the integration contour that goes from −∞ to +∞ on the 
real axis to include the infinite semicircle in the upper half-plane, thus enclosing 

i(ωkt−kx·xthe pole at −ωk + iε and giving −i [d3k/(2π)32ωk]e
x). For  x 0 negative 

we close the contour in the lower half-plane. Thus 

d3k −i(ωkt−kx·xx) 0 i(ωkt−kx·xx) 0D(x) = −i [e θ(x ) + e θ(−x )] (23) 
(2π)32ωk 

Physically, D(x) describes the amplitude for a disturbance in the field to prop­
agate from the origin to x . We expect drastically different behavior depending 
on whether x is inside or outside the lightcone. Without evaluating the inte­
gral we can see roughly how things go. For x = (t , 0) with, say, t >  0, D(x) = 
−i [d3k/(2π)32ωk]e 

−iωkt is a superposition of plane waves and thus we should 
have oscillatory behavior. In contrast, for x 0 = 0, we have, upon interpreting [ / ]x 2 −ikx·xxθ(0) = 2

1 , D(x) = −i d3k/(2π)32 k2 + m e and the square root cut 
−m|xstarting at ±im leads to an exponential decay ∼ e x|, as we would expect. Clas­

sically, a particle cannot get outside the lightcone, but a quantum field can “leak” 
−1out over a distance of the order m . 

Exercises 

I.3.1. Verify that D(x) decays exponentially for spacelike separation. 

I.3.2. Work out the propagator D(x) for a free-field theory in (1 + 1)-dimensional 
0spacetime and study the large x 1 behavior for x = 0. 

3 As is customary, ε is treated as generic, so that ε multiplied by any positive number is 
still ε. 
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From Field to Particle to Force 

From field to particle 

In the previous chapter we obtained for the free theory 

W(J)  = − 1 
d4xd4yJ (x)D(x − y)J (y) (1)

2 

which we now write in terms of the Fourier transform J (k)  ≡ d4 xe −ikxJ (x): 

1 d4k 1∗ W(J)  = − J (k)  J (k)  (2)
2 (2π)4 k2 −m2 + iε 

[Note that J (k)  ∗ = J (−k) for J (x)  real.] 
We can jump up and down on the mattress any way we like. In other words, we 

can choose any J (x)  we want, and by exploiting this freedom of choice, we can 
extract a remarkable amount of physics. 

Consider J (x)  = J1(x) + J2(x), where J1(x) and J2(x) are concentrated in two 
local regions 1 and 2 in spacetime (Fig. I.4.1). Then W(J)  contains four terms, of 
the form J1 

∗ J1, J2 
∗ J2, J1 

∗ J2, and J2 
∗ J1. Let us focus on the last two of these terms, 

one of which reads 

1 d4k 1∗ W(J)  = − J2(k) J1(k) (3)
2 (2π)4 k2 −m2 + iε 

We see that W(J)  is large only if J1(x) and J2(x) overlap significantly in their 
2Fourier transform and if in the region of overlap in momentum space k2 − m 

almost vanishes. There is a “resonance type” spike at k2 =m 2, that is, if the energy-
momentum relation of a particle of mass m is satisfied. (We will use the language of 
the relativistic physicist, writing “momentum space” for energy-momentum space, 
and lapse into nonrelativistic language only when the context demands it, such as 
in “energy-momentum relation.”) 

We thus interpret the physics contained in our simple field theory as follows: 
In region 1 in spacetime there exists a source that sends out a “disturbance in the 
field,” which is later absorbed by a sink in region 2 in spacetime. Experimentalists 
choose to call this disturbance in the field a particle of mass m. Our expectation 
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J1 

t 

J2 

x 

Figure I.4.1 

based on the equation of motion that the theory contains a particle of mass m is 
fulfilled. 

2A bit of jargon: When k2 =m , k is said to be on mass shell. Note, however, 
that in (3) we integrate over all k , including values of k far from the mass shell. 
For arbitrary k, it is a linguistic convenience to say that a “virtual particle” of 
momentum k propagates from the source to the sink. 

From particle to force 

We can now go on to consider other possibilities for J (x)  (which we will refer 
to generically as sources), for example, J (x)  = J1(x) + J2(x), where J (x) = a

δ(3)(xx − xx ). In other words, J (x)  is a sum of sources that are time-independenta

infinitely sharp spikes located at xx1 and xx2 in space. (If you like more mathematical 
rigor than is offered here, you are welcome to replace the delta function by lumpy 
functions peaking at xx . You would simply clutter up the formulas without gaininga

much.) More picturesquely, we are describing two massive lumps sitting at xx1 and 
xx2 on the mattress and not moving at all [no time dependence in J (x)]. 

What do the quantum fluctuations in the field ϕ , that is, the vibrations in the 
mattress, do to the two lumps sitting on the mattress? If you expect an attraction 
between the two lumps, you are quite right. 

As before, W(J)  contains four terms. We neglect the “self-interaction” term 
J1J1 since this contribution would be present in W regardless of whether J2 is 
present or not. We want to study the interaction between the two “massive lumps” 
represented by J1 and J2. Similarly we neglect J2J2. 

Plugging into (1) and doing the integral over d3 x and d3 ywe immediately obtain 
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ikx·(xx1− xx2)dk0 d3k e0 0 ik0(x−y)0 
W(J)  = −  dx dy e (4)

2π (2π)3 k2 −m2 + iε 

(The factor 2 comes from the two terms J2J1 and J1J2. ) Integrating over y 0 we 
get a delta function setting k0 to zero (so that k is certainly not on mass shell, to 
throw the jargon around a bit). Thus we are left with 

d3k eikx·(xx1− xx2) 
W(J)  = dx0 (5) 

(2π)3 kx2 +m2 

Note that the infinitesimal iε can be dropped since the denominator kx2 + m 2 is 
always positive. 

The factor ( dx0) should have filled us with fear and trepidation: an integral 
over time, it seems to be infinite. Fear not! Recall that in the path integral formalism 
Z = C eiW(J ) represents (0| e −iHT |0) = e −iET, where E is the energy due to the 
presence of the two sources acting on each other. The factor ( dx0) produces 
precisely the time interval T. All is well. Setting iW = iET we obtain from (5) 

ikx·(xx1− xx2)d3k e 
E = −  (6) 

(2π)3 kx2 +m2 

This energy is negative! The presence of two delta function sources, at xx1 and 
xx2, has lowered the energy. In other words, the two sources attract each other by 
virtue of their coupling to the field ϕ . We have derived our first physical result in 
quantum field theory! 

We identify E as the potential energy between two static sources. Even without 
doing the integral we see that as the separation xx1 − xx2 between the two sources 
becomes large, the oscillatory exponential cuts off the integral. The characteristic 
distance is the inverse of the characteristic value of k , which is m. Thus, we expect 
the attraction between the two sources to decrease rapidly to zero over the distance 
1/m. 

The range of the attractive force generated by the field ϕ is determined inversely 
by the mass m of the particle described by the field. Got that? 

The integral is done in the appendix to this chapter and gives 

1 
E = −  e −mr (7)

4πr  

The result is as we expected: The potential drops off exponentially over the distance 
scale 1/m. Obviously, dE/dr >  0: The two massive lumps sitting on the mattress 
can lower the energy by getting closer to each other. 

What we have derived was one of the most celebrated results in twentieth-
century physics. Yukawa proposed that the attraction between nucleons in the 
atomic nucleus is due to their coupling to a field like the ϕ field described here. 
The known range of the nuclear force enabled him to predict not only the existence 
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of the particle associated with this field, now called the π meson1 or the pion, but 
its mass as well. As you probably know, the pion was eventually discovered with 
essentially the properties predicted by Yukawa. 

Origin of force 

That the exchange of a particle can produce a force was one of the most profound 
conceptual advances in physics. We now associate a particle with each of the known 
forces: for example, the photon with the electromagnetic force and the graviton 
with the gravitational force; the former is experimentally well established and the 
latter while it has not yet been detected experimentally hardly anyone doubts its 
existence. We will discuss the photon and the graviton in the next chapter, but 
we can already answer a question smart high school students often ask: Why do 
Newton’s gravitational force and Coulomb’s electric force both obey the 1/r2 law? 

We see from (7) that if the mass m of the mediating particle vanishes, the force 
produced will obey the 1/r2 law. If you trace back over our derivation, you will see 
that this comes about from the fact that the Lagrangian density for the simplest field 
theory involves two powers of the spacetime derivative ∂ (since any term involving 
one derivative such as ϕ ∂ϕ  is not Lorentz invariant). Indeed, the power dependence 

k·xof the potential follows simply from dimensional analysis: d3k(ei
x x/k2) ∼ 1/r . 

Connected versus disconnected 

We end with a couple of formal remarks of importance to us only in Chapter I.7. 
First, note that we might want to draw a small picture Fig.(I.4.2) to represent the 
integrand J (x)D(x  − y)J (y) in W(J  ): A disturbance propagates from y to x (or 
vice versa). In fact, this is the beginning of Feynman diagrams! Second, recall that 

∞ 
[iW (J ))n]

Z(J ) = Z(J = 0) 
n! 

n=0 

For instance, the n = 2 term in Z(J )/Z(J = 0) is given by 

21 i 4 4 4 4− d x1d x2d x3d x4D(x1 − x2)2! 2 

D(x3 − x4)J (x1)J (x2)J (x3)J (x4) 

The integrand is graphically described in Figure I.4.3. The process is said to be 
disconnected: The propagation from x1 to x2 and the propagation from x3 to x4 

1 The etymology behind this word is quite interesting (A. Zee, Fearful Symmetry: see pp. 
169 and 335 to learn, among other things, the French objection and the connection between 
meson and illusion). 
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x 

Figure I.4.2 
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Figure I.4.3 
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proceed independently. We will come back to the difference between connected 
and disconnected in Chapter I.7. 

Appendix 

Writing xx ≡ ( xx1 − xx2) and u ≡ cos θ with θ the angle between kx and xx, we evaluate the 
integral in (6) spherical coordinates (with k = |kx| and r = |xx|) to be  

∞ +1 ikru ∞1 e 2i sin kr 
I ≡ dk k2 du = dk k (8) 

(2π)2 0 −1 k2 +m2 (2π)2ir 0 k2 +m2 

Since the integrand is even, we can extend the integral and write it as 

1 ∞ sin kr 1 ∞ 1 ikrdk k = dk k e . 
2 −∞ k2 +m2 2i −∞ k2 +m2 

Since r is positive, we can close the contour in the upper half-plane and pick up the pole at 
mr mr+im, obtaining (1/2i)(2πi)(im/2im)e− = (π/2)e−mr . Thus, I = (1/4πr)e− . 

Exercise 

I.4.1. Calculate the analog of the inverse square law in a (2 + 1)-dimensional universe, 
and more generally in a (D + 1)-dimensional universe. 
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Coulomb and Newton:
 
Repulsion and Attraction
 

Why like charges repel 

We suggested that quantum field theory can explain both Newton’s gravitational 
force and Coulomb’s electric force naturally. Between like objects Newton’s force 
is attractive while Coulomb’s force is repulsive. Is quantum field theory “smart 
enough” to produce this observational fact, one of the most basic in our under­
standing of the physical universe? You bet! 

We will first treat the quantum field theory of the electromagnetic field, known 
as quantum electrodynamics or QED for short. In order to avoid complications 
at this stage associated with gauge invariance (about which much more later) I 
will consider instead the field theory of a massive spin 1 meson, or vector meson. 
After all, experimentally all we know is an upper bound on the photon mass, 
which although tiny is not mathematically zero. We can adopt a pragmatic attitude: 
Calculate with a photon mass m and set m = 0 at the end, and if the result does 
not blow up in our faces, we will presume that it is OK.1 

Recall Maxwell’s Lagrangian for electromagnetism L = − 4
1 FµνF µν, where 

Fµν ≡ ∂µAν − ∂νAµ with Aµ(x) the vector potential. You can see the reason for 
the important overall minus sign in the Lagrangian by looking at the coefficient 
of (∂0Ai)

2, which has to be positive, just like the coefficient of (∂0ϕ)
2 in the 

Lagrangian for the scalar field. This says simply that time variation should cost 
a positive amount of action. 

I will now give the photon a small mass by changing the Lagrangian to L = 
− 1 2A Aµ + A Jµ. (The mass term is written in analogy to the 4 FµνF µν + 2

1 m µ µ

mass term m 2ϕ2 in the scalar field Lagrangian; we will see later that it is indeed 
the photon mass.) I have also added a source J µ(x) ,which in this context is more 
familiarly known as a current. We will assume that the current is conserved so that 
∂µ = 0.Jµ 

1 When I took a field theory course as a student with Sidney Coleman this was how he 
treated QED in order to avoid discussing gauge invariance. 
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Well, you know that the field theory of our vector meson is defined by the path 
DA eiS(A) ≡ eintegral Z = iW (J ) with the action 

4 4 2S(A) = d xL = d x{ 1 [(∂2 +m )gµν − ∂µ∂ν]Aν + A Jµ} (1)2 Aµ µ

The second equality follows upon integrating by parts [compare (I.3.15)]. 
By now you have learned that we simply apply (I.3.16). We merely have to find 

the inverse of the differential operator in the square bracket; in other words, we 
have to solve 

2 µ
δ(4)[(∂2 +m )gµν − ∂µ∂ν]Dνλ(x) = δ (x) (2)λ 

As before [compare (I.3.17)] we go to momentum space by defining 

d4k 
Dνλ(x) = Dνλ(k)e

ikx 

(2π)4 

µPlugging in, we find that [−(k2 −m 2)gµν + kµkν]Dνλ(k) = δ , giving λ 

−gνλ + kνkλ/m2 
Dνλ(k) = (3) 

k2 −m2 

This is the photon, or more accurately the massive vector meson, propagator. Thus 

1 d4k −gµν + kµkν/m2 
∗W(J  )  = − Jµ(k) J ν(k) (4)

2 (2π)4 k2 −m2 + iε 

Since current conservation ∂µJ µ(x) = 0 gets translated into momentum space 
as k J µ(k) = 0, we can throw away the k kν term in the photon propagator. The µ µ

effective action simplifies to 

1 d4k 1∗ W(J  )  = J µ(k) J (k) (5)µ2 (2π)4 k2 −m2 + iε 

No further computation is needed to obtain a profound result. Just compare this 
result to (I.4.2). The field theory has produced an extra sign. The potential energy 
between two lumps of charge density J 0(x) is positive. The electromagnetic force 
between like charges is repulsive! 

We can now safely let the photon mass m go to zero thanks to current conser­
vation, [Note that we could not have done that in (3).] Indeed, referring to (I.4.7) 
we see that the potential energy between like charges is 

1 1−mr →E = e (6)
4πr  4πr  

To accommodate positive and negative charges we can simply write Jµ = 
Jµ − Jµ. We see that a lump with charge density J 0 is attracted to a lump with 
p n p 

charge density J 0. 
n 
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Bypassing Maxwell 

Having done electromagnetism in two minutes flat let me now do gravity. Let us 
move on to the massive spin 2 meson field. In my treatment of the massive spin 1 
meson field I took a short cut. Assuming that you are familiar with the Maxwell 
Lagrangian, I simply added a mass term to it and took off. But I do not feel com­
fortable assuming that you are equally familiar with the corresponding Lagrangian 
for the massless spin 2 field (the so-called linearized Einstein Lagrangian, which 
I will discuss in a later chapter). So here I will follow another strategy. 

I invite you to think physically, and together we will arrive at the propagator 
for a massive spin 2 field. First, we will warm up with the massive spin 1 case. 

In fact, start with something even easier: the propagator D(k) = 1/(k2 − m 2) 
for a massive spin 0 field. It tells us that the amplitude for the propagation of a 
spin 0 disturbance blows up when the disturbance is almost a real particle. The 
residue of the pole is a property of the particle. The propagator for a spin 1 field 

carries a pair of Lorentz indices and in fact we know what it is from (3): Dνλ 

−GνλDνλ(k) = (7) 
k2 − m2 

where for later convenience we have defined 

kνkλGνλ(k) ≡ gνλ − (8)
2m

Let us now understand the physics behind Gνλ. I expect you to remember the 
concept of polarization from your course on electromagnetism. A massive spin 
1 particle has three degrees of polarization for the obvious reason that in its rest 
frame its spin vector can point in three different directions. The three polarization 
vectors ε(a) are simply the three unit vectors pointing along the x , y , and z axes, 

µ 

respectively (a = 1, 2, 3): ε(1) = (0, 1, 0, 0), ε(2) = (0, 0, 1, 0), ε(3) = (0, 0, 0, 1). 
µ µ µ 

In the rest frame kµ = (m, 0, 0, 0) and so 

ε(a) kµ = 0 (9)
µ 

Since this is a Lorentz invariant equation, it holds for a moving spin 1 particle as 
well. Indeed, with a suitable normalization condition this fixes the three polariza­
tion vectors ε(a) (k) for a particle with momentum k . 

µ 
The amplitude for a particle with momentum k and polarization a to be created 

at the source is proportional to ε(a) (k), and the amplitude for it to be absorbed λ 
at the sink is proportional to ε(a) (k). We multiply the amplitudes together to get 

ν 
the amplitude for propagation from source to sink, and then sum over the three 
possible polarizations. Now we understand the residue of the pole in the spin 1 L 

ε(a) 
(a) propagator Dνλ(k): It represents (k) ε (k) . To calculate this quantity, a ν λ 

note that by Lorentz invariance it can only be a linear combination of gνλ and kνkλ. 
The condition kµε(a) = 0 fixes the combination as gνλ − kνkλ/m

2. We evaluate 
µ 

the left-hand side for k at rest with ν = λ = 1, for instance, and fix the overall and 
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all-crucial sign to be −1. Thus 

ε(a) 
(a) kνkλ 

ν (k)ελ (k) = −Gνλ(k) ≡ −  gνλ − (10)
2m

a 

We have thus constructed the propagator Dνλ(k) for a massive spin 1 particle, 
bypassing Maxwell. Onward to spin 2! We want to similarly bypass Einstein. 

Bypassing Einstein 

A massive spin 2 particle has 5 (2 · 2 + 1 = 5, remember?) degrees of polarization, 
characterized by the five polarization tensors ε(a) (a = 1, 2, . . .  , 5) symmetric in 

µν 
the indices µ and ν satisfying 

ε(a) kµ
µν = 0 (11) 

and the tracelessness condition 

µνε(a) g
µν = 0 (12) 

Let’s count as a check. A symmetric Lorentz tensor has 4 · 5/2 = 10 components. 
The four conditions in (11) and the single condition in (12) cut the number of com­
ponents down to 10 − 4 − 1 = 5, precisely the right number. (Just to throw some 
jargon around, remember how to construct irreducible group representations? If 
not, read Appendix C.) We fix the normalization of εµν by setting the positive L (a) (a) quantity ε12 (k)ε12 (k) = 1. a L 

ε(a) 
(a) So, in analogy with the spin 1 case we now determine (k)ε (k). We  a µν λσ 

have to construct this object out of gµν and kµ, or equivalently Gµν and kµ. This 
quantity must be a linear combination of terms such as GµνGλσ , Gµνkλkσ , and 
so forth. Using (11) and (12) repeatedly (Exercise I.5.1) you will easily find that 

ε(a) 
(a) 

(k)ε (k) = (GµλGνσ +Gµσ Gνλ) − 2 (13)
µν λσ 3 GµνGλσ 

a 

The overall sign and proportionality constant are determined by evaluating both 
sides for µ = λ = 1 and ν = σ = 2, for instance. 

Thus, we have determined the propagator for a massive spin 2 particle 

(GµλGνσ +GµσGνλ) − 2
3 GµνGλσ 

Dµν , λσ (k) = (14) 
k2 −m2 

Why we fall 

We are now ready to understand one of the fundamental mysteries of the universe: 
Why masses attract. 
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Recall from your courses on electromagnetism and special relativity that the 
energy or mass density out of which mass is composed is part of a stress-energy 
tensor T µν . For our purposes, in fact, all you need to remember is that it is a 
symmetric tensor and that the component T 00 is the energy density. 

To couple to the stress-energy tensor, we need a tensor field ϕµν symmetric in 
its two indices. In other words, the Lagrangian of the world should contain a term 
like ϕµνT µν . This is in fact how we know that the graviton, the particle responsible 
for gravity, has spin 2, just as we know that the photon, the particle responsible for 
electromagnetism and hence coupled to the current Jµ, has spin 1. In Einstein’s 
theory, which we will discuss in a later chapter, ϕµν is of course part of the metric 
tensor. 

Just as we pretended that the photon has a small mass to avoid having to discuss 
gauge invariance, we will pretend that the graviton has a small mass to avoid having 
to discuss general coordinate invariance.2 Aha, we just found the propagator for a 
massive spin 2 particle. So let’s put it to work. 

In precise analogy to (4) 

1 d4k −gµν + kµkν/m2 
∗W(J  )  = − J µ(k) J ν(k) (15)

2 (2π)4 k2 −m2 + iε 

describing the interaction between two electromagnetic currents, the interaction 
between two lumps of stress energy is described by 

W(T  )  = 

1 d4k 
T µν ∗ (GµλGνσ +GµσGνλ) − 2

3 GµνGλσ 
T λσ 

(16) − (k) (k) 
2 (2π)4 k2 −m2 + iε 

From the conservation of energy and momentum ∂ T µν(x) = 0 and hence µ

k T µν(k) = 0, we can replace Gµν in (16) by gµν .µ

Now comes the punchline. Look at the interaction between two lumps of energy 
density T 00. We have from (16) that 

1 d4k ∗ 1 + 1 − 2
3W(T  )  = − T 00(k) T 00(k) (17)

2 (2π)4 k2 −m2 + iε 

Comparing with (5) and using the well-known fact that (1 + 1 − 2
3 ) >  0, we see 

that while like charges repel, masses attract. Trumpets, please! 

2 For the moment, I ask you to ignore all subtleties and simply assume that in order to 
understand gravity it is kosher to let m → 0. I will give a precise discussion of Einstein’s 
theory of gravity in Chapter VIII.1. 
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The universe 

It is difficult to overstate the importance (not to speak of the beauty) of what we 
have learned: The exchange of a spin 0 particle produces an attractive force, of 
a spin 1 particle a repulsive force, and of a spin 2 particle an attractive force, 
realized in the hadronic strong interaction, the electromagnetic interaction, and the 
gravitational interaction, respectively. The universal attraction of gravity produces 
an instability that drives the formation of structure in the early universe.3 Denser 
regions become denser yet. The attractive nuclear force mediated by the spin 
0 particle eventually ignites the stars. Furthermore, the attractive force between 
protons and neutrons mediated by the spin 0 particle is able to overcome the 
repulsive electric force between protons mediated by the spin 1 particle to form a 
variety of nuclei without which the world would certainly be rather boring. The 
repulsion between likes and hence attraction between opposites generated by the 
spin 1 particle allow electrically neutral atoms to form. 

The world results from a subtle interplay among spin 0, 1, and 2. 
In this lightning tour of the universe, we did not mention the weak interaction. 

In fact, the weak interaction plays a crucial role in keeping stars such as our sun 
burning at a steady rate. 

Degrees of freedom 

Now for a bit of cold water: Logically and mathematically the physics of a particle 
with mass m �= 0 could well be different from the physics with m = 0. Indeed, 
we know from classical electromagnetism that an electromagnetic wave has 2 
polarizations, that is, 2 degrees of freedom. For a massive spin 1particle we can go 
to its rest frame, where the rotation group tells us that there are 2·1 + 1 = 3 degrees 
of freedom. The crucial piece of physics is that we can never bring the massless 
photon to its rest frame. Mathematically, the rotation group SO(3) degenerates into 
SO(2), the group of 2-dimensional rotations around the direction of the photon’s 
momentum. 

We will see in Chapter II.7 that the longitudinal degree of freedom of a massive 
spin 1 meson decouples as we take the mass to zero. The treatment given here 
for the interaction between charges (6) is correct. However, in the case of gravity, 
the 2

3 in (17) is replaced by 1 in Einstein’s theory, as we will see Chapter VIII.1. 
Fortunately, the sign of the interaction given in (17) does not change. Mute the 
trumpets a bit. 

3 A good place to read about gravitational instability and the formation of structure in 
the universe along the line sketched here is in A. Zee, Einstein’s Universe (formerly known 
as An Old Man’s Toy). 
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Appendix 

Pretend that we never heard of the Maxwell Lagrangian. We want to construct a relativistic 
Lagrangian for a massive spin 1 meson field. Together we will discover Maxwell. Spin 
1 means that the field transforms as a vector under the 3-dimensional rotation group. 
The simplest Lorentz object that contains the 3-dimensional vector is obviously the 4­
dimensional vector. Thus, we start with a vector field A (x).µ


That the vector field carries mass m means that it satisfies the field equation
 

2(∂2 + m )A = 0 (18)µ 

A spin 1 particle has 3 degrees of freedom [remember, in fancy language, the representation 
j of the rotation group has dimension (2j + 1); here j = 1.] On the other hand, the field 
A (x) contains 4 components. Thus, we must impose a constraint to cut down the number µ

of degrees from 4 to 3. The only Lorentz covariant possibility (linear in A ) isµ

∂ Aµ = 0 (19)µ

It may also be helpful to look at (18) and (19) in momentum space, where they read 
(k2 − m 2)A (k) = 0 and k Aµ(k) = 0. The first equation tells us that k2 = m 2 and the µ µ

second that if we go to the rest frame kµ = (m, 0) then A0 vanishes, leaving us with 3 x
nonzero components Ai with i = 1, 2, 3. 

The remarkable observation is that we can combine (18) and (19) into a single equation, 
namely 

2(gµν∂2 − ∂µ∂ν)Aν + m Aµ = 0 (20) 

Verify that (20) contains both (18) and (19). Act with ∂ on (20). We obtain m 2∂ Aµ = 0,µ µ

which implies that ∂ Aµ = 0 . (At this step it is crucial that m �= 0 and that we are not µ

talking about the strictly massless photon.) We have thus obtained (19 ); using (19) in (20) 
we recover (18). 

We can now construct a Lagrangian by multiplying the left-hand side of (20) by + 2
1 Aµ 

(the 2
1 is conventional but the plus sign is fixed by physics, namely the requirement of 

positive kinetic energy); thus 

1 2L = 2 Aµ[(∂2 + m )gµν − ∂µ∂ν]Aν (21) 

Integrating by parts, we recognize this as the massive version of the Maxwell Lagrangian. 
In the limit m → 0 we recover Maxwell. 

A word about terminology: Some people insist on calling only Fµν a field and A aµ 

potential. Conforming to common usage, we will not make this fine distinction. For us, any 
dynamical function of spacetime is a field. 

Exercises 

L 
ε(a) 

(a) I.5.1. Write down the most general form for (k)ε (k) using symmetry repeat-a µν λσ 
edly. For example, it must be invariant under the exchange {µν ↔ λσ }. You might 
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end up with something like 

AGµνGλσ + B(GµλGνσ + GµσGνλ) + C(Gµνkλkσ + kµkνGλσ ) 

+ D(kµkλGνσ + kµkσGνλ + kνkσGµλ + kνkλGµσ ) + Ekµkνkλkσ (22) 

L 
ε(a) 

(a) with various unknown A, . . . , E . Apply kµ (k)ε (k) = 0 and find out a µν λσ 
what that implies for the constants. Proceeding in this way, derive (13). 
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Chapter I.6 

Inverse Square Law and the
 
Floating 3-Brane
 

Why inverse square? 

In your first encounter with physics, didn’t you wonder why an inverse square 
force law and not, say, an inverse cube law? You now have the deep answer. When a 
massless particle is exchanged between two particles, the potential energy between 
the two particles goes as 

3 k·xxV (r)  ∝ d k ei
x 1 ∝ 

1 
(1) 

kx2 r 

The spin of the exchanged particle controls the overall sign, but the 1/r follows 
just from dimensional analysis, as I remarked earlier. Basically, V (r)  is the Fourier 
transform of the propagator. The kx2 in the propagator comes from the (∂iϕ · 
∂iϕ) term in the action, where ϕ denotes generically the field associated with 
the massless particle being exchanged, and the (∂iϕ · ∂iϕ) form is required by 
rotational invariance. It couldn’t be kx or kx3 in (1); kx2 is the simplest possibility. 
So you can say that in some sense ultimately the inverse square law comes from 
rotational invariance! 

Physically, the inverse square law goes back to Faraday’s flux picture. Consider 
a sphere of radius r surrounding a charge. The electric flux per unit area going 
through the sphere varies as 1/4πr2. This geometric fact is reflected in the factor 
d3k in (1). 

Brane world 

Remarkably, with the tiny bit of quantum field theory I have exposed you to, I can 
already take you to the frontier of current research, current as of the writing of this 
book. In string theory, our (3 + 1)-dimensional world could well be embedded in 
a larger universe, the way a (2 + 1)-dimensional sheet of paper is embedded in our 
everyday (3 + 1)-dimensional world. We are said to be living on a 3 brane. 

4 5, . . . , xn+3So suppose there are n extra dimensions, with coordinates x , x . 
Let the characteristic scales associated with these extra coordinates be R. I can’t 
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go into the different detailed scenarios describing what R is precisely. For some 
reason I can’t go into either, we are stuck on the 3 brane. In contrast, the graviton 
is associated intrinsically with the structure of spacetime and so roams throughout 
the (n + 3 + 1)-dimensional universe. 

All right, what is the gravitational force law between two particles? It is surely 
not your grandfather’s gravitational force law: We Fourier transform 

3+n k·xx 1 1 
V (r)  ∝ d k ei 

x ∝ (2) 
kx2 r1+n 

to obtain a 1/r1+n law. 
Doesn’t this immediately contradict observation? 
Well, no, because Newton’s law continues to hold for r » R. In this regime, 

the extra coordinates are effectively zero compared to the characteristic length 
scale r we are interested in. The flux cannot spread far in the direction of the n 
extra coordinates. Think of the flux being forced to spread in only the three spatial 
directions we know, just as the electromagnetic field in a wave guide is forced to 
propagate down the tube. Effectively we are back in (3 + 1)-dimensional spacetime 
and V (r)  reverts to a 1/r dependence. 

The new law of gravity (2) holds only in the opposite regime r « R. Heuris­
tically, when R is much larger than the separation between the two particles, the 
flux does not know that the extra coordinates are finite in extent and thinks that it 
lives in an  (n + 3 + 1)-dimensional universe. 

Because of the weakness of gravity, Newton’s force law has not been tested 
to much accuracy at laboratory distance scales, and so there is plenty of room for 
theorists to speculate in: R could easily be much larger than the scale of elementary 
particles and yet much smaller than the scale of everyday phenomena. Incredibly, 
the universe could have “large extra dimensions”! (The word “large” means large 
on the scale of particle physics.) 

Planck mass 

To be quantitative, let us define the Planck mass MPl by writing Newton’s law more 
rationally as V (r)  = GNm1m2(1/r) = (m1m2/M

2 )(1/r). Numerically, MPlP l

1019 Gev. This enormous value obviously reflects the weakness of gravity. 
In fundamental units in which h and c are set to unity, gravity defines an 

intrinsic mass or energy scale much higher than any scale we have yet explored 
experimentally. Indeed, one of the fundamental mysteries of contemporary particle 
physics is why this mass scale is so high compared to anything else we know of. I 
will come back to this so-called hierarchy problem in due time. For the moment, 
let us ask if this new picture of gravity, new in the waning moments of the last 
century, can alleviate the hierarchy problem by lowering the intrinsic mass scale 
of gravity. 

Denote the mass scale characteristic of gravity in the (n + 3 + 1)-dimensional 
universe by MPl(n+3+1) so that the gravitational potential between two objects of 
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masses m1 and m2 separated by a distance r « R is given by 

m1m2 1 
V (r)  = 

]2+n 1+nr[MPl(n+3+1)

Note that the dependence on MPl(n+3+1) follows from dimensional analysis: two 
powers to cancel m1m2 and n powers to match the n extra powers of 1/r . For  
r » R , as we have argued, the geometric spread of the gravitational flux is cut off 
by R so that the potential becomes 

m1m2 1 1 
V (r)  = 

]2+n Rn r[MPl(n+3+1)

Comparing with the observed law V (r)  = (m1m2/M
2 
Pl)(1/r) we obtain 

M2 

M2 = Pl (3)Pl(n+3+1) [MPl(n+3+1)R]n 

If MPl(n+3+1)R can be make large enough, we have the intriguing possibility that 
the fundamental scale of gravity MPl(n+3+1) is much lower than what we have 
always thought. 

Thus, R is bounded on one side by our desire to lower the fundamental scale 
of gravity and on the other by experiments. 

Exercise 

I.6.1. Putting in the numbers show that the case n = 1 is already ruled out. For help, see 
S. Nussinov and R. Schrock, Phys. Rev. D59: 105002, 1999. 
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Feynman Diagrams 

Feynman brought quantum field theory to the masses. 

—J. Schwinger 

Anharmonicity in field theory 

The free field theory we studied in the last few chapters was easy to solve because 
the defining path integral (I.3.14) is Gaussian, so we could simply apply (I.2.15). 
(This corresponds to solving the harmonic oscillator in quantum mechanics.) As 
I noted in Chapter I.3, within the harmonic approximation the vibrational modes 
on the mattress can be linearly superposed and thus they simply pass through each 
other. The particles represented by wave packets constructed out of these modes 
do not interact:1 hence the term free field theory. To have the modes scatter off 
each other we have to include anharmonic terms in the Lagrangian so that the 
equation of motion is no longer linear. For the sake of simplicity let us add only 
one anharmonic term − λ 

4!ϕ
4 to our free field theory and, recalling (I.3.11), try to 

evaluate 

d4 x{ 1 2ϕ2]− λi [(∂ϕ)2−m 4! ϕ
4+Jϕ}

Z(J ) = Dϕ e 2 (1) 

(We suppress the dependence of Z on λ.) 
Doing quantum field theory is no sweat, you say, it just amounts to doing the 

functional integral (1). But the integral is not easy! If you could do it, it would be 
big news. 

1 A potential source of confusion: Thanks to the propagation of ϕ , the sources coupled 
to ϕ interact, as was seen in Chapter I.4, but the particles associated with ϕ do not interact 
with each other. This is like saying that charged particles coupled to the photon interact, but 
(to leading approximation) photons do not interact with each other. 
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Feynman diagrams made easy 

As an undergraduate, I heard of these mysterious little pictures called Feynman 
diagrams and really wanted to learn about them. I am sure that you too have 
wondered about those funny diagrams. Well, I want to show you that Feynman 
diagrams are not such a big deal: Indeed we have already drawn little spacetime 
pictures in Chapters I.3 and I.4 showing how particles can appear, propagate, and 
disappear. 

Feynman diagrams have long posed somewhat of an obstacle for first-time 
learners of quantum field theory. To derive Feynman diagrams, traditional texts 
typically adopt the canonical formalism (which I will introduce in the next chapter) 
instead of the path integral formalism used here. As we will see, in the canonical 
formalism fields appear as quantum operators. To derive Feynman diagrams, we 
would have to solve the equation of motion of the field operators perturbatively in 
λ. A formidable amount of machinery has to be developed. 

In the opinion of those who prefer the path integral, the path integral formalism 
derivation is considerably simpler (naturally!). Nevertheless, the derivation can 
still get rather involved and the student could easily lose sight of the forest for the 
trees. There is no getting around the fact that you would have to put in some effort. 

I will try to make it as easy as possible for you. I have hit upon the great 
pedagogical device of letting you discover the Feynman diagrams for yourself. 
My strategy is to let you tackle two problems of increasing difficulty, what I call 
the baby problem and the child problem. By the time you get through these, the 
problem of evaluating (1) will seem much more tractable. 

A baby problem 

The baby problem is to evaluate the ordinary integral 

+∞ 
2 2− λ− 2

1 m q 4+JqZ(J ) = dqe 4! q (2) 
−∞ 

evidently a much simpler version of (1). 
JFirst, a trivial point: we can always scale q → q/m so that Z = m −1F( λ 

4 , ),
mm

but we won’t. 
For λ = 0 this is just one of the Gaussian integrals done in the appendix of 

chapter I.2. Well, you say, it is easy enough to calculate Z(J ) as a series in λ : 
expand 

+∞ − 1 q 2+Jq λ λ 2Z(J ) = dqe 2 m 2 1 − q 4 + 2
1 ( ) q 8 + . . .  

−∞ 4! 4!

and integrate term by term. You probably even know one of several tricks for com­
2+∞ − 2

1 m q 2+Jq 4n: ( d )4n +∞puting dqe q you write it as−∞ dJ  −∞ 
− 2

1 m 2 qdqe
2+Jq  and refer to (I.2.11). So 
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J J J J J J 

λ λ λ 

J J J J J J 
(a) (b) (c) 

( m
1

2 )4λJ4 

Figure I.7.1 

λ d 4 + 
1 λ 2 d 8 + . . .) 

+∞ − 2
1 m 2 q 2+JqZ(J ) = (1 − ( ) ( ) ( ) dqe (3)

4! dJ 2 4! dJ  −∞ 

− λ )4 − 1 2 2π 1 − λ )4 2 J 2 
4! (

d 
+∞ 

2 m q 2+Jq  
dJ= e dJ  dqe = ( ) 2 e 4! (
d 
e 2m

1 

(4)
2−∞ m

+∞ − 1 q2 m(There are other tricks, such as differentiating −∞ dqe
2 2+Jq  with respect 

to m 2 repeatedly, but I want to discuss a trick that will also work for field the­
ory.) By expanding the two exponentials we can obtain any term in a double 
series expansion of Z(J ) in λ and J . [We will often suppress the overall factor 

(2π/m2) 2
1 = Z(J = 0, λ = 0) ≡ Z(0, 0) since it will be common to all terms. 

When we want to be precise, we will define Z̃ = Z(J )/Z(0, 0).] 
For example, suppose we want the term of order λ and J 4 in Z̃. We extract 

J 2/2m −(λ/4!)(d/dJ )4the order J 8 term in e 
2
, namely, [1/4!(2m 2)4]J 8, replace e 

by −(λ/4!)(d/dJ )4, and differentiate to get [8!(−λ)/(4!)3(2m 2)4]J 4. Another 
1 2)7]J 14example: the term of order λ2 and J 6 is 2 (λ/4!)2(d/dJ )8[1/7!(2m = 

[14!(−λ)2/(4!)26!7!2(2m 2)7]J 6. A third example: The term of order λ2 and J 4 

is [12!(−λ)2/(4!)33!(2m 2)6]J 4. Finally, the term of order λ and J 0 is [1/2(2m 2)2] 
(−λ). 

You can do this as well as I can! Do a few more and you will soon see a pattern. In 
fact, you will eventually realize that you can associate diagrams with each term and 
codify some rules. Our four examples are associated with the diagrams in Figures 
I.7.1–I.7.4, respectively. You can see, for a reason you will soon understand, that 
each term can be associated with several diagrams. I leave you to work out the rules 
carefully to get the numerical factors right (but trust me, the “future of democracy” 
is not going to depend on them). The rules go something like this: (1) diagrams 
are made of lines and vertices at which four lines meet; (2) for each vertex assign 
a factor of (−λ); (3) for each line assign 1/m2; and (4) for each external end 
assign J (e.g., Figure I.7.2 has seven lines, two vertices, and six ends, giving 
∼ [(−λ)2/(m2)7]J 6.) (Did you notice that twice the number of lines is equal to 
four times the number of vertices plus the number of ends? We will meet relations 
like that in Chapter III.2.) 
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JJ 

JJ 

λ 

J 

λ 

J 
(a) (b) (c) 

(d) (e) (f ) (g) 

( m
1

2 )7λ2J6 

Figure I.7.2 

For obvious reasons, some diagrams (e.g., Figure I.7.1a, I.7.2a) are known as 
tree2 diagrams and others (e.g., Figs. I.7.1b and I.7.3a) as loop diagrams. 

Do as many examples as you need until you feel thoroughly familiar with what 
is going on, because we are going to do exactly the same thing in quantum field 
theory. It will look much messier, but only superficially. Be sure you understand 
how to use diagrams to represent the double series expansion of Z(J ) before˜
reading on. Please. In my experience teaching, students who have not thoroughly 
understood the expansion of Z̃(J ) have no hope of understanding what we are 
going to do in the field theory context. 

Wick contraction 

It is more obvious than obvious that we can expand Z(J ) in powers of J , if  we  
please, instead of in powers of λ. As you will see, particle physicists like to classify 
in power of J . In our baby problem, we can write 

∞ ∞+∞1 − 2
1 m 2 q 2−(λ/4!)q4 1 

G(s) Z(J ) = J s dqe qs ≡ Z(0, 0) J s (5) 
s! −∞ s! 

s=0 s=0 

2 The Chinese character for tree (A. Zee, Swallowing Clouds) is shown in Fig. I.7.5. I 
leave it to you to figure out why this diagram does not appear in our Z(J ). 
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J J 

λ
 

λ
 

J J 
(a) (b) (c) (d) 

(e) (f ) (g) 

( m
1

2 )6λ2J4 

Figure I.7.3 

The coefficient G(s), whose analogs are known as “Green’s functions” in field 
theory, can be evaluated as a series in λ with each term determined by Wick 
contraction (I.2.10). For instance, the O(λ) term in G(4) is 

+∞1 − 2
1 m 2 2 7!! 1q 8(−λ) dqe q = 

(4!)2 −∞ (4!)2 m8 

which of course better be equal3 to what we obtained above for the λJ 4 term in Z̃. 
Thus, there are two ways of computing Z : you expand in λ first or you expand in 
J first. 

Figure I.7.4 

3 As a check on the laws of arithmetic we verify that indeed 7!!/(4!)2 = 8!/(4!)324. 
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Figure I.7.5 

Connected versus disconnected 

You will have noticed that some Feynman diagrams are connected and others are 
not. Thus, Figure I.7.2a is connected while 2b is not. I presaged this at the end of 
Chapter I.4 and in Figures I.4.2 and I.4.3. Write 

∞ 
1 

Z(J , λ) = Z(J = 0, λ)eW(J  ,λ) = Z(J = 0, λ) [W(J  , λ)]N (6) 
N !

N=0 

By definition, Z(J = 0, λ) consists of those diagrams with no external source 
J , such as the one in Figure I.7.4. The statement is that W is a sum of con­
nected diagrams while Z contains connected as well as disconnected diagrams. 
Thus, Figure I.7.2b consists of two disconnected pieces and comes from the term 
(1/2!)[W(J  , λ)]2 in (6), the 2! taking into account that it does not matter which of 
the two pieces you put “on the left or on the right.” Similarly, Figure I.7.2c comes 
from (1/3!)[W(J  , λ)]3. Thus, it is W that we want to calculate, not Z. If you’ve 
had a good course on statistical mechanics, you will recognize that this business 
of connected graphs versus disconnected graphs is just what underlies the relation 
between free energy and the partition function. 

Propagation: from here to there 

All these features of the baby problem are structurally the same as the correspond­
ing features of field theory and we can take over the discussion almost immediately. 
But before we graduate to field theory, let us consider what I call a child problem, 
the evaluation of a multiple integral instead of a single integral: 

+∞ +∞ +∞ − 2
1 q·A·q−(λ/4!)q4+J ·qZ(J ) = . . .  dq1dq2

. . .  dqN e (7) 
−∞ −∞ −∞ 

L 4with q 4 ≡ i q . Generalizing the steps leading to (3) we obtain 
i 
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1 
2 L 

1(2π)N −(λ/4!) (∂/∂Ji)
4

2 J ·A−1·JZ(J ) = e i e (8)
det[A] 

Alternatively, just as in (5) we can expand in powers of J 

∞ 
1 +∞ − 1 ·A·q−(λ/4!)q4 

Z(J ) = . . .  Ji dql e 2 q . . .  qiJi1 s 
qi1 s s! −∞ 

s=0 l 

∞ 
1 (s) = Z(0, 0) Ji1

. . .  Ji Gi1...i (9)
s ss! 

s=0 

which again we can expand in powers of λ and evaluate by Wick contracting. 
The one feature the child problem has that the baby problem doesn’t is prop­

agation “from here to there”. Recall the discussion of the propagator in Chapter 
I.3. Just as in (I.3.16) we can think of the index i as labeling the sites on a lattice. 
Indeed, in (I.3.16) we had in effect evaluated the “2-point Green’s function” Gij

(2) 

to zeroth order in λ (differentiate (I.3.16) with respect to J twice): 

+∞ 
(2) 

2 q·A·q −1G (λ = 0) = dql e 
− 1 

qiqj /Z(0, 0) = (Aij )ij −∞ l 

(see also the appendix to Chapter I.2). The matrix element (A−1)ij describes 
propagation from i to j . In the baby problem, each term in the expansion of Z(J ) 
can be associated with several diagrams but that is no longer true with propagation. 

(4)Let us now evaluate the “4-point Green’s function” G to order λ :ij kl 

+∞ 
(4) − 2

1 q·A·q λ 4 2G = dq e 1 − q + O(λ ) /Z(0, 0)ijkl m qiqjqkql n −∞ 4! 
m n 

−1 −1 −1 −1 −1 −1= (A )ij (A )kl + (A )ik(A )jl  + (A )il(A )jk  

−1 −1 −1 −1 2− λ (A )in(A )jn(A )kn(A )ln + O(λ ) (10) 
n 

The first three terms describe one excitation propagating from i to j and another 
propagating from k to l , plus the two possible permutations on this “history.” The 
order λ term tells us that four excitations, propagating from i to n, from j to n, 
from k to n, and from l to n, meet at n and interact with an amplitude proportional 
to λ, where n is anywhere on the lattice or mattress. By the way, you also see why 
it is convenient to define the interaction (λ/4!)ϕ4 with a 1/4! : qi has a choice of 
four q ’s to contract with, qj has three q ’s to contract with, and so on, producing n n

a factor of 4! to cancel the (1/4!). 
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Perturbative field theory 

You should now be ready for field theory! 
Indeed, the functional integral in (1) (which I repeat here) 

i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]−(λ/4!)ϕ4+Jϕ}
Z(J ) = Dϕ e 2 (11) 

has the same form as the ordinary integral in (2) and the multiple integral in (7). 
There is one minor difference: there is no i in (2) and (7), but as I noted in Chapter 
I.2 we can Wick rotate (11) and get rid of the i, but we won’t. The significant 
difference is that J and ϕ in (11) are functions of a continuous variable x, while 
J and q in (2) are not functions of anything and in (7) are functions of a discrete 
variable. Aside from that, everything goes through the same way. 

As in (3) and (8) we have 

d4 d4−(i/4!)λ w[δ/iδJ (w)]4 i x{ 1 [(∂ϕ)2−m 2ϕ2]+Jϕ}
Z(J ) = Z(0, 0)e Dϕe 2 

−(i/4!)λ d4 w[δ/iδJ (w)]4 −(i/2) d4xd4yJ (x)D(x−y)J (y) = Z(0, 0)e e (12) 

The structural similarity is total. 
The role of 1/m2 in (3) and of A−1 (8) is now played by the propagator 

ik·(x−y)d4k e 
D(x − y) = 

(2π)4 k2 − m2 + iε 

Incidentally, if you go back to Chapter I.3 you will see that if we were in d-
dimensional spacetime, D(x − y) would be given by the same expression with 
d4k/(2π)4 replaced by ddk/(2π)d . The ordinary integral (2) is like a field theory 
in 0-dimensional spacetime: if we set d = 0, there is no propagating around and 
D(x − y) collapses to −1/m2. You see that it all makes sense. 

We also know that J (x)  corresponds to sources and sinks. Thus, if we expand 
Z(J ) as a series in J , the powers of J would indicate the number of particles 
involved in the process. (Note that in this nomenclature the scattering process 
ϕ + ϕ → ϕ + ϕ counts as a 4-particle process: we count the total number of 
incoming and outgoing particles.) Thus, in particle physics it often makes sense to 
specify the power of J . Exactly as in the baby and child problems, we can expand 
in J first: 

∞ 
1 

)G(s)Z(J ) = Z(0, 0) J (x1) . . .  J (x (x1, . . .  , x )s s
s!

s=0 

∞ 
1 i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]−(λ/4!)ϕ4}= J (x1) . . .  J (x ) Dϕ e 2 

s
s!

s=0 

ϕ(x1) . . .  ϕ(x ) (13)s
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I.7. Feynman Diagrams 

In particular, we have the 2-point Green’s function 

1 i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]−(λ/4!)ϕ4}
G(x1, x2) ≡ Dϕ e 2 ϕ(x1)ϕ(x2) (14) 

Z(0, 0) 

the 4-point Green’s function, 

1 i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]−(λ/4!)ϕ4}
G(x1, x2, x3, x4) ≡ Dϕ e 2 

Z(0, 0) 

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) (15) 

and so on. [Sometimes Z(J ) is called the generating functional as it generates 
the Green’s functions.] Obviously, by translation invariance, G(x1, x2) does not 
depend on x1 and x2 separately, but only on x1 − x2. Similarly, G(x1, x2, x3, x4) 
only depends on x1 − x4, x2 − x4, and x3 − x4. For  λ = 0, G(x1, x2) reduces to 
iD(x1 − x2), the propagator introduced in Chapter I.3. While D(x1 − x2) describes 
the propagation of a particle between x1 and x2 in the absence of interaction, 
G(x1 − x2) describes the propagation of a particle between x1 and x2 in the 

(4)presence of interaction. If you understood our discussion of G , you would know ij kl
that G(x1, x2, x3, x4) describes the scattering of particles. 

In some sense, there are two ways of doing field theory, what I might call the 
Schwinger way (12) or the Wick way (13). 

Thus, to summarize, Feynman diagrams are just an extremely convenient way 
of representing the terms in a double series expansion of Z(J ) in λ and J . 

As I said in the preface, I have no intention of turning you into a whiz at 
calculating Feynman diagrams. In any case, that can only come with practice. 
Besides, there are excellent texts devoted to the evaluation of diagrams. Instead, I 
tried to give you as clear an account as I can muster of the concept behind this 
marvellous invention of Feynman’s, which as Schwinger noted rather bitterly, 
enables almost anybody to become a field theorist. For the moment, don’t worry 
too much about factors of 4! and 2! 

Collision between particles 

As I already mentioned, I described in chapter I.4 the strategy of setting up sources 
and sinks to watch the propagation of a particle (which I will call a meson) 
associated with the field ϕ. Let us now set up two sources and two sinks to watch 
two mesons scatter off each other. The setup is shown in Figure I.7.6. The sources 
localized in regions 1 and 2 both produce a meson, and the two mesons eventually 
disappear into the sinks localized in regions 3 and 4. It clearly suffices to find in Z 
a term containing J (x1)J (x2)J (x3)J (x4). But this is just G(x1, x2, x3, x4). 

Let us be content with first order in λ. Going the Wick way we have to evaluate 
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I. Motivation and Foundation 

t 

3 4 

1 2 

x 

Figure I.7.6 

1 iλ 4 i d4 x{ 1 [(∂ϕ)2−m 2ϕ2]}− d w Dϕ e 2 

Z(0, 0) 4! 

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ(w)
4 (16) 

Just as in (10) we Wick contract and obtain 

(−iλ) d4wD(x1 − w)D(x2 − w)D(x3 − w)D(x4 − w) (17) 

−(i/4!)λAs a check, let us also derive this the Schwinger way. Replace e 
d4w(δ/δJ (w))4 −(i/2) d4xd4yJ (x)D(x−y)J (y) by (i/4!)λ d4w(δ/δJ (w))4 and e 

by 

i4
4 

d4xd4yJ (x)D(x − y)J (y) . 
4!24 

To save writing, it would be sagacious to introduce the abbreviations J for J (x ),a a

for d4 x , and Dab for D(x − xb). Dropping overall numerical factors, which a aa 
I invite you to fill in, we obtain 

δ 4∼ iλ ( ) DaeDbfDcgDdhJaJbJcJdJeJf JgJh (18) 
w δJw 

The four (δ/δJ )’s hit the eight J ’s in all possible combinations producing many w

terms, which again I invite you to write out. Two of the three terms are discon­
nected. The connected term is 
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Grassmannian symmetry, 355
Grassmann integration, 126–127
Grassmann number(s), 123, 126; in path integral for

spinor field, 124
Grassmann variables, 246
gravitational force. See gravity
gravitational interaction, 36
gravitational waves, and effective field theory,

479–482
gravition propagator, 437–438
graviton: coupling to matter, 435; definition of, 83;

deformed polarizations of, 514–515; as elementary

particle, 434, 448; force associated with, 29; in
(n + 3 + 1)-dimensional universe, 41–42; recent
developments on, 513–520; self-interaction of,
434; in spacetime, 515–517; spin of, 35, 39; in
string theory, 513–514, 516

gravity: Einstein-Hilbert action for, 433–434;
Einstein on (see Einstein’s theory of gravity);
and electromagnetism, unification of, 442;
as field theory, 434–436; as gauge theory,
436; helicity structure of, 446; of light, 441;
Newton on (see Newton’s gravitational force);
nonrenormalizability of, 434; weak field action
for, 436–437

Green’s function(s), 47, 55, 352; generating, 50;
propagator related to, 23

Gross, David, 386
Gross-Neveu model, 402–404
ground state, in quantum field theory, 37, 225
ground state degeneracy, 319
group theory, review of, 525–533. See also special

orthogonal group SO (N ); special unitary group
SU (N )

hadron(s): electron-positron annihilation into, 389–
391; in electroweak unification, 383; experimental
observation of, 231; quarks as components of, 385

Hall effect, 351–352; fractional, 323–324; integer, 323
Hall fluid(s), 322–330; Chern-Simons term for,

326; effective field theory of, 324–325, 452–
453; electron tunneling in, 329; five general
statements/principles of, 325, 329; gauge potential
in, 325–326, 329; incompressibility of, 323, 328;
Laughlin odd-denominator, 327; order in, 328

handedness, field, 100; charge conjugation and, 101
Hansson, T., 324
harmonic paradigm, 5
Hasslacher, Brosl, 405
Hawking radiation, 290–291
Heaviside, O., 24, 245
hedgehog, 308
Heisenberg, Werner: approach to quantum

mechanics, 61–62; and effective field theory, 460;
isospin SU (2) of, 531; isospin symmetry of, 387,
388; on neutron and proton, symmetry of, 77

helicity, topological quantization of, 532–533
helicity formalism, spinor, 486–491, 496, 501, 521
hierarchy problem, grand unification and, 419
Higgs field, covariant derivative of, 266
Higgs particle, mass of, 384
high energy physics: renormalization group in,

359–360
high frequency behavior, 208–210
Hofstadter, R., 199
homotopy groups, 307
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Hopf term, 318; non-local, 329
Howe, P., 470
Hubbard-Stratonovich transformation, 192

identity, absolute, 120–121, 134
imaginary part, of Feynman diagrams, 207–219,

208f, 213f
impurities, 323; condensed matter physics and study

of, 354; and random potential, 350
infinities, in quantum field theory, 161–162
instanton(s), 309; discovery of, 473
integer Hall effect, 323
integration measure, in path integral formalism, 67
integration variables, shifting, 272
interchange symmetry, 77
internal symmetry, 77
inverse square law, 40
irrelevant operators, 363
Ising model, 361
isospin symmetry of Heisenberg, 387, 388
Itzykson, Claude, 402
Iwasaki, Y., 439

Johansson, H., 519
Jona-Lasinio, G., 237
Jordan, P., 107
Josephson junction, fundamental relation

underlying, 192

Kadanoff, Leo, 361; and renormalization groups,
361

Kaluza-Klein compactification, 442–443; derivation
of, 447

Kardar-Parisi-Zhang equation, 347
Kawai, H., 513
kinks. See solitons
Kivelson, Steve, 324
Klein-Gordon equation, 21, 93, 95, 190; Schrödinger

equation derived from, 190
Klein-Gordon operator, 113
Klein-Nishina formula, 155
Kockel, B., 460
Kosterlitz-Thouless transition, 310
Kramer’s degeneracy, 103

Lagrangian: Dirac (see Dirac equation); gauge
invariant, 253–254; Maxwell (see Maxwell
Lagrangian); Meissner, 332, 335; as mnemonic,
340, 342; for quantum electrodynamics, 101, 144;
symmetries of breaking, 223; weak interaction,
100; Yang-Mills, 257

Lamb shift in atomic spectroscopy, 205
Landau, L. D., 264; on complex momenta, 498; on

London penetration length, 296; on second-order

transitions, 292; on superconductivity, 295; on
superfluidity, 284

Landau gauge, 149
Landau-Ginzburg approach to quantum field theory,

18
Landau-Ginzburg theory (mean field theory),

292–294; order in, 328
Landau levels, 323
Laplace, P.-S., 290
Large Hadron Collider, 483
large N expansion, 394–396; Dyson gas approach to,

400–402; field theories in, 402–404
Larmor circle, 322, 323
lattice gauge theory, 374–376; Wilson loop in,

376–377, 457
Laughlin odd-denominator Hall fluids, 327
Lee, B., 173
Lee, D. H., 336n
Lee, Tsung-dao, 100
Legendre transform, 238–239
Leinaas, J., 315
length scales: in condensed matter physics, 169;

renormalization group and, 361–362
leptons: families of, 384; generations of, 428; and

quarks, neutral current interaction between, 383
Lévy, M., σ model of, 340–341
Lewellen, David C., 513
Licciardello, D., 366
light, gravity of, 441
light beam, stress-energy tensor of, 445
Likhtman, E. P., 461
linearly dispersing mode, 284; velocity of, 285
local field theory, 474, 521–522
localization: Anderson, 351, 354; Anderson, in

renormalization group language, 366–367; study
of, 355

local transformation (see gauge transformation)
logarithmic divergence, 175, 176–177
London penetration length, 296
loop diagrams, 45, 57–58, 57f, 58f, 181, 494
Lorentz algebra, 114–116
Lorentz boosts, 114–115
Lorentz group: defining representation of, 116;

generators of, algebra for, 115–116; spinor
representation of, 116–118

Lorentz invariance, 475; canonical formalism and,
63, 66–67; Euclidean equivalent of, 362; in
quantum field theory, 18, 24; recent developments
in, 507–510

Lorentz transformation: and Dirac equation, 96–97
Low, F., 460
Lüders, G., 121
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magnetic charge (monopole), 249, 309; confinement
in superconductor, 386–387; Dirac quantization
of, 248–249, 252; duality of, 334; electrically
charged (dyon), 309; mass of, 309; and Maxwell’s
equations, 249; quantum mechanics and, 245; in
spontaneously broken gauge theory, 309

magnetic moment of electron: anomaly in, 196;
calculation of, 454; in Dirac equation, 194–195;
Schwinger on, 196–198, 454

magnetic moment of ferromagnet and
antiferromagnet, 344

magnetic moment of proton, anomaly in, 454–455
Majorana, Ettore, 102n, 543
Majorana equation, 102
Majorana mass, 102; for neutrino, 102
Majorana spinor, 102, 543
Mandelstam variables, 137–138, 498
marginal operators, 364
mass(es): attraction between, 35–36; of electron,

180; energy of, 35; of gauge boson, 266; of Higgs
particle, 384; of magnetic charge (monopole), 309;
Majorana, 102; of neutrino, 102; of nucleon, 341;
Planck, 41–42, 434; of soliton (kink), 305

massive gauge field, Nambu-Goldstone boson and,
264–265

massive spin 1 field, vs. massless spin 1 field, 183
massive spin 1 particle: degrees of freedom of, 38;

degrees of polarization of, 34; field theory of,
32–33; propagator for, 34; in Yang-Mills theory,
379

massive spin 2 particle: degrees of polarization of,
35; propagator for, 35, 439

mass renormalization, 174
matrix (matrices): gamma (see gamma matrices);

Gell-Mann, 265; Pauli, 265; without inverse,
182–183

matter: dark, 450; origin of, explanation for, 418;
states of, 328

mattress model of scalar field theory, 4–5, 4f;
disturbing, 21, 21f; path integral description of,
17–19

Maxwell, James Clerk, 521
Maxwell action, 182
Maxwell equations, magnetic charges and, 249
Maxwell Lagrangian, 32, 34, 84; bypassing, 33–34;

derivation of, 38
Maxwell term, 320, 329
Maxwell theory of electromagnetism: development

of, 474–476; Yang-Mills theory compared with,
257

mean field theory (Landau-Ginzburg theory),
293–294; order in, 328

Meissner effect, 296, 386
Meissner Lagrangian, 332, 335

meson(s): birth of, quantum field theory on, 55–56,
56f; π (see pion[s]); σ , 341, 342; soliton compared
with, 304; vector, field theory of, 32–33. See also
massive spin 1 particle

meson-meson scattering amplitude, 357; canonical
formalism and, 64–65; cutoff dependence of,
173; dimensional analysis on, 173; divergence
of, 161–162; path integral formulation of, 166;
regularization and, 163; renormalization and,
164–166

Michell, John, 290
Mills, Robert, and nonabelian gauge theory, 253,

255
Minkowski, Peter, and seesaw mechanism, 426
Minkowskian path integral, 287
Minkowskian spacetime, 36
momentum: complex, 498–501, 499f; fundamental

definition of, 83; orbital angular, Dirac equation
on, 194–195; spin angular, Dirac equation on, 195;
square root of, 486–489

momentum density, in nonrelativistic theory, 191
momentum space, 26; fermion propagator in, 113;

Feynman diagrams in, 54
monopole. See magnetic charge
Montonen, J., 334
muon, weak decay of, 380
Myrheim, J., 315

Nambu, Yoichiro, 297, 469; Nobel prize for, 228n
Nambu-Goldstone boson(s), 228–229; gapless mode

as, 284; in massive gauge field, 264–265; π

mesons (pions) as, 234, 387, 388; in relativistic vs.
nonrelativistic theories, 285

naturalness, notion of, 419
Néel state, for antiferromagnet, 346
Ne’eman, Y., SU (3) of, 531
neutral current interaction, 383
neutrino(s): handedness of, 101; mass of, 102
neutrino masses, effective field theory of, 456
neutron(s): β decay of, 231–232; electric dipole

moment for, 259; and proton, internal symmetry
of, 77

Neveu, André, 402, 405
Newton’s gravitational force: and Coulomb’s electric

force, comparison of, 29; derived from Einstein-
Hilbert action, 438; quantum field theory on, 32,
33–36

Noether current, 191, 234
Noether’s theorem, 78–79, 100, 341; elaborate

formulation of, 80
nonabelian Berry’s phase, 261, 346
nonabelian gauge potential, 254, 255; coupling to a

fermion field, 260
nonabelian gauge theory(ies), 253–260; chiral
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anomaly in, 276; differential forms in, 255,
256; Feynman rules in, 536–537; gauge
invariance in, preserving, 204; ghost action
in, 372; redundancy of, Faddeev-Popov
approach to, 183; renormalizability of, 173,
411; strong interaction described by, 259, 379;
’t Hooft double-line formalism and, 258–259;
unsatisfactory features of, 474. See also Yang-Mills
theory

nonanalyticity: emergence of, 292; symmetry
breaking and, 293

noncommutative field theory, 474
nonrenormalizable theory(ies), 169, 179, 453;

counterterms in, 179, 241; Einstein’s theory
of gravity as, 172; Fermi’s theory of the weak
interaction, 170, 179

nonrenormalization of the anomaly, 277
notation, dotted and undotted, 116–117, 541–544;

replacing, 475
nucleon(s): attraction between, 28; electron scattering

off of, deep inelastic, 386; mass of, 341; and pions,
interaction between, 340–341; wave function of
quarks in, 385

Olive, D. I., 334
optical theorem, 215–216, 219
orbital angular momentum, Dirac equation on,

194–195
order parameters, 295
orthogonal groups, embedding unitary groups into,

423–424

Parisi, Giorgio, 402
parity, 98; Dirac equation and, 98; and Dirac spinor,

117; weak interaction and, 100, 379–380
Parke, S. J., 493
particle(s): birth and death of, 4–5; birth of, quantum

field theory on, 55–56; field associated with, 26–
27; force associated with, 27–29; interchanging,
315–316, 316f; propagation of, describing, 48–
49, 50; scattering of (see scattering of particles);
sources and sinks for, 20. See also specific particles

particle physics: and condensed matter physics, 281,
452–453; energy scales in, 169; family problem in,
428; spontaneous symmetry breaking in, 292, 297,
449

partition function, in quantum statistical mechanics,
288–289

path integral formalism: vs. canonical formalism,
44, 61, 67; chiral anomaly and, 278; and classical
limit, 19; derivation of, 44; description of mattress
model, 17–19; Dirac on, 10–13; Feynman on, 7–
10; Grassmann math and, 127; history of, 60;
integration measure in, 67; replacing, 475; for

spinor field, 124; and vacuum energy, calculation
of, 123–125

Pauli, Wolfgang, on spin-statistics connection, 121
Pauli exclusion principle, 120, 323; history of, 120n
Pauli-Hopf identity, 345
Pauli matrices, 265
Pauli-Villars regularization, 75, 166–168
Peierls, Rudolf, 365
Peierls instability, 300
pentagon anomaly, 276, 277f
perturbation theory, 49–51; bare, 175; Feynman

diagrams in, 55, 56f; finite temperature, 289;
physical (renormalized/dressed), 175–176, 176f

perturbative quantum gravity, 441
ϕ4 theory, renormalizability of, 173, 175
phonon(s), 5, 284
photon(s): absence of rest frame for, 186–189; birth

and death of, 4; Bose-Einstein statistics for, 120;
degrees of freedom of, 186–187; electron-positron
annihilation into, 155; emission and absorption of,
150; fluctuation into electron and positron, 200–
202, 201f; force associated with, 29; longitudinal
mode of, 150; spin of, 36, 39

photon propagation: charge as measure of, 204;
quantum fluctuations and, 200–202, 201f

photon propagator, 149–150; Fourier transform of,
205; physical (renormalized), 201, 201f

photon scattering, 152–157; cross sections for,
152–155; on electrons, 152–157, 153f, 157f

physical perturbation theory, 175–176, 176f
pion(s) (π meson): massless, 235, 341; Nambu-

Goldstone boson, 388; as Nambu-Goldstone
boson, 234, 387; and nucleons, interaction
between, 340–341; prediction regarding, 29;
quarks as components of, 385; weak decay of,
231–233

pion-nucleon coupling constant, 235
Planck mass: modified, 434; for (n + 3 + 1)-

dimensional universe, 41–42
Planck’s constant, 181
Podolsky, B., 441
Poincaré lemma, 247
point particle: action of, constructing, 84–86; stress

energy of, calculating, 86; world line traced out by,
length of, 84, 85f

Poisson equation, 438
polarization, degrees of, 34
Politzer, H. D., on Yang-Mills theory, 386
Polyakov, Alexander (Sasha), 498; on magnetic

monopoles, 309
Polyakov action, 470
Pontryagin index, 310
positron(s): Dirac’s conception of, 5; photon

fluctuation into, 200–202, 201f
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potential energy, double-well, 224, 224f
power counting theorem, 176–178
preons, theories about, 278
product rule, 445
propagation of particles, describing, 48–49, 50
propagator, 23–25; in canonical formalism, 67–68;

for Dirac field, 127; fermion, 112; graviton, 437–
438; for massive spin 1 particle, 34; for massive
spin 2 particle, 35, 439; photon, 149–150

proton(s): charge of, grand unification on, 410;
electron scattering off of, 132–134, 133f, 199;
electron scattering off of, deep inelastic, 359;
electron scattering off of, Schrödinger equation
for, 3; magnetic moment of, anomaly in, 454–455;
and neutron, internal symmetry of, 77; quarks as
components of, 385; stability of, 413

proton decay: branching ratios for, 416–417; effective
theory of, 455–457; grand unification and,
413–414, 415, 456; slow rate of, 418

quantum chromodynamics (QCD), 360, 386; analytic
solution of, search for, 391; at high energies, 391;
large N expansion of, 394–396; renormalization
group flow of, 388–389

quantum electrodynamics (QED), 32; coupling
constant of, 164; coupling in, 358; electromagnetic
gauge transformation in, 189; Feynman on
difficulty of, 61; Feynman rules for, derivation
of, 144–150; intellectual incompleteness of, 121;
Lagrangian for, 101, 144; renormalizability of,
173

quantum field theory(ies): in (0 + 0)-dimensional
spacetime, 397; in 2-dimensional spacetime,
470; anharmonicity in, 43, 89; asymptotic
behavior of, study of, 359–360; central identity
of, 182, 523; and condensed matter physics,
5, 190, 281; crisis of, 231, 340, 452; in curved
spacetime, 82, 290; divergences in, 57–58, 161–
162; Euclidean, 287–288, 289, 290; at finite
density, 291; at finite temperature, 289–290;
gravity as, 434–436; ground state in, 37, 225;
harmonic paradigm and, 5; hidden structures
in, 476; history of, 60; infinities in, 161–162;
innovative applications of, 473–474, 476; integral
of, 88–89; low energy manifestation of, 162, 169,
452; mattress model and, 17–19; motivation
for constructing, 55; need for, 3–5, 6, 123;
nonrelativistic limit of, 190–191; relativistic
vs. nonrelativistic, 191–193; renormalizable
vs. nonrenormalizable, 169; on repulsion and
attraction, 32–36; restrictions within, 474; steps
toward, 235; strong and weak interactions
applied to, 231; of strong interaction, 340;
supersymmetric, 461, 467–468; surface growth
and, 347–349; symmetry breaking in, 225–226;

theories subsumed by, 473; threshold of ignorance
in, 162–163, 453; triumph of, 452, 473; vacuum
in, 20

quantum fluctuations: axial current conservation
destroyed by, 274–275; effective potential
generated by, 243; and electric charge, 204, 205;
first order in, 239–240; higher order, and chiral
anomaly, 310; and photon propagation, 200–202,
201f; and symmetry breaking, 229, 237, 242, 270

quantum Hall fluid. See Hall fluid(s)
quantum Hall system, 281
quantum mechanics: antimatter as requirement

in, 157; and general relativity, marriage of, 6;
harmonic oscillator in, solving, 43; Heisenberg’s
approach to, 61–62; and magnetic monopoles,
245; partition function in, 288–289; path integral
formalism of, 7–12; quantum field theory as
generalization of, 88–89, 473; and relativistic
physics, joining in spin-statistics connection,
122; and special relativity, marriage of, 3, 6,
121; symmetry breaking in, 225–226; symmetry
of, 270; time reversal in, 102–104; and vector
potential, need for, 245

quantum statistics, 120
quantum vacuum, 358
quark(s): color of, 385, 386; confinement of, 377,

386–387; in electroweak unification, 383; families
of, 384; flavors of, 385; generations of, 428; and
leptons, neutral current interaction between,
383; origins of concept, 235; strong interaction
between, weakening of, 360

quasiparticle(s), 326; charge of, 327; fractional
statistics and, 327; as vortex, 328

radiation: and atoms, interaction between, 3;
Hawking radiation, 290–291

Ramakrishnan, T. V., 366
Ramond, Pierre, and seesaw mechanism, 426
random dynamics, and quantum physics, 349
random matrix theory, 396–397; Feynman rules in,

397, 398f
random potential, impurities and, 350
Rarita-Schwinger equations, 119
Rayleigh, Lord, 458
recursion, 501–503, 507–512, 521; BCFW, 500, 507,

514
redundancy, Faddeev-Popov approach to, 183–185
reflection symmetry, 76, 226; breaking, 223, 224,

225
Regge, T., 498
regularization, 163; Casimir force and, 71–75;

dimensional, 167, 168, 204; gauge invariance
respected by, 202–204; Pauli-Villars, 75, 166–167

relativistic physics: equations of motion in, unified
view of, 95; language of, 26; and quantum physics,
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joining in spin-statistics connection, 122. See also
general relativity; special relativity

relativistic quantum field theory: correctness of,
establishment of, 196; vs. nonrelativistic quantum
field theory, 191–193

relevant operators, 363
renormalizable conditions, imposing, 241–242
renormalizable theory(ies), 169, 173, 453; electroweak

theory as, 384; nonabelian gauge theory as, 173,
411; ϕ4 theory as, 173, 175, 178–179; Yukawa
theory as, 179

renormalization, 161, 164–166; coupling, 173–174;
of electric charge, 205; field, 175; mass, 174; wave
function, 175

renormalization group, 356, 358; and Anderson
localization, 366–367; in condensed matter
physics, 360–363; and effective description,
367; effective field theory philosophy and, 453;
in high energy physics, 359–360; in quantum
chromodynamics, 388–389

renormalization theory, application of, 240–241
renormalized coupling constant, 166
renormalized (dressed) perturbation theory, 175–176,

176f
reparametrization invariance, 84
replica method, 353–354
representations: conventions for naming, 526;

multiplying, 530–531
repulsion: of bosons, 192–193, 283, 337; quantum

field theory on, 32–33; spin 1 particle and, 36–37;
of vortices, 338

rest frames, for photons, absence of, 186–189
Ricci tensor, 433
Riemann-Christoffel symbol, 85, 445
Riemann curvature tensor, 433, 480–481, 515–516
Riemannian manifolds, differential geometry of,

443–444
Rosenbluth, Marshall, 105
rotation group, 114; and Lorentz group, symmetry

of, 118
Rξ gauge, 267, 268

Salam, Abdus, 171; electroweak theory of, 383;
superspace and superfield formalism of, 462, 463

scalar boson operator, 113
scalar field: complex, 65–66; Feynman rules for, 54–

55, 534–535; quantizing in curved spacetime, 82;
and vacuum energy, 66

scalar field theory: classical field equation in, 20;
Euclidean functional integral and, 287; Euclidean
version of, 293; massless version of, 284; simplicity
of, 519–520

scalar potentials, 245
scattering of particles: describing, 51–53, 51f, 52f;

fermion-fermion, Feynman diagram for, 172;

meson-meson (see meson-meson scattering
amplitude); reflection symmetry in, 76; and
vacuum fluctuations, 124. See also electron
scattering

Schouten identity, 492, 493
Schrieffer, Bob, 297
Schrödinger equation: electromagnetic gauge

transformation in, 189; Klein-Gordon equation
and, 21n, 190; limitations of, 3; Yang-Mills
structure in, 261

Schwarz, John, on string theory, 470n
Schwarzschild black hole, 311
Schwarzschild solution, for Hawking radiation, 290
Schwinger, Julian: on complex plane, 208;

and effective potential, 237; on Feynman’s
contribution, 43, 50, 56; on magnetic moment
of electron, 196–198, 454; on path integral
formalism, 60; at Pocono conference (1948), 105;
teaching style of, 454; Yang-Mills theory and,
379

second-order phase transitions, 292
seesaw mechanism, 37, 426
Seiberg, Nathan, 334
self-dual theory, 337
semions, 315
σ meson, 341, 342
σ model, 340–341; for ferromagnets and

antiferromagnets, 345, 346; nonlinear, 342, 346
sky color, effective field theory of, 457–458
Slansky, Dick, and seesaw mechanism, 426
S-matrix theory, 68, 235, 340, 498–501
solid state physics, Dirac equation in, 298, 299
solitons (kinks): discovery of, 302–304, 473;

dynamically generated, 400–405; mass of, 304;
topological stability of, 304; unifying language for
discussing, 307

SO (N ). See special orthogonal group
sources and sinks, creating, 20, 51, 51f
spacetime: curved (see curved spacetime); dimension

of, and symmetry breaking, 229; discretizing, 22;
Feynman diagrams in, 54, 58, 213; gravitational
waves in, 479–482; graviton in, 515–517; symmetry
of, Lorentz invariance as, 76

special orthogonal group SO(N ), 525–527; binary
code in, 427–428; review of, 531–532; SO(3), 526–
527; SO(10) grand unification, antineutrino field
in, 425–426; SO(18), 428; spinor representation
of, 421–423, 424, 426

special relativity: antimatter as requirement in, 157;
and quantum mechanics, marriage of, 3, 6, 121

special unitary group SU (N ), 527–530; decomposing
representations of, 531; of Heisenberg, 531; SU
(2), 529–530; SU (3), 529, 530; SU (3), of Gell-
Mann and Ne’eman, 531; SU (5), 531; SU (5),
Georgi and Glashow theory of, 407–409
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spin angular momentum, Dirac equation on, 195
spinor(s): Dirac, 94, 96, 114, 117; Majorana, 102;

representations of, 116–117; Weyl, 117, 462
spinor field: deriving, 125–127; path integral for, 123;

path integral for, Grassmann numbers in, 124;
vacuum energy of, 111–112, 125

spinor helicity formalism, 486–491, 496, 501, 521
spin-statistics rule, 120–121; and anticommutation

relations, 122, 123; price of violating, 121–122
spin wave, 229
spontaneous symmetry breaking, 224, 225, 227;

continuous: and massless fields, 228–229; in
gauge theories, 263–265; in particle physics,
292, 297, 449; quantum fluctuations and, 229;
of reflection symmetry, 225; in relativistic vs.
nonrelativistic theories, 285; second-order phase
transitions and, 292; and superfluidity, 283–284

square anomaly, 276, 277f
square root of momentum, 486–489
steepest-descent approximation, 16
Stokes’ theorem, 307
Stoner, E. C., 120n
Strathdee, J., superspace and superfield formalism

of, 462, 463
stress-energy tensor, 35; definition of, 83; of light

beam, 445; properties of, 84
string theory: 2-dimensional field theory, 469–

470; as candidate for unified theory, 433, 452;
and cosmological constant problem, inability
to resolve, 450; duality of, 334; future of, 513;
graviton in, 515–517; Kaluza-Klein idea and, 442;
origins of, 6, 387; p-forms in, 251; in quantum
field theory, 473; Schwarz on, 470n

strong coupling: fixed point in, 359; linking to
perturbative weak coupling, 473

strong interaction: chiral symmetry of, 234; currently
accepted theory of, 379; fundamental theory
of, 360; hadronic, 36; at low energies, 340–341;
nonabelian gauge theory on, 259, 379; quantum
field theory of, 235, 340; renormalization group
flow applied to, 368; symmetries of, 234, 387–388

SU (N ). See special unitary group
supercharges, 464
superconductivity, 295–297; and Meissner effect, 296
superconductor(s): monopole confinement in,

386–387; type II, flux tube in, 307
superfield, 464–465; chiral, 464, 466; vector, 466–467
superfluidity, 192; gapless excitations and, 284–285;

Lagrangian summarizing, 284; linearly dispersing
mode of, 284; spontaneous symmetry breaking
and, 283–284

superspace and superfield formalism, 462–463
superstring theory, 470
supersymmetric action, 466

supersymmetric algebra, 462–463
supersymmetric field theories, 461, 467–468;

Yang-Mills, 392, 467–468
supersymmetric method, 355
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