CONTENTS

Preface xi

Chapter 1. Introduction 1
1.1 What Is Dynamics? 1
1.2 Organization of the Book 6
1.3 Key Ideas 8
1.4 Notes and Further Reading 9
1.5 Problems 10

Chapter 2. Newtonian Mechanics 11
2.1 Newton’s Laws 11
2.2 A Deeper Look at Newton’s Second Law 15
2.3 Building Models and the Free-Body Diagram 19
2.4 Constraints and Degrees of Freedom 21
2.5 A Discussion of Units 24
2.6 Tutorials 25
2.7 Key Ideas 37
2.8 Notes and Further Reading 38
2.9 Problems 38

PART ONE. PARTICLE DYNAMICS IN THE PLANE

Chapter 3. Planar Kinematics and Kinetics of a Particle 45
3.1 The Simple Pendulum 45
3.2 More on Vectors and Reference Frames 47
3.3 Velocity and Acceleration in the Inertial Frame 56
3.4 Inertial Velocity and Acceleration in a Rotating Frame 66
3.5 The Polar Frame and Fictional Forces 79
3.6 An Introduction to Relative Motion 83
3.7 How to Solve a Dynamics Problem 87
3.8 Derivations—Properties of the Vector Derivative 88
3.9 Tutorials 93
3.10 Key Ideas 100
3.11 Notes and Further Reading 101
3.12 Problems 102

Chapter 4. Linear and Angular Momentum of a Particle 113
4.1 Linear Momentum and Linear Impulse 113
4.2 Angular Momentum and Angular Impulse 117
4.3 Tutorials 131
4.4 Key Ideas 141
4.5 Notes and Further Reading 142
4.6 Problems 143
Chapter 5. Energy of a Particle

5.1 Work and Power 148
5.2 Total Work and Kinetic Energy 153
5.3 Work Due to an Impulse 158
5.4 Conservative Forces and Potential Energy 159
5.5 Total Energy 169
5.6 Derivations—Conservative Forces and Potential Energy 172
5.7 Tutorials 173
5.8 Key Ideas 179
5.9 Notes and Further Reading 180
5.10 Problems 181

PART TWO. PLANAR MOTION OF A MULTIPARTICLE SYSTEM

Chapter 6. Linear Momentum of a Multiparticle System 189

6.1 Linear Momentum of a System of Particles 189
6.2 Impacts and Collisions 205
6.3 Mass Flow 220
6.4 Tutorials 228
6.5 Key Ideas 235
6.6 Notes and Further Reading 237
6.7 Problems 237

Chapter 7. Angular Momentum and Energy of a Multiparticle System 245

7.1 Angular Momentum of a System of Particles 245
7.2 Angular Momentum Separation 252
7.3 Total Angular Momentum Relative to an Arbitrary Point 259
7.4 Work and Energy of a Multiparticle System 263
7.5 Tutorials 274
7.6 Key Ideas 285
7.7 Notes and Further Reading 287
7.8 Problems 288

PART THREE. RELATIVE MOTION AND RIGID-BODY DYNAMICS IN TWO DIMENSIONS

Chapter 8. Relative Motion in a Rotating Frame 295

8.1 Rotational Motion of a Planar Rigid Body 295
8.2 Relative Motion in a Rotating Frame 302
8.3 Planar Kinetics in a Rotating Frame 311
8.4 Tutorials 318
8.5 Key Ideas 328
8.6 Notes and Further Reading 329
8.7 Problems 330

Chapter 9. Dynamics of a Planar Rigid Body 337

9.1 A Rigid Body Is a Multiparticle System 337
9.2 Translation of the Center of Mass—Euler’s First Law 340
9.3 Rotation about the Center of Mass—Euler’s Second Law 343
9.4 Rotation about an Arbitrary Body Point 360
CONTENTS

9.5 Work and Energy of a Rigid Body 368
9.6 A Collection of Rigid Bodies and Particles 376
9.7 Tutorials 385
9.8 Key Ideas 394
9.9 Notes and Further Reading 397
9.10 Problems 398

PART FOUR. DYNAMICS IN THREE DIMENSIONS

Chapter 10. Particle Kinematics and Kinetics in Three Dimensions 409
10.1 Two New Coordinate Systems 409
10.2 The Cylindrical and Spherical Reference Frames 413
10.3 Linear Momentum, Angular Momentum, and Energy 422
10.4 Relative Motion in Three Dimensions 426
10.5 Derivations—Euler’s Theorem and the Angular Velocity 445
10.6 Tutorials 450
10.7 Key Ideas 458
10.8 Notes and Further Reading 459
10.9 Problems 460

Chapter 11. Multiparticle and Rigid-Body Dynamics in Three Dimensions 465
11.1 Euler’s Laws in Three Dimensions 465
11.2 Three-Dimensional Rotational Equations of Motion of a Rigid Body 472
11.3 The Moment Transport Theorem and the Parallel Axis Theorem in Three Dimensions 495
11.4 Dynamics of Multibody Systems in Three Dimensions 502
11.5 Rotating the Moment of Inertia Tensor 504
11.6 Angular Impulse in Three Dimensions 509
11.7 Work and Energy of a Rigid Body in Three Dimensions 510
11.8 Tutorials 515
11.9 Key Ideas 523
11.10 Notes and Further Reading 526
11.11 Problems 527

PART FIVE. ADVANCED TOPICS

Chapter 12. Some Important Examples 537
12.1 An Introduction to Vibrations and Linear Systems 537
12.2 Linearization and the Linearized Dynamics of an Airplane 551
12.3 Impacts of Finite-Sized Particles 568
12.4 Key Ideas 578
12.5 Notes and Further Reading 579

Chapter 13. An Introduction to Analytical Mechanics 580
13.1 Generalized Coordinates 580
13.2 Degrees of Freedom and Constraints 583
13.3 Lagrange’s Method 589
CHAPTER ONE

Introduction

1.1 What Is Dynamics?

Dynamics is the science that describes the motion of bodies. Also called mechanics (we use the terms interchangeably throughout the book), its development was the first great success of modern physics. Much notation has changed, and physics has grown more sophisticated, but we still use the same fundamental ideas that Isaac Newton developed more than 300 years ago (using the formulation provided by Leonhard Euler and Joseph Louis Lagrange). The basic mathematical formulation and physical principles have stood the test of time and are indispensable tools of the practicing engineer.

Let’s be more precise in our definition. Dynamics is the discipline that determines the position and velocity of an object under the action of forces. Specifically, it is about finding a set of differential equations that can be solved (either exactly or numerically on a computer) to determine the trajectory of a body.

In only the second paragraph of the book we have already introduced a great number of terms that require careful, mathematical definitions to proceed with the physics and eventually solve problems (and, perhaps, understand our admittedly very qualitative definition): position, velocity, orientation, force, object, body, differential equation, and trajectory. Although you may have an intuitive idea of what some of these terms represent, all have rigorous meanings in the context of dynamics. This rigor—and careful notation—is an essential part of the way we approach the subject of dynamics in this book. If you find some of the notation to be rather burdensome and superfluous early on, trust us! By the time you reach Part Two, you will find it indispensable.

We begin in this chapter and the next by providing qualitative definitions of the important concepts that introduce you to our notation, using only relatively simple ideas from geometry and calculus. In Chapter 3, we are much more careful and present the precise mathematical definitions as well as the full vector formulation of dynamics.
1.1.1 Vectors

We live in a three-dimensional Euclidean universe; we can completely locate the position of a point relative to a reference point in space by its relative distance in three perpendicular directions. (In Part One we talk about points rather than extended bodies and, consequently, don’t have to keep track of the orientation of a body, as is necessary when discussing rigid bodies in Parts Three and Four.) We often call the reference point the origin. An abstract quantity, the vector, is defined to represent the position of a point relative to the origin, both in distance and direction.

Qualitative Definition 1.1 A vector is a geometric entity that has both magnitude and direction in space.

A position vector is denoted by a boldface, roman-type letter with subscripts that indicate its head and tail. For example, the position \(\mathbf{r}_{P/O} \) of point \(P \) relative to the origin \(O \) is a vector (Figure 1.1). An important geometric property of vectors is that they can be added to get a new vector, called the resultant vector. Figure 1.1b illustrates how two vectors are added to obtain a new vector of different magnitude and direction by placing the summed vectors “head to tail.”

When the position of point \(P \) changes with time, the position at time \(t \) is denoted by \(\mathbf{r}_{P/O}(t) \). In this case, the velocity of point \(P \) with respect to \(O \) is also a vector. However, to define the velocity correctly, we need to introduce the concept of a reference frame.

1.1.2 Reference Frames, Coordinates, and Velocity

We have all heard about reference frames since high school, and you may already have an idea of what one is. For example, on a moving train, objects that are stationary on the train—and thus with respect to a reference frame fixed to the train—move with respect to a reference frame fixed to the ground (as in Figure 1.2). To successfully use dynamics, such an intuitive understanding is essential. Later chapters discuss how reference frames fit into the physics and how to use them mathematically; for that

1 Euclid of Alexandria (ca. 325–265 BCE) was a Greek mathematician considered to be the father of geometry. In his book *The Elements*, he laid out the basic foundations of geometry and the axiomatic method.

2 In this book, a qualitative definition is typically followed by an operational or mathematical definition of the same term, although the latter definition may come in a later chapter.
reason, we revisit the topic again in Chapter 3. For now, we summarize our intuition in the following qualitative definition of a reference frame.

Qualitative Definition 1.2 A reference frame is a point of view from which observations and measurements are made regarding the motion of a system.

It is impossible to overemphasize the importance of this concept. Solving a problem in dynamics always starts with defining the necessary reference frames.

From basic geometry, you may be used to seeing a reference frame written as three perpendicular axes meeting at an origin O, as illustrated in Figure 1.3. This representation is standard, as it highlights the three orthogonal Euclidean directions. However, this recollection should not be confused with a coordinate system. The reference frame and the coordinate system are not the same concept, but rather complement one another. It is necessary to introduce the reference frame to define a coordinate system, which we do next.
CHAPTER ONE

I

O

P

P/O

(t)

r

P/O

(t + Δt)

r

P/O

(t)

r

P/O

(t + Δt)

O

P

Figure 1.4 Velocity \(\dot{r}_{P/O} \) is the instantaneous rate of change of position \(r_{P/O} \) with respect to frame \(I \). That is, \(\dot{r}_{P/O} = (r_{P/O}(t + Δt) - r_{P/O}(t))/Δt \), in the limit \(Δt \to 0 \).

Definition 1.3 A coordinate system is the set of scalars that locate the position of a point relative to another point in a reference frame.

In our three-dimensional Euclidean universe, it takes three scalars to specify the position of a point \(P \) in a reference frame. The most natural set of scalars (the three numbers usually labeled \(x \), \(y \), and \(z \)) are Cartesian coordinates. \(^3\) These coordinates represent the location of \(P \) in each of the three orthogonal directions of the reference frame. (Recall the discussion of vectors in the previous section stating that the position of \(P \) relative to \(O \) is specified in three perpendicular directions.) Cartesian coordinates, however, are only one possible set of the many different scalar coordinates, a number of which are discussed later in the book. Nevertheless, we begin the study of dynamics with Cartesian coordinates because they have a one-to-one correspondence with the directions of a reference frame. It is for this reason that the Cartesian-coordinate directions are often thought to define the reference frame (but don’t let this lure you into forgetting the distinction between a coordinate system and a reference frame). We return to the concepts of reference frames and coordinate systems and discuss the relationship between a coordinate system and a vector in Chapter 3.

Throughout the book, reference frames are always labeled. Later we will be solving problems that employ many different frames, and these labels will become very important. Thus we often write the three Cartesian coordinates as \((x, y, z) \), explicitly noting the reference frame—here labeled \(I \)—in which the coordinates are specified. (The reason for the letter \(I \) will become apparent later.)

Likewise, the change in time of a point’s position (i.e., the velocity) only has meaning when referred to some reference frame (recall the train example). For that reason, we always explicitly point out the appropriate reference frame when writing the velocity. A superscript calligraphic letter is used to indicate the frame. Figure 1.4 shows a schematic picture of the velocity \(\dot{r}_{P/O} = \frac{d}{dt}(r_{P/O}) \) as the instantaneous rate of change in time of the position \(r_{P/O} \) with respect to the frame \(I \). \(^4\)

We can also express the velocity of point \(P \) with respect to \(O \) as the rate of change \((\dot{x}, \dot{y}, \dot{z}) \), where \(\dot{x} = \frac{dx}{dt} \), \(\dot{y} = \frac{dy}{dt} \), and \(\dot{z} = \frac{dz}{dt} \). (Appendix A reviews

\(^3\) Named after René Descartes (1596–1650), the celebrated French philosopher, who founded analytic geometry and invented the notation.

\(^4\) In this book, the symbol \(\equiv \) denotes a definition as opposed to an equality.
some basic rules of calculus if you are rusty.) Because the variables x, y, and z are scalars, their time derivatives do not need a frame identification. We maintain the notation $(\dot{x}, \dot{y}, \dot{z})_I$, however, to remind you that these three scalars are the rates of change of the three position coordinates in frame I. The rate of change of a scalar Cartesian coordinate is called the speed to distinguish it from the velocity. We return to this topic and discuss it in depth and more formally in Chapter 3.

1.1.3 Equations of Motion

We now return to the definition of dynamics. Trajectory signifies the complete specification of the three positions and three speeds of a point in a reference frame as a function of time. It takes six quantities in our three-dimensional universe to completely specify the motion of a point. This is not necessarily obvious. Why six quantities and not three? Isn’t the position enough (since we can always find the velocity by differentiating)? The answer is no, because dynamics is about more than just specifying the position and velocity. It is about finding equations, based on Newton’s laws, that allow us to predict the complete trajectory of an object given only its state at a single moment in time. By state we mean the three positions and three speeds of the point. These six quantities, defined at a single moment in time, are called the initial conditions. The tools of dynamics allow us to find a set of differential equations that can be solved—using these initial conditions—for the position and velocity at any later time. These differential equations are called equations of motion.

Definition 1.4 The equations of motion of a point are three second-order differential equations\(^5\) whose solution is the position and velocity of the point as a function of time.

To see this a bit more clearly, imagine that we know the three position variables $x(t)$, $y(t)$, and $z(t)$ of a point in frame I at some time t and wish to know the position some short time later, $t + \Delta t$. Without the velocity at t we are lost; the point could move anywhere. However, with the three speeds $\dot{x}(t)$, $\dot{y}(t)$, and $\dot{z}(t)$, we know everything; the new position of the point in I is $(x(t) + \dot{x}(t) \Delta t, y(t) + \dot{y}(t) \Delta t, z(t) + \dot{z}(t) \Delta t)$. The equations of motion allow us to find the speeds at time $t + \Delta t$. The six positions and speeds are sufficient to find the complete trajectory.

As an example, one of the simplest equations of motion is that for a mass on a spring. The position of the mass is given by the Cartesian coordinate x, and the force due to the spring is given by $-kx$ (see Figure 2.7c). The position thus satisfies the following second-order differential equation, obtained by equating the force with the mass times acceleration and solving for the acceleration:

$$\ddot{x} = -\frac{k}{m} x.$$

This differential equation is an equation of motion. Its solution gives $x(t)$ and $\dot{x}(t)$, the trajectory of the mass point. Don’t worry if you didn’t follow how the equation was obtained; that is covered in Chapter 2.

\(^5\) Appendix C supplies a brief review of differential equations.

\(^6\) Or, equivalently, six first-order differential equations.
Many equations of motion cannot be solved exactly; a computer is required to find numerical trajectories. You will have an opportunity to do this many times in this book. However, often we skip solving for the trajectory and find special solutions or conditions on the states by setting the time equal to a specific value, finding certain conditions on the forces, or setting the acceleration to a constant or zero (sometimes called a steady state). One particularly useful such solution is known as an equilibrium point. The mathematical details of equilibrium solutions are presented in Chapter 12, but it is useful to have a qualitative understanding now, as we will be finding equilibrium solutions of many systems here and there throughout the book.

Qualitative Definition 1.5 An equilibrium point of a dynamic system is a specific solution of the equations of motion in which the rates of change of the states are all zero. In other words, an equilibrium point is a configuration in which the system is at rest. For the mass-spring system, for example, there is one equilibrium point, which corresponds to the mass situated at precisely the rest length of the spring. Mathematically, if \(x(t) \) is an equilibrium point, then \(\dot{x}(t) = 0 \) and \(\ddot{x}(t) = 0 \). Thus \(x(t) = x(0) \), where \(x(0) \) is the initial condition at time \(t = 0 \). So an equilibrium point is a solution whose value over time remains equal to its initial value.

In summary, dynamics is about finding three second-order differential equations that can be solved for the complete trajectory of an object. The equations can be solved—using the six initial conditions—either analytically (by hand) or numerically (by a computer). It is true that other scalar quantities can be used to specify the position rather than Cartesian coordinates; we will begin to study alternate coordinate systems in detail in Chapter 3. However, we will always need six independent scalars. The remainder of this book describes methods for finding equations of motion—first for a point (particle) and later for extended (rigid) bodies—and presents various techniques for completely or partially solving them.

1.2 Organization of the Book

The next chapter reviews the physics of mechanics, covering Newton’s laws in depth. We also start to solve simple problems. All the essential physical concepts that form the foundation for the rest of the book are presented in that chapter. Our approach is slightly unconventional in that we begin solving dynamics problems at the outset—in Chapter 2—to highlight the meaning of Newton’s laws and how we incorporate the underlying postulates into our methodology.

The remainder of the book is divided into five parts plus a set of four appendices. We divide the book into parts to highlight the logical separation of main topics and show how rigid-body motion builds on the key concepts of particle motion. The material could be covered in one semester by leaving out certain topics or stretched over multiple semesters or quarters. In Part One we restrict ourselves to studying only the planar motion of single particles. Thus motion in only two dimensions is studied; we thus need only four scalars to specify a particle’s state.

\(^7\) A postulate is a basic assumption that is accepted without proof.
rather than six. We do this to simplify the mathematics and focus on the key physical concepts, allowing you to develop an understanding of the procedures used to solve dynamics problems. You will solve an amazing array of real and important problems in Part One.

Chapter 3 returns to first principles and lays out the mathematical framework for a full vector treatment of kinematics and dynamics in the plane. Our focus is on the use of various coordinate systems and approaches to treating velocity and acceleration. Throughout the chapter we return to the same example: the simple pendulum. While this example may seem a bit academic, our approach is to focus repeatedly on this relatively simple system to emphasize the various new techniques presented and explain how they interrelate and add value. At the end of the chapter these new concepts are used to solve a selection of more difficult problems.

Chapters 4 and 5 present the concepts of momentum and energy, respectively, for a particle. It is here that we begin to solve equations of motion for the characteristics of trajectories (also called integrals of the motion). These ideas will be useful throughout the remainder of your study of dynamics and form the foundation of modern physics.

Part Two presents an introduction to multiparticle systems (Chapters 6 and 7). The previous concepts are generalized to simultaneously study many, possibly interacting, particles. In Chapter 6 we introduce two important examples of multiparticle systems—collisions and variable-mass systems. Chapter 7 sets the stage for the rigid-body discussions in Parts Three and Four by analyzing angular momentum and energy for many particles.

Part Three introduces rigid-body dynamics in the plane. We show (Chapters 8 and 9) how to specialize our tools to study a rigid collection of particles (i.e., particles whose relative positions are fixed). In particular, the definition of equations of motion is expanded to include the differential equations that describe the orientation of a rigid body. We use these ideas to study a variety of important engineering systems. We still confine our study to motion in the plane, however, to focus on the physical concepts without being burdened by the complexity of three-dimensional kinematics. It is here that we introduce the moment of inertia and, most importantly, the separation of angular momentum.

Part Four develops the full three-dimensional equations that describe the motion of multiparticle systems and rigid bodies. Part Four (Chapter 10) begins with the study of the general orientation of reference frames, three-dimensional angular velocity, and the full vector kinematics of particles and rigid bodies. Chapter 11 completes the discussion by developing the equations of motion for three-dimensional rigid-body motion. It is here that we find the amazing and beautiful motion associated with rotation and spin, such as the gyroscope and the bicycle wheel.

Part Five—Advanced Topics—allows for greater exploration of important ideas and serves to whet the appetite for later courses in dynamics. Chapter 12 treats three important problems in dynamics more deeply, exploring how the concepts in the book are used to understand and synthesize engineered systems. This introduction is useful for future coursework in dynamics and dynamical systems. Chapter 13 includes a brief introduction to Lagrange’s method and Kane’s method. It serves as a bridge to your later, more advanced classes in dynamics and provides a first look at alternative techniques for finding equations of motion.

We have organized the book in a way that maximizes the use of problems and examples to enhance learning. Throughout the text we solve specific examples—sometimes repeated using different methods—to illustrate key concepts. Toward the
end of each chapter we include a tutorials section. Tutorials are slightly longer than examples; they synthesize the material of the chapter and illustrate the important ideas on real systems. The tutorials are an essential learning tool to introduce useful techniques that may reappear later in the book. The tutorials vary widely in length, depth, and difficulty. You may want to skim the longer or more difficult tutorials on the first read and return later for reinforcement of key concepts or for practice on difficult problems. We have intentionally incorporated this range of tutorials to maximize the utility of the text for the widest possible audience and to make it a practical and helpful reference throughout your career.8

We also include computation in many of our examples, tutorials, and problems. Computation is central to modern engineering and an important skill to be learned. It is integral to the learning and practice of dynamics. To simplify our presentation and make it consistent throughout the book, we have exclusively used MATLAB for all numerical work. There are many excellent numerical packages available (and some students may want to code their own). We chose MATLAB because of its ubiquity, its ease of use, and the transparent nature of its programming language. Our goal, however, is not to teach the use of a particular programming tool but for you to become comfortable with the full problem-solving process, from model building through solution.

We end each chapter with a summary of key ideas, which contains a short list of the main topics of the chapter. We intentionally minimize the prose in these sections to make it as easy as possible to use for reference and review. Reading these sections does not replace reading the chapters; they are meant only to serve as helpful references.

We used many sources in preparing this book and are indebted to a large number of authors that preceded us. Our primary references are listed in the Bibliography. In some cases, however, we highlight a particularly important result and direct you to other references with more in-depth discussions or additional insights. Thus each chapter has a Notes and Further Reading section, where we point out these sources.

Finally, we end each chapter in Parts One to Four with a problems section that includes problems that address each of the topics of the chapter. We have tried to provide problems of varying levels of difficulty and those that require computation. We have not included problems sections in Part Five, as Chapters 12 and 13 are intended as only an introduction to more advanced topics.

1.3 Key Ideas

- **A vector** is a quantity with both magnitude and direction in space. The position of point P relative to point O is the vector $r_{P/O}$.
- **A reference frame** provides the perspective for observations regarding the motion of a system. A reference frame contains three orthogonal directions.

8 Because Chapters 12 and 13 are similar to extended tutorials and are meant as only an introduction to more advanced material, we do not include tutorials or problems in them.
INTRODUCTION

• The velocity is the change in time of a position with respect to a particular reference frame. The velocity of point \(P \) relative to frame \(I \) is \(\mathbf{v}_{P/I} = \frac{d}{dt}(\mathbf{r}_{P/I}) \).

• A coordinate system is the set of scalars used to locate a point relative to another point in a reference frame. Cartesian coordinates \(x, y, z \) constitute the most common coordinate system. We usually use \((x, y, z)_I\) to represent the Cartesian coordinates with respect to frame \(I \). The rates of change \((\dot{x}, \dot{y}, \dot{z})_I\) of the Cartesian coordinates are called speeds.

• The state of a particle consists of its position and velocity in a reference frame at a given time.

• The equations of motion are the three second-order differential equations for the particle state whose solution provides the trajectory of a point.

• An equilibrium point is a special solution of the equations of motion for which the rates of change of all states are zero.

1.4 Notes and Further Reading

The modern formulation of dynamics is the culmination of more than two centuries of development. For instance, while Newton presented the fundamental physics, the concept of equations of motion and the formulation of the second law we know today were given by Euler.\(^9\) The modern concept of a vector was introduced by Hamilton in the mid-nineteenth century.\(^10\) A good, concise discussion of the early history of dynamics can be found in Tenenbaum (2004). A more thorough treatment of the history of mechanics is in Dugas (1988). We also recommend the book of essays by Truesdell (1968) for insightful discussions of important historical developments.

Careful notation is essential for both learning dynamics and solving problems in your professional career. Unfortunately, no universally accepted notation is in use. In fact, there is much discussion among educators and practitioners over how to balance simplicity and clarity. Our notation—particularly the use of reference frames in derivatives—is closest to that of Kane (1978) and Kane and Levinson (1985). A similar notational approach is used by Tenenbaum (2004) and Rao (2006). Our notation for position is also used in Tongue and Sheppard (2005) with a variation in Beer et al. (2007). Our qualitative definition of reference frames is similar to that in Rao (2006). Other good discussions of the importance of reference frames in dynamics can be found in Greenwood (1988), Kane and Levinson (1985), and Tenenbaum (2004). Tenenbaum also has a similar and insightful discussion regarding the distinction between coordinate systems and reference frames.

\(^9\) Leonhard Euler (1707–1783) was a Swiss mathematician and physicist. He is known for his seminal contributions in mathematics, dynamics, optics, and astronomy. Much of our current notation is attributable to Euler. He is probably best known for the identity \(e^{i\pi} + 1 = 0 \), often called the most beautiful equation in mathematics.

\(^10\) Sir William Rowan Hamilton (1805–1865) was an Irish mathematician and physicist. He made fundamental contributions to dynamics and other related fields. His energy-based formulation is the foundation of modern quantum mechanics.
1.5 Problems

1.1 What are the Cartesian coordinates of point \(P \) in frame \(I \), as shown in Figure 1.5?

![Figure 1.5 Problem 1.1.](image)

1.2 Sketch and label the vectors \(\mathbf{r}_{P/O}, \mathbf{r}_{P/Q}, \mathbf{r}_{Q/P} \) in Figure 1.6.

![Figure 1.6 Problem 1.2.](image)

1.3 Match each of the following definitions to the appropriate term below:

a. A perspective for observations regarding the motion of a system
b. A mathematical quantity with both magnitude and direction

 - Vector
 - Reference frame
 - Coordinate system
 - Equations of motion

c. Second-order differential equations whose solution is the trajectory of a point

d. A set of scalars used to locate a point relative to another point
INDEX

absolute space, 17, 48, 80, 83–85
absolute system of units, 24
acceleration, 13, 17, 61
angular, 312
Cartesian coordinates, 61
centripetal, 80–82, 312, 313
Coriolis, 80, 82, 312, 313
cylindrical coordinates, 410, 414
path coordinates, 77–78
polar coordinates, 63
in rotating frame, 66–69, 311–312, 313
spherical coordinates, 411, 417
accelerometer, pendulous, 86
air resistance, 34
aircraft carrier
landing on, 155–156
take-off from, 156–158
airplane
crossrange mode, 566
Dutch roll mode, 566
kinematics, 435–437
lateral equations of motion, 565–566
linearized equations of motion, 560
longitudinal equations of motion, 562–564
orientation, 432–433
plugold mode, 564
roll mode, 566
rotational equations of motion, 493–495
short-period mode, 564
spiral mode, 566
stability derivatives, 563
straight and level flight, 560
translational equations of motion, 444–445
yaw mode, 566
analytical mechanics, 580
angle of attack, 436
angular acceleration, 312
angular impulse, 125, 358, 509–510
angular momentum, 117, 422–423
about center of mass, 253, 256–257, 345, 353, 354, 468, 480
of center of mass, 253, 255, 345
conservation, 122, 250, 257, 472
relative to arbitrary point, 122–124, 259–262, 361
relative to fixed point, 118
rigid body, 344–345, 467–468
separation, 252–254, 468
total, 246, 467
angular velocity, 72, 445–447, 449–450
addition property, 309, 434, 442
instantaneous axis, 420, 435, 449–450
partial, 609
simple, 72
spherical frame, 419–421
antiderivative, 626
apoapsis, 139
asteroid deflection, 204–205
asymptotic stability, 557
axis of rotation, 72, 420
azimuth, 421–422
bicycle wheel, 475–476
bifurcation, 457
diagram, 457
parameter, 457
value, 457
binomial expansion, 628
body cone, 516, 517–519
body frame, 295, 302, 339
brachistochrone, 184
carom, 217–218
Cartesian coordinates, 4, 52–53, 409–410
center of gravity, 229
center of mass, 196
angular momentum of, 255
corollary, 197
motion, 197
motion relative to, 200–201
rigid body, 340–341, 465–467
center of percussion, 385–387
central force, 128
central impact collision, 206
centripetal acceleration, 80–82, 312, 313
centrobaric body, 343
Chandler wobble, 489
chaotic trajectories, 177
characteristic equation, 538, 650
charged particle, 78
circular restricted three-body problem, 324
coefficient
air resistance, 34
damping, 31
restitution, 210–212, 217
co-latitude, 412
collision, 205–220
center-hit, 571
center-miss, 571
compressed phase, 207
deflection phase, 207
final phase, 207
frame, 207–208, 568–569
inelastic, 211
initial phase, 207
oblique, 213–214
between particle and surface, 214–220
plastic, 211
restitution phase, 207
sticky, 194
between two particles, 205–214
compound pendulum, 297–298
center of percussion, 385–387
energy, 374
equations of motion, 366–367
kinematics, 297–298
moment of inertia, 363–365
moment on, 362–363
configuration constraint. See constraint, holonomic
conic section, 138
polar equation, 138
conservation
angular momentum, 122, 250, 257, 472
linear momentum, 19, 194
total energy, 170, 273
conservation law, 19
conservative force. See force, conservative
constraint, 21
equation, 21
force, 22, 583
holonomic, 583–585
motion, 22, 299
nonholonomic, 586–587, 602–603
rheonomic, 584
rigid body, 338
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>constraint (continued)</td>
<td>668</td>
</tr>
<tr>
<td>scleronomic</td>
<td>584</td>
</tr>
<tr>
<td>continuity, of mass</td>
<td>224</td>
</tr>
<tr>
<td>continuous function</td>
<td>624</td>
</tr>
<tr>
<td>control moment gyroscope</td>
<td>503</td>
</tr>
<tr>
<td>control volume</td>
<td>220</td>
</tr>
<tr>
<td>coordinate system</td>
<td>4, 52, 87</td>
</tr>
<tr>
<td>coordinate transformation</td>
<td>53</td>
</tr>
</tbody>
</table>
holonomic constraint, 583–585
hurricane, 314
impact parameter, 279
implicit method, 654
improved Euler method, 654
imbuse
angular, 125, 358, 509–510
linear, 114
impulsive orbit transfer, 139
inclined plane, 55
inelastic collision, 211
inertia, 16
moment of. See moment of inertia
inertia ellipsoid, 514, 515
inertial frame, 17, 49
goecentric, 413
inertial moment, 124
inhomogeneous solution, 541
initial conditions, 5
initial value problem, 646
numerical integration, 651–653
instantaneous axis of rotation.
See angular velocity,
instantaneous axis
integral, 626
around closed loop, 161
integral of the motion, 19, 159
intermediate axis, 492
intermediate frame, 415, 419–420,
426–428, 434–435
in spinning body, 487–488,
499–501
internal bending moment, 392
internal-force assumption, 248
internal-moment assumption, 247
internal work, 266
inverted pendulum, 47
isoinertial body, 484
Jacobi integral, 326
Jacobi matrix, 554, 634
Jacobi's constant, 326
joule, 149
Kane, Thomas, 605
Kane's equations, 613
Kane's method, 605
kinematic equations, 606
Kepler's problem, 137
kilogram, 24
kinematic equations of rotation,
437–439
kinematics, 56, 87
Cartesian coordinates, 61
cylindrical frame, 414
path coordinates, 66
path frame, 76–77
polar coordinates, 63
polar frame, 70–71
rotating frame, 311–312, 442
spherical coordinates, 415–416
three-dimensional rotation,
437–438
kinetic energy
center of mass, 264–265
particle, 153
rigid body, 368–369, 510–512
separation, 264–265
total, 264
Lagrange, Joseph-Louis, 327, 589
Langrange multiplier, 601–602,
603
Lagrange points, 327
Lagrange's equations, 593, 594,
597, 600
Lagrange’s method, 589, 604–605
Lagrangian, 596–597, 598, 599,
601
latitude, 412
law, 15
leapfrog algorithm, 655
Leibniz, Gottfried Wilhelm, 12,
626
line of impact, 206
linear impulse, 114
linear momentum, 12, 114, 422
conservation of, 19, 194
total, 193
linear system, 546–547
linearization, 522, 553–554
linkage, 300
sliding contact, 305
three-bar, 309–311
two-bar, 300–302
Watt, 318–320
local truncation error, 652
local vertical, 452–453
longitude, 412
Lorentz force, 78
magnitude. See vector, magnitude
major axis, 492
mass, 16
inflow rate, 226
outflow rate, 226
mass flow, 220–228
mass ratio, 327
MATLAB
function handle, 657
graphics handle, 658
ode45, 35, 96, 657
ode45 options, 147, 657
ode23t, 145, 657
plot, 658
quadfpr, 99
matrix
direction-cosine, 429–431
notation, 50
singular, 546
skew symmetric, 641
mechanical advantage, 163
mechanics, 2, 12
meter, 24
minor axis, 492
modal frequency, 549
mode shape, 549
modeling, 23, 87
modes, 549
moment, 119, 255–256, 346
of a couple, 349–351
impulsive, 125, 358, 509–
510
restoring, 521
total external, 248
moment of inertia
matrix, 481–482
planar rigid body, 352
principal axes, 490
rotating, 504–505
selected bodies, 660–662
tensor, 480, 504
moment transport theorem,
361–362, 495
moments of inertia, 481
motion
relative, 83–85, 302–304,
311–314, 442–443
unstable, 47
motion constraint, 22, 299
multibody system, 376–378,
502–503
multiparticle system, 190
angular momentum about center
of mass, 256–257
center of mass, 196
kinetic energy, 264–265
Newton's second law, 190
total angular momentum,
246–247
total energy, 272
total linear momentum, 193
work–kinetic-energy formula,
265–267
N-body problem, 190–191
natural frequency, 29
Newton (unit of force), 24–25
Newton, Isaac, 1, 142, 237, 626
Newtonian relativity, 18, 85
Newton's laws, 12, 15
Newton's second law, 18, 49, 88
angular momentum form, 119
multiple particles, 190
Newton’s universal law of gravity,
34, 129
no-slip condition, 298–299
nonconservative force, 161
nonholonomic constraint, 586–587, 602–603
normal force, 26
normal unit vector, 76–77
numerical integration, 651–656
Euler method, 653
Heun formula, 654
improved Euler, 654
leapfrog, 655–656
Runge-Kutta method, 654–655
symplectic algorithm, 656
Taylor series method, 654
truncation error, 652
velocity Verlet algorithm, 656
nutation, 489, 526
angle, 526
damper, 526–527, 532
oblate rigid body, 518
ODE (ordinary differential equation), 646
ODE45, 35, 96, 147, 657
orbit, 128
circular, 131
equation, 136–139
satellite, equations of motion, 129–131
semimajor axis, 139
transfer, 139–140
turning points, 174, 177
order, 628
ordinary differential equation, 646
orientation angles. See Euler angles
origin, 2
orthogonal matrix, 430
orthogonal vectors, 48–49, 637
overdamped vibration, 33, 539
overhead crane, 191
using angular momentum, 262–263
center of mass, 199–200
equations of motion, 192
using Kane’s method, 616–617
using Lagrange’s method, 600–601
with rigid arm, 378–380
parallel axis theorem, 363, 498
partial angular velocity, 609
partial velocity, 609
particle, 16
particle on a beam, 380–382
passive dynamic walking, 131
path coordinates, 53–54
path frame, 76–78
pendulum
compound. See compound pendulum
double, 315–317
inverted, 47
simple. See simple pendulum
spinning, 598–600
periapapsis, 138
phase portrait, 457
plastic collision, 211
plumb bob, 452
Poincaré, Jules-Henri, 324
point mass, 16
polar coordinates, 53
polar frame, 70–71
polhode, 514–515
pool, 358
position, 2
Cartesian coordinates, 52, 409
cylindrical coordinates, 410
polar coordinates, 53
spherical coordinates, 411
total energy, 373–374
work, 371–373
power center of mass, 271
particle, 150
total, 155
precession, 526
equinoses, 489
free-body, 492, 516–517
prograde, 518
retrograde, 518
principal axes, 490, 504–505
Principia (Newton), 11
products of inertia, 481
projection method, 605
prolate rigid body, 518
pulling without slipping, 367–368
pure torque, 350
quadrature, 627, 647
qualitative analysis, 473–474
quarter-car model, 241
radius of curvature, 77
radius of gyration, 365–366
reduced mass, 203
reference frame, 3, 48–49, 87
cylindrical, 413–414
geographic, 412
intermediate, 415, 427–428
operational definition, 48
physical definition, 48
qualitative definition, 3
spherical, 414–417
relative motion. See motion, relative
relative orientation, 67–69
resonance, 543–544
restitution, coefficient of, 210–212, 217
resultant, 2, 12
right-hand rule, 640
rigid body, 48, 295, 338
angular momentum, 344–345, 467–468
center of mass, 340–341, 465–467
kinetic energy, 368–369, 510–512
moments of inertia, 352, 480
oblate, 518
planar, 295–297, 337–339
products of inertia, 481
prolate, 518
rotational equations of motion, 345–346, 354, 468, 485
symmetric, 486–490, 516–518
total energy, 373–374, 512–513, 514
work, 371–373, 510–513
robot arm, 23, 320–323
rocket equation of motion, 233
equation of Tsiolkovsky, 235
single-stage-to-orbit, 235
rocket equation, 233
rolling wheel, 298–299, 587
rotating reference frame, 69, 296–297, 426, 442–448
kinematics in, 302, 433
kinetics in, 311–314, 442–443
rotation planar reference frame, 68–73
prograde, 518
retrograde, 518
rigid body about arbitrary point, 360–361, 497
rigid body about center of mass, 295–297, 343, 467–468
simple, 71–73, 415, 426–428, 446–448
three-dimensional reference frame, 426–429
roundoff error, 652
Runge-Kutta method, 654–655
Rutherford, Ernest, 279
satellite
dumbbell, 387–390
INDEX

simple, 129–131, 136–139, 174–175
scalar dot product, 638 properties, 639
scale height, 41
scattering, 279
asymptotes, 284, 285
impact parameter, 279
turning angle, 284
semimajor axis, 139
separatrices, 515
SI units, 25
simple angular velocity, 72, 419–420, 434–435
simple harmonic motion, 29–34, 538–540, 650
simple rotation, 67, 414, 419–420, 446–448
Simpson's rule, 647
singular matrix, 646
skew symmetric matrix, 641
sliding contact, 305
sliding friction, 26
slug, 25
small angle approximation, 65, 629
space cone, 518–519
specific force, 15
speed, 5
generalized, 605–607
spherical coordinates, 411
spherical frame, 414–417
angular velocity, 419–420
spin stabilization, 516–517
spinning top, 476–478
spring
linear, 28–29
torsion, 93
stability, 470, 557–559, 649
asymptotic, 557
of numerical integration algorithm, 652
state of a particle, 5
state-space form, 552
static friction, 27
steady-state solution, 6
steady stream, 221–224
Stokes' theorem, 172
straight-line motion
constant force, 14
force-free, 13–14
position-dependent force, 15
symmetric rigid body, 476, 486–490, 516–518
symmetry, 424
symplectic algorithm, 656
synchronized swimming, 116
tangent line method, 653
tangent unit vector, 76
target tracking, 421–422, 440–441
Taylor series, 93, 627–628
numerical integration method, 654
tensor, 641
components, 643–644
tensor product, 641
properties, 642–643
terminal velocity, 35
tetherball, 126–127
tethered satellites, 257–258
time-reversible algorithm, 656
torque-free motion, 491–493, 514–518
torsion spring, 93
total derivative, 167
total energy
conservation, 170, 273
multiparticle system, 272
particle, 169, 424–425
rigid body, 373–374, 513
trajectory, 5, 88
chaotic, 177
transfer function, 545
transfer orbit, 139
transformation matrix, 68–69, 429
transformation table, 67–68, 429
transport equation, 304, 435
trunckation error, 652
local, 652
Tsiaokovsky, Konstantin, 235
two-bar linkage, 300–302
two-body problem, 274–277
underdamped vibration, 32, 539
unit vector, 48, 637
derivative of, 72, 297
normal, 76
tangent, 76
unit vector transformation, 68
units, 24
conversion of, 25
SI (International System), 25
USC (U.S. Customary units), 26
unity tensor, 479, 511, 642
U.S. Customary units, 26
variable-mass system, 220
vector, 2, 47–48, 635
addition, 2
components, 49–50, 637
cross product, 639–641
derivative. See vector derivative
inner product, 638
magnitude, 48, 50, 637
norm, 637
propterties, 636–637
qualified definition, 2
resultant, 2, 12
vector cross product, 639
properties, 640–641
vector derivative, 56–58
addition rule, 58, 88–89
chain rule, 58, 90–92
product rule, 58, 89–90
vector space, 635
closed, 635
vector triad, 635
velocity, 2–4, 60–61
Cartesian coordinates, 61
cylindrical coordinates, 410, 414
inflow, 223, 226
outflow, 223
partial, 609
path coordinates of, 76
polar coordinates, 63
rotating frame, 66–69
spherical coordinates, 411, 417
velocity Verlet, 656
vibration isolation, 356–357, 444–445
vibrations, 27, 337
forced, 540–545
isolation, 356–357, 444
virtual displacement, 590
virtual work, 590
viscous friction, 27
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watt, James</td>
<td>318, 329, 453</td>
</tr>
<tr>
<td>Watt flyball governor</td>
<td>453–457</td>
</tr>
<tr>
<td>Watt linkage</td>
<td>318–320</td>
</tr>
<tr>
<td>weight</td>
<td>25</td>
</tr>
<tr>
<td>wheel</td>
<td>298–299</td>
</tr>
<tr>
<td>work</td>
<td></td>
</tr>
<tr>
<td>due to constraint force</td>
<td>149–150</td>
</tr>
<tr>
<td>external</td>
<td>266</td>
</tr>
<tr>
<td>due to impulse</td>
<td>158</td>
</tr>
<tr>
<td>internal</td>
<td>266</td>
</tr>
<tr>
<td>on particle</td>
<td>148</td>
</tr>
<tr>
<td>on rigid body</td>
<td>371–373</td>
</tr>
<tr>
<td>total</td>
<td>153</td>
</tr>
<tr>
<td>virtual</td>
<td>590</td>
</tr>
<tr>
<td>work-energy formula</td>
<td></td>
</tr>
<tr>
<td>multiparticle system</td>
<td>266–267</td>
</tr>
<tr>
<td>particle</td>
<td>154, 165, 169</td>
</tr>
<tr>
<td>rigid body</td>
<td>513</td>
</tr>
<tr>
<td>yo-yo de-spin</td>
<td>382–385</td>
</tr>
<tr>
<td>zero meridian</td>
<td>412</td>
</tr>
<tr>
<td>zero of potential energy</td>
<td>164</td>
</tr>
<tr>
<td>zero-velocity curve</td>
<td>176</td>
</tr>
</tbody>
</table>