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Chapter 1

Functions, Graphs, and Lines

Trying to do calculus without using functions would be one of the most point-
less things you could do. If calculus had an ingredients list, functions would
be first on it, and by some margin too. So, the first two chapters of this book
are designed to jog your memory about the main features of functions. This
chapter contains a review of the following topics:

• functions: their domain, codomain, and range, and the vertical line test;

• inverse functions and the horizontal line test;

• composition of functions;

• odd and even functions;

• graphs of linear functions and polynomials in general, as well as a brief
survey of graphs of rational functions, exponentials, and logarithms; and

• how to deal with absolute values.

Trigonometric functions, or trig functions for short, are dealt with in the next
chapter. So, let’s kick off with a review of what a function actually is.

1.1 Functions

A function is a rule for transforming an object into another object. The
object you start with is called the input , and comes from some set called the
domain. What you get back is called the output ; it comes from some set
called the codomain.

Here are some examples of functions:

• Suppose you write f(x) = x2. You have just defined a function f which
transforms any number into its square. Since you didn’t say what the
domain or codomain are, it’s assumed that they are both R, the set of all
real numbers. So you can square any real number, and get a real number
back. For example, f transforms 2 into 4; it transforms −1/2 into 1/4;
and it transforms 1 into 1. This last one isn’t much of a change at all, but
that’s no problem: the transformed object doesn’t have to be different
from the original one. When you write f(2) = 4, what you really mean
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is that f transforms 2 into 4. By the way, f is the transformation
rule, while f(x) is the result of applying the transformation rule to the
variable x. So it’s technically not correct to say “f(x) is a function”; it
should be “f is a function.”

• Now, let g(x) = x2 with domain consisting only of numbers greater than
or equal to 0. (Such numbers are called nonnegative.) This seems like
the same function as f , but it’s not: the domains are different. For
example, f(−1/2) = 1/4, but g(−1/2) isn’t defined. The function g just
chokes on anything not in the domain, refusing even to touch it. Since
g and f have the same rule, but the domain of g is smaller than the
domain of f , we say that g is formed by restricting the domain of f .

• Still letting f(x) = x2, what do you make of f(horse)? Obviously this is
undefined, since you can’t square a horse. On the other hand, let’s set

h(x) = number of legs x has,

where the domain of h is the set of all animals. So h(horse) = 4, while
h(ant) = 6 and h(salmon) = 0. The codomain could be the set of
all nonnegative integers, since animals don’t have negative or fractional
numbers of legs. By the way, what is h(2)? This isn’t defined, of course,
since 2 isn’t in the domain. How many legs does a “2” have, after
all? The question doesn’t really make sense. You might also think that
h(chair) = 4, since most chairs have four legs, but that doesn’t work
either, since a chair isn’t an animal, and so “chair” is not in the domain
of h. That is, h(chair) is undefined.

• Suppose you have a dog called Junkster. Unfortunately, poor Junkster
has indigestion. He eats something, then chews on it for a while and
tries to digest it, fails, and hurls. Junkster has transformed the food
into . . . something else altogether. We could let

j(x) = color of barf when Junkster eats x,

where the domain of j is the set of foods that Junkster will eat. The
codomain is the set of all colors. For this to work, we have to be confident
that whenever Junkster eats a taco, his barf is always the same color
(say, red). If it’s sometimes red and sometimes green, that’s no good: a
function must assign a unique output for each valid input.

Now we have to look at the concept of the range of a function. The range is
the set of all outputs that could possibly occur. You can think of the function
working on transforming everything in the domain, one object at a time; the
collection of transformed objects is the range. You might get duplicates, but
that’s OK.

So why isn’t the range the same thing as the codomain? Well, the range
is actually a subset of the codomain. The codomain is a set of possible
outputs, while the range is the set of actual outputs. Here are the ranges of
the functions we looked at above:
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• If f(x) = x2 with domain R and codomain R, the range is the set of
nonnegative numbers. After all, when you square a number, the result
cannot be negative. How do you know the range is all the nonnegative
numbers? Well, if you square every number, you definitely cover all
nonnegative numbers. For example, you get 2 by squaring

√
2 (or −

√
2).

• If g(x) = x2, where the domain of g is only the nonnegative numbers
but the codomain is still all of R, the range will again be the set of
nonnegative numbers. When you square every nonnegative number, you
still cover all the nonnegative numbers.

• If h(x) is the number of legs the animal x has, then the range is all
the possible numbers of legs that any animal can have. I can think of
animals that have 0, 2, 4, 6, and 8 legs, as well as some creepy-crawlies
with more legs. If you include individual animals which have lost one or
more legs, you can also include 1, 3, 5, and 7 in the mix, as well as other
possibilities. In any case, the range of this function isn’t so clear-cut;
you probably have to be a biologist to know the real answer.

• Finally, if j(x) is the color of Junkster’s barf when he eats x, then the
range consists of all possible barf-colors. I dread to think what these
are, but probably bright blue isn’t among them.

1.1.1 Interval notation

In the rest of this book, our functions will always have codomain R, and the
domain will always be as much of R as possible (unless stated otherwise).
So we’ll often be dealing with subsets of the real line, especially connected
intervals such as {x : 2 ≤ x < 5}. It’s a bit of a pain to write out the full set
notation like this, but it sure beats having to say “all the numbers between 2
and 5, including 2 but not 5.” We can do even better using interval notation.

We’ll write [a, b] to mean the set of all numbers between a and b, including
a and b themselves. So [a, b] means the set of all x such that a ≤ x ≤ b. For
example, [2, 5] is the set of all real numbers between 2 and 5, including 2 and
5. (It’s not just the set consisting of 2, 3, 4, and 5: don’t forget that there are
loads of fractions and irrational numbers between 2 and 5, such as 5/2,

√
7,

and π.) An interval such as [a, b] is called closed.
If you don’t want the endpoints, change the square brackets to parentheses.

In particular, (a, b) is the set of all numbers between a and b, not including a
or b. So if x is in the interval (a, b), we know that a < x < b. The set (2, 5)
includes all real numbers between 2 and 5, but not 2 or 5. An interval of the
form (a, b) is called open.

You can mix and match: [a, b) consists of all numbers between a and b,
including a but not b. And (a, b] includes b but not a. These intervals are
closed at one end and open at the other. Sometimes such intervals are called
half-open. An example is the set {x : 2 ≤ x < 5} from above, which can also
be written as [2, 5).

There’s also the useful notation (a,∞) for all the numbers greater than a
not including a; [a,∞) is the same thing but with a included. There are three
other possibilities which involve −∞; all in all, the situation looks like this:
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PSfrag replacements

(a, b)

[a, b]

(a, b]

[a, b)

(a,∞)

[a,∞)

(−∞, b)

(−∞, b]

(−∞,∞)

{x : a < x < b}

{x : a ≤ x ≤ b}

{x : a < x ≤ b}

{x : a ≤ x < b}

{x : x ≥ a}

{x : x > a}

{x : x ≤ b}

{x : x < b}

R

a

a

a

a

a

a

b

b

b

b

b

b

1.1.2 Finding the domain

Sometimes the definition of a function will include the domain. (This was
the case, for example, with our function g from Section 1.1 above.) Most of
the time, however, the domain is not provided. The basic convention is that
the domain consists of as much of the set of real numbers as possible. For
example, if k(x) =

√
x, the domain can’t be all of R, since you can’t take the

square root of a negative number. The domain must be [0,∞), which is just
the set of all numbers greater than or equal to 0.

OK, so square roots of negative numbers are bad. What else can cause a
screw-up? Here’s a list of the three most common possibilities:

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b 1. The denominator of a fraction can’t be zero.

2. You can’t take the square root (or fourth root, sixth root, and so on) of
a negative number.

3. You can’t take the logarithm of a negative number or of 0. (Remember
logs? If not, see Chapter 9!)

You might recall that tan(90◦) is also a problem, but this is really a special
case of the first item above. You see,

tan(90◦) =
sin(90◦)

cos(90◦)
=

1

0
,

so the reason tan(90◦) is undefined is really that a hidden denominator is zero.
Here’s another example: if we try to define

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

f(x) =
log10(x + 8)

√
26− 2x

(x− 2)(x + 19)
,

then what is the domain of f? Well, for f(x) to make sense, here’s what needs
to happen:

• We need to take the square root of (26−2x), so this quantity had better
be nonnegative. That is, 26− 2x ≥ 0. This can be rewritten as x ≤ 13.
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• We also need to take the logarithm of (x + 8), so this quantity needs to
be positive. (Notice the difference between logs and square roots: you
can take the square root of 0, but you can’t take the log of 0.) Anyway,
we need x + 8 > 0, so x > −8. So far, we know that −8 < x ≤ 13, so
the domain is at most (−8, 13].

• The denominator can’t be 0; this means that (x−2) 6= 0 and (x+19) 6= 0.
In other words, x 6= 2 and x 6= −19. This last one isn’t a problem, since
we already know that x lies in (−8, 13], so x can’t possibly be −19. We
do have to exclude 2, though.

So we have found that the domain is the set (−8, 13] except for the number
2. This set could be written as (−8, 13]\{2}. Here the backslash means “not
including.”

1.1.3 Finding the range using the graph

Let’s define a new function F by specifying that its domain is [−2, 1] and that
F (x) = x2 on this domain. (Remember, the codomain of any function we
look at will always be the set of all real numbers.) Is F the same function as
f , where f(x) = x2 for all real numbers x? The answer is no, since the two
functions have different domains (even though they have the same rule). As
in the case of the function g from Section 1.1 above, the function F is formed
by restricting the domain of f .

Now, what is the range of F ? Well, what happens if you square every
number between −2 and 1 inclusive? You should be able to work this out
directly, but this is a good opportunity to see how to use a graph to find the
range of a function. The idea is to sketch the graph of the function, then
imagine two rows of lights shining from the far left and far right of the graph
horizontally toward the y-axis. The curve will cast two shadows, one on the
left side and one on the right side of the y-axis. The range is the union of
both shadows: that is, if any point on the y-axis lies in either the left-hand or
the right-hand shadow, it is in the range of the function. Let’s see how this
works with our function F :

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

sh
a
d
ow

0 1

4

−2



6 • Functions, Graphs, and Lines

The left-hand shadow covers all the points on the y-axis between 0 and 4
inclusive, which is [0, 4]; on the other hand, the right-hand shadow covers
the points between 0 and 1 inclusive, which is [0, 1]. The right-hand shadow
doesn’t contribute anything extra: the total coverage is still [0, 4]. This is the
range of F .

1.1.4 The vertical line test

In the last section, we used the graph of a function to find its range. The graph
of a function is very important: it really shows you what the function “looks
like.” We’ll be looking at techniques for sketching graphs in Chapter 12, but
for now I’d like to remind you about the vertical line test.

You can draw any figure you like on a coordinate plane, but the result
may not be the graph of a function. So what’s special about the graph of a
function? What is the graph of a function f , anyway? Well, it’s the collection
of all points with coordinates (x, f(x)), where x is in the domain of f . Here’s
another way of looking at this: start with some number x. If x is in the
domain, you plot the point (x, f(x)), which of course is at a height of f(x)
units above the point x on the x-axis. If x isn’t in the domain, you don’t plot
anything. Now repeat for every real number x to build up the graph.

Here’s the key idea: you can’t have two points with the same x-coordinate.
In other words, no two points on the graph can lie on the same vertical line.
Otherwise, how would you know which of the two or more heights above the
point x on the x-axis corresponds to the value of f(x)? So, this leads us to
the vertical line test : if you have some graph and you want to know whether
it’s the graph of a function, see whether any vertical line intersects the graph
more than once. If so, it’s not the graph of a function; but if no vertical line
intersects the graph more than once, you are indeed dealing with the graph
of a function. For example, the circle of radius 3 units centered at the origin

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2 has a graph like this:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3−3

Such a commonplace object should be a function, right? No, check the vertical
lines that are shown in the diagram. Sure, to the left of −3 or to the right
of 3, there’s no problem—the vertical lines don’t even hit the graph, which is
fine. Even at −3 or 3, the vertical lines only intersect the curve in one point
each, which is also fine. The problem is when x is in the interval (−3, 3). For
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any of these values of x, the vertical line through (x, 0) intersects the circle
twice, which screws up the circle’s potential function-status. You just don’t
know whether f(x) is the top point or the bottom point.

The best way to salvage the situation is to chop the circle in half hori-
zontally and choose only the top or the bottom half. The equation for the
whole circle is x2 + y2 = 9, whereas the equation for the top semicircle is
y =
√

9− x2. The bottom semicircle has equation y = −
√

9− x2. These last
two are functions, both with domain [−3, 3]. If you felt like chopping in a
different way, you wouldn’t actually have to take semicircles—you could chop
and change between the upper and lower semicircles, as long as you don’t vi-
olate the vertical line test. For example, here’s the graph of a function which
also has domain [−3, 3]:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3−3

The vertical line test checks out, so this is indeed the graph of a function.

1.2 Inverse Functions

Let’s say you have a function f . You present it with an input x; provided that
x is in the domain of f , you get back an output, which we call f(x). Now we
try to do things all backward and ask this question: if you pick a number y,
what input can you give to f in order to get back y as your output?

Here’s how to state the problem in math-speak: given a number y, what
x in the domain of f satisfies f(x) = y? The first thing to notice is that y
has to be in the range of f . Otherwise, by definition there are no values of
x such that f(x) = y. There would be nothing in the domain that f would
transform into y, since the range is all the possible outputs.

On the other hand, if y is in the range, there might be many values that
work. For example, if f(x) = x2 (with domain R), and we ask what value
of x transforms into 64, there are obviously two values of x: 8 and −8. On
the other hand, if g(x) = x3, and we ask the same question, there’s only one
value of x, which is 4. The same would be true for any number we give to g
to transform, because any number has only one (real) cube root.

So, here’s the situation: we’re given a function f , and we pick y in the range
of f . Ideally, there will be exactly one value of x which satisfies f(x) = y.
If this is true for every value of y in the range, then we can define a new
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function which reverses the transformation. Starting with the output y, the
new function finds the one and only input x which leads to the output. The
new function is called the inverse function of f , and is written as f−1. Here’s
a summary of the situation in mathematical language:

1. Start with a function f such that for any y in the range of f , there is
exactly one number x such that f(x) = y. That is, different inputs give
different outputs. Now we will define the inverse function f−1.

2. The domain of f−1 is the same as the range of f .

3. The range of f−1 is the same as the domain of f .

4. The value of f−1(y) is the number x such that f(x) = y. So,

if f(x) = y, then f−1(y) = x.

The transformation f−1 acts like an undo button for f : if you start with x
and transform it into y using the function f , then you can undo the effect of
the transformation by using the inverse function f−1 on y to get x back.

This raises some questions: how do you see if there’s only one value of x
that satisfies the equation f(x) = y? If so, how do you find the inverse, and
what does its graph look like? If not, how do you salvage the situation? We’ll
answer these questions in the next three sections.

1.2.1 The horizontal line test

For the first question—how to see that there’s only one value of x that works
for any y in the range—perhaps the best way is to look at the graph of your
function. We want to pick y in the range of f and hopefully only have one value
of x such that f(x) = y. What this means is that the horizontal line through
the point (0, y) should intersect the graph exactly once, at some point (x, y).
That x is the one we want. If the horizontal line intersects the curve more
than once, there would be multiple potential inverses x, which is bad. In that
case, the only way to get an inverse function is to restrict the domain; we’ll
come back to this very shortly. What if the horizontal line doesn’t intersect
the curve at all? Then y isn’t in the range after all, which is OK.

So, we have just described the horizontal line test : if every horizontal line
intersects the graph of a function at most once, the function has an inverse.
If even one horizontal line intersects the graph more than once, there isn’t an
inverse function. For example, look at the graphs of f(x) = x3 and g(x) = x2:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2f(x) = x3
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No horizontal line hits y = f(x) more than once, so f has an inverse. On the
other hand, some of the horizontal lines hit the curve y = g(x) twice, so g
has no inverse. Here’s the problem: if you want to solve y = x2 for x, where
y is positive, then there are two solutions, x =

√
y and x = −√y. You don’t

know which one to take!

1.2.2 Finding the inverse

Now let’s move on to the second of our questions: how do you find the inverse
of a function f? Well, you write down y = f(x) and try to solve for x. In
our example of f(x) = x3, we have y = x3, so x = 3

√
y. This means that

f−1(y) = 3
√

y. If the variable y here offends you, by all means switch it to
x: you can write f−1(x) = 3

√
x if you prefer. Of course, solving for x is not

always easy and in fact is often impossible. On the other hand, if you know
what the graph of your function looks like, the graph of the inverse function
is easy to find. The idea is to draw the line y = x on the graph, then pretend
that this line is a two-sided mirror. The inverse function is the reflection of
the original function in this mirror. When f(x) = x3, here’s what f−1 looks
like:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)

f−1(x) = 3
√

x

The original function f is reflected in the mirror y = x to get the inverse
function. Note that the domain and range of both f and f−1 are the whole
real line.

1.2.3 Restricting the domain

Finally, we’ll address our third question: if the horizontal line test fails and
there’s no inverse, what can be done? Our problem is that there are multiple
values of x that give the same y. The only way to get around the problem
is to throw away all but one of these values of x. That is, we have to decide
which one of our values of x we want to keep, and throw the rest away. As we
saw in Section 1.1 above, this is called restricting the domain of our function.
Effectively, we ghost out part of the curve so that what’s left no longer fails
the horizontal line test. For example, if g(x) = x2, we can ghost out the left
half of the graph like this:
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R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

The new (unghosted) curve has the reduced domain [0,∞) and satisfies the
horizontal line test, so there is an inverse function. More precisely, the function
h, which has domain [0,∞) and is defined by h(x) = x2 on this domain, has
an inverse. Let’s play the reflection game to see what it looks like:

[a, b)
(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)

f−1(x) = 3
√

x

y = h(x)

y = h−1(x)

To find the equation of the inverse, we have to solve for x in the equation
y = x2. Clearly the solution is x =

√
y or x = −√y, but which one do we

need? We know that the range of the inverse function is the same as the
domain of the original function, which we have restricted to be [0,∞). So
we need a nonnegative number as our answer, and that has to be x =

√
y.

That is, h−1(y) =
√

y. Of course, we could have ghosted out the right half of
the original graph to restrict the domain to (−∞, 0]. In that case, we’d get a
function j which has domain (−∞, 0] and again satisfies j(x) = x2, but only
on this domain. This function also has an inverse, but the inverse is now the
negative square root: j−1(y) = −√y.

By the way, if you take the original function g given by g(x) = x2 with
domain (−∞,∞), which fails the horizontal line test, and try to reflect it in
the mirror y = x, you get the following picture:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)
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Notice that the graph fails the vertical line test, so it’s not the graph of a
function. This illustrates the connection between the vertical and horizontal
line tests—when horizontal lines are reflected in the mirror y = x, they become
vertical lines.

1.2.4 Inverses of inverse functions

One more thing about inverse functions: if f has an inverse, it’s true that
f−1(f(x)) = x for all x in the domain of f , and also that f(f−1(y)) = y for
all y in the range of f . (Remember, the range of f is the same as the domain
of f−1, so you can indeed take f−1(y) for y in the range of f without causing
any screwups.)

For example, if f(x) = x3, then f has an inverse given by f−1(x) = 3
√

x,

{x : x < b}
R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) and so f−1(f(x)) =

3
√

x3 = x for any x. Remember, the inverse function is
like an undo button. We use x as an input to f , and then give the output to
f−1; this undoes the transformation and gives us back x, the original number.
Similarly, f(f−1(y)) = ( 3

√
y)3 = y. So f−1 is the inverse function of f , and

f is the inverse function of f−1. In other words, the inverse of the inverse is
the original function.

Now, you have to be careful in the case where you restrict the domain. Let
g(x) = x2; we’ve seen that you need to restrict the domain to get an inverse.
Let’s say we restrict the domain to [0,∞) and carelessly continue to refer to
the function as g instead of h, as in the previous section. We would then say
that g−1(x) =

√
x. If you calculate g(g−1(x)), you find that this is (

√
x)2,

which equals x, provided that x ≥ 0. (Otherwise you can’t take the square
root in the first place.)

On the other hand, if you work out g−1(g(x)), you get
√

x2, which is not
always the same thing as x. For example, if x = −2, then x2 = 4 and so√

x2 =
√

4 = 2. So it’s not true in general that g−1(g(x)) = x. The problem
is that −2 isn’t in the restricted-domain version of g. Technically, you can’t
even compute g(−2), since −2 is no longer in the domain of g. We really
should be working with h, not g, so that we remember to be more careful.
Nevertheless, in practice, mathematicians will often restrict the domain with-
out changing letters! So it will be useful to summarize the situation as follows:

If the domain of a function f can be restricted so that f has an inverse

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) f−1, then

• f(f−1(y)) = y for all y in the range of f ; but

• f−1(f(x)) may not equal x; in fact, f−1(f(x)) = x only when x is in
the restricted domain.

We’ll be revisiting these important points in the context of inverse trig func-
tions in Section 10.2.6 of Chapter 10.

1.3 Composition of Functions

Let’s say we have a function g given by g(x) = x2. You can replace x by
anything you like, as long as it makes sense. For example, you can write
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g(y) = y2, or g(x + 5) = (x + 5)2. This last example shows that you need to
be very careful with parentheses. It would be wrong to write g(x+5) = x+52,
since this is just x + 25, which is not the same thing as (x + 5)2. If in doubt,
use parentheses. That is, if you need to write out f(something), replace every
instance of x by (something), making sure to include the parentheses. Just
about the only time you don’t need to use parentheses is when the function is
an exponential function—for example, if h(x) = 3x, then you can just write

h(x2 + 6) = 3x2+6. You don’t need parentheses since you’re already writing
the x2 + 6 as a superscript.

Now consider the function f defined by f(x) = cos(x2). If I give you a
number x, how do you compute f(x)? Well, first you square it, then you take
the cosine of the result. Since we can decompose the action of f(x) into these
two separate actions which are performed one after the other, we might as
well describe those actions as functions themselves. So, let g(x) = x2 and
h(x) = cos(x). To simulate what f does when you use x as an input, you
could first give x to g to square it, and then instead of taking the result back
you could ask g to give its result to h instead. Then h spits out a number,
which is the final answer. The answer will, of course, be the cosine of what
came out of g, which was the square of the original x. This behavior exactly
mimics f , so we can write f(x) = h(g(x)). Another way of expressing this is
to write f = h ◦ g; here the circle means “composed with.” That is, f is h
composed with g, or in other words, f is the composition of h and g. What’s
tricky is that you write h before g (reading from left to right as usual!) but
you apply g first. I agree that it’s confusing, but what can I say—you just
have to deal with it.

It’s useful to practice composing two or more functions together. For
example, if g(x) = 2x, h(x) = 5x4, and j(x) = 2x − 1, what is a formula for

(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) the function f = g ◦ h ◦ j? Well, just replace one thing at a time, starting

with j, then h, then g. So:

f(x) = g(h(j(x))) = g(h(2x− 1)) = g(5(2x− 1)4) = 25(2x−1)4 .

You should also practice reversing the process. For example, suppose you

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) start off with

f(x) =
1

tan(5 log2(x + 3))
.

How would you decompose f into simpler functions? Zoom in to where you
see the quantity x. The first thing you do is add 3, so let g(x) = x + 3.
Then you have to take the base 2 logarithm of the resulting quantity, so set
h(x) = log2(x). Next, multiply by 5, so set j(x) = 5x. Then take the tangent,
so put k(x) = tan(x). Finally, take reciprocals, so let m(x) = 1/x. With all
these definitions, you should check that

f(x) = m(k(j(h(g(x))))).

Using the composition notation, you can write

f = m ◦ k ◦ j ◦ h ◦ g.
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This isn’t the only way to break down f . For example, we could have combined
h and j into another function n, where n(x) = 5 log2(x). Then you should
check that n = j ◦ h, and

f = m ◦ k ◦ n ◦ g.

Perhaps the original decomposition (involving j and h) is better because it
breaks down f into more elementary steps, but the second one (involving n)
isn’t wrong. After all, n(x) = 5 log2(x) is still a pretty simple function of x.

Beware: composition of functions isn’t the same thing as multiplying them
together. For example, if f(x) = x2 sin(x), then f is not the composition of
two functions. To calculate f(x) for any given x, you actually have to find
both x2 and sin(x) (it doesn’t matter which one you find first, unlike with
composition) and then multiply these two things together. If g(x) = x2 and
h(x) = sin(x), then we’d write f(x) = g(x)h(x), or f = gh. Compare this to
the composition of the two functions, j = g ◦ h, which is given by

j(x) = g(h(x)) = g(sin(x)) = (sin(x))2

or simply j(x) = sin2(x). The function j is a completely different function
from the product x2 sin(x). It’s also different from the function k = h ◦ g,
which is also a composition of g and h but in the other order:

k(x) = h(g(x)) = h(x2) = sin(x2).

This is yet another completely different function. The moral of the story is
that products and compositions are not the same thing, and furthermore, the
order of the functions matters when you compose them, but not when you
multiply them together.

One simple but important example of composition of functions occurs
when you compose some function f with g(x) = x − a, where a is some
constant number. You end up with a new function h given by h(x) = f(x−a).
A useful point to note is that the graph of y = h(x) is the same as the graph

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R
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b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) of y = f(x), except that it’s shifted over a units to the right. If a is negative,

then the shift is to the left. (The way to think of this, for example, is that a
shift of −3 units to the right is the same as a shift of 3 units to the left.) So,
how would you sketch the graph of y = (x− 1)2? This is the same as y = x2,

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R
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b

shadow
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1
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3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x) but with x replaced by x − 1. So the graph of y = x2 needs to be shifted to

the right by 1 unit, and looks like this:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}
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1

1

4
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3
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f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1
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Similarly, the graph of y = (x + 2)2 is the graph of y = x2 shifted to the left
by 2 units, since you can interpret (x + 2) as (x− (−2)).

1.4 Odd and Even Functions

Some functions have some symmetry properties that make them easier to deal
with. Consider the function f given by f(x) = x2. Pick any positive number
you like (I’ll choose 3) and hit it with f (I get 9). Now take the negative of
that number, −3 in my case, and hit that with f (I get 9 again). You should
get the same answer both times, as I did, regardless of which number you
chose. You can express this phenomenon by writing f(−x) = f(x) for all x.
That is, if you give x to f as an input, you get back the same answer as if
you used the input −x instead. Notice that g(x) = x4 and h(x) = x6 also
have this property—in fact, j(x) = xn, where n is any even number (n could
in fact be negative), has the same property. Inspired by this, we say that a
function f is even if f(−x) = f(x) for all x in the domain of f . It’s not good
enough for this equation to be true for some values of x; it has to be true for
all x in the domain of f .

Now, let’s say we play the same game with f(x) = x3. Take your favorite
positive number (I’ll stick with 3) and hit that with f (I get 27). Now try
again with the negative of your number, −3 in my case; I get −27, and you
should also get the negative of what you got before. You can express this
mathematically as f(−x) = −f(x). Once again, the same property holds for
j(x) = xn when n is any odd number (and once again, n could be negative).
So, we say that a function f is odd if f(−x) = −f(x) for all x in the domain
of f .

In general, a function might be odd, it might be even, or it might be

[a, b)
(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R
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b

shadow
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4
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3
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g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1 neither odd nor even. Don’t forget this last point! Most functions are neither
odd nor even. On the other hand, there’s only one function that’s both odd
and even, which is the rather boring function given by f(x) = 0 for all x (we’ll
call this the “zero function”). Why is this the only odd and even function?
Let’s convince ourselves. If the function f is even, then f(−x) = f(x) for
all x. But if it’s also odd, then f(−x) = −f(x) for all x. Take the first of
these equations and subtract the second from it. You should get 0 = 2f(x),
which means that f(x) = 0. This is true for all x, so the function f must
just be the zero function. One other nice observation is that if a function
f is odd, and the number 0 is in its domain, then f(0) = 0. Why is it so?
Because f(−x) = −f(x) is true for all x in the domain of f , so let’s try it for
x = 0. You get f(−0) = −f(0). But −0 is the same thing as 0, so we have
f(0) = −f(0). This simplifies to 2f(0) = 0, or f(0) = 0 as claimed.

Anyway, starting with a function f , how can you tell if it is odd, even, or
neither? And so what if it is odd or even anyway? Let’s look at this second
question before coming back to the first one. One nice thing about knowing
that a function is odd or even is that it’s easier to graph the function. In fact,
if you can graph the right-hand half of the function, the left-hand half is a
piece of cake! Let’s say that f is an even function. Then since f(x) = f(−x),
the graph of y = f(x) is at the same height above the x-coordinates x and
−x. This is true for all x, so the situation looks something like this:
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3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x

Same height

−x

We can conclude that the graph of an even function has mirror sym-
metry about the y-axis. So, if you graph the right half of a function which
you know is even, you can get the left half by reflecting the right half about
the y-axis. Check the graph of y = x2 to make sure that it has this mirror
symmetry.

On the other hand, let’s say that f is an odd function. Since we have
f(−x) = −f(x), the graph of y = f(x) is at the same height above the
x-coordinate x as it is below the x-coordinate −x. (Of course, if f(x) is
negative, then you have to switch the words “above” and “below.”) In any
case, the picture looks like this:

swq

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
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3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x Same height
−x

Same length,
opposite signs

The symmetry is now a point symmetry about the origin. That is, the graph
of an odd function has 180◦ point symmetry about the origin. This
means that if you only have the right half of a function which you know is
odd, you can get the left half as follows. Pretend that the curve is sitting
on top of the paper, so you can pick it up if you like but you can’t change
its shape. Instead of picking it up, put a pin through the curve at the origin
(remember, odd functions must pass through the origin if they are defined at
0) and then spin the whole curve around half a revolution. This is what the
left-hand half of the graph looks like. (This doesn’t work so well if the curve
isn’t continuous, that is, if the curve isn’t all in one piece!) Check to see that
the above graph and also the graph of y = x3 have this symmetry.

Now, suppose f is defined by the equation f(x) = log5(2x6−6x2+3). How

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs do you tell if f is odd, even, or neither? The technique is to calculate f(−x)
by replacing every instance of x with (−x), making sure not to forget the
parentheses around −x, and then simplifying the result. If you end up with
the original expression f(x), then f is even; if you end up with the negative of
the original expression f(−x), then f is odd; if you end up with a mess that
isn’t either f(x) or −f(x), then f is neither (or you didn’t simplify enough!).
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In the example above, you’d write

f(−x) = log5(2(−x)6 − 6(−x)2 + 3) = log5(2x6 − 6x2 + 3),

which is actually equal to the original f(x). So the function f is even. How

f−1(x) = 3
√

x
y = h(x)

y = h−1(x)
y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs about

g(x) =
2x3 + x

3x2 + 5
and h(x) =

2x3 + x− 1

3x2 + 5
?

Well, for g, we have

g(−x) =
2(−x)3 + (−x)

3(−x)2 + 5
=
−2x3 − x

3x2 + 5
.

Now you have to observe that you can take the minus sign out front and write

g(−x) = −2x3 + x

3x2 + 5
,

which, you notice, is equal to −g(x). That is, apart from the minus sign, we
get the original function back. So, g is an odd function. How about h? We
have

h(−x) =
2(−x)3 + (−x)− 1

3(−x)2 + 5
=
−2x3 − x− 1

3x2 + 5
.

Once again, we take out the minus sign to get

h(−x) = −2x3 + x + 1

3x2 + 5
.

Hmm, this doesn’t appear to be the negative of the original function, because
of the +1 term in the numerator. It’s not the original function either, so the
function h is neither odd nor even.

Let’s look at one more example. Suppose you want to prove that the

[a,∞)
(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
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1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs product of two odd functions is always an even function. How would you go
about doing this? Well, it helps to have names for things, so let’s say we have
two odd functions f and g. We need to look at the product of these functions,
so let’s call the product h. That is, we define h(x) = f(x)g(x). So, our task is
to show that h is even. We’ll do this by showing that h(−x) = h(x), as usual.
It will be helpful to note that f(−x) = −f(x) and g(−x) = −g(x), since f
and g are odd. Let’s start with h(−x). Since h is the product of f and g, we
have h(−x) = f(−x)g(−x). Now we use the oddness of f and g to express
this last term as (−f(x)) (−g(x)). The minus signs now come out front and
cancel out, so this is the same thing as f(x)g(x) which of course equals h(x).
We could (and should) express all this text mathematically like this:

h(−x) = f(−x)g(−x) = (−f(x)) (−g(x)) = f(x)g(x) = h(x).

Anyway, since h(−x) = h(x), the function h is even. Now you should try to

replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x − 1)2

−1

x
Same height

−x
Same length,

opposite signs prove that the product of two even functions is always even, and also that the
product of an odd and an even function must be odd. Go on, do it now!
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1.5 Graphs of Linear Functions

Functions of the form f(x) = mx + b are called linear. There’s a good reason
for this: the graphs of these functions are lines. (As far as we’re concerned,
the word “line” always means “straight line.”) The slope of the line is given
by m. Imagine for a moment that you are in the page, climbing the line as
if it were a mountain. You start at the left side of the page and head to the
right, like this:
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1
4
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g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
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y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs

If the slope m is positive, as it is in the above picture, then you are heading
uphill. The bigger m is, the steeper the climb. On the other hand, if the
slope is negative, then you are heading downhill. The more negative the
slope, the steeper the downhill grade. If the slope is zero, then the line is flat,
or horizontal—you’re going neither uphill nor downhill, just trudging along a
flat line.

To sketch the graph of a linear function, you only need to identify two
points on the graph. This is because there’s only one line that goes through
two different points. You just put your ruler on the points and draw the line.
One point is easy to find, namely, the y-intercept. Set x = 0 in the equation
y = mx + b, and you see that y = m × 0 + b = b. That is, the y-intercept is
equal to b, so the line goes through (0, b). To find another point, you could
find the x-intercept by setting y = 0 and finding what x is. This works pretty
well except in two cases. The first case is when b = 0, in which case we are
just dealing with y = mx. This goes through the origin, so the x-intercept
and the y-intercept are both zero. To get another point, you’ll just have to
substitute in x = 1 and see that y = m. So, the line y = mx goes through
the origin and (1, m). For example, the line y = −2x goes through the origin
and also through (1,−2), so it looks like this:

PSfrag replacements

(a, b)
[a, b]
(a, b]
[a, b)

(a,∞)
[a,∞)

(−∞, b)
(−∞, b]

(−∞,∞)
{x : a < x < b}
{x : a ≤ x ≤ b}
{x : a < x ≤ b}
{x : a ≤ x < b}
{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2
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f(x) = x3

mirror (y = x)
f−1(x) = 3
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y = h−1(x)

y = (x − 1)2
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x
Same height

−x
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y = −2x

−2

1
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The other bad case is when m = 0. But then we just have y = b, which is a
horizontal line through (0, b).

For a more interesting example, consider y = 1
2x − 1. The y-intercept is

−
x

Same height

−x
Same length,

opposite signs
y = −2x

−2

1 −1, and the slope is 1
2 . To sketch the line, find the x-intercept by setting

y = 0. We get 0 = 1
2x − 1, which simplifies to x = 2. So, the line looks like

this:

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
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y = h−1(x)

y = (x − 1)2

−1

x
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−x
Same length,

opposite signs
y = −2x

−2

1

y = 1
2x− 1

2
−1

Now, let’s suppose you know that you have a line in the plane, but you don’t
know its equation. If you know it goes through a certain point, and you know
what its slope is, then you can find the equation of the line. You really, really,
really need to know how to do this, since it comes up a lot. This formula,
called the point-slope form of a linear function, is what you need to know:

If a line goes through (x0, y0) and has slope m,
then its equation is y − y0 = m(x− x0).

For example, what is the equation of the line through (−2, 5) which has slope

x : x a
{x : x > a}
{x : x ≤ b}
{x : x < b}
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y = −2x
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y = 1

2x− 1

2
−1 −3? It is y − 5 = −3(x− (−2)), which you can expand and simplify down to

y = −3x− 1.
Sometimes you don’t know the slope of the line, but you do know two

points that it goes through. How do you find the equation? The technique
is to find the slope, then use the previous idea with one of the points (your
choice) to find the equation. First, you need to know this:

If a line goes through (x1, y1) and (x2, y2), its slope is equal to
y2 − y1

x2 − x1
.

So, what is the equation of the line through (−3, 4) and (2,−6)? Let’s find
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(−∞, b)
(−∞, b]
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2
−1 the slope first:

slope =
−6− 4

2− (−3)
=
−10

5
= −2.

We now know that the line goes through (−3, 4) and has slope −2, so its
equation is y− 4 = −2(x− (−3)), or after simplifying, y = −2x− 2. Alterna-
tively, we could have used the other point (2,−6) with slope −2 to see that the
equation of the line is y− (−6) = −2(x− 2), which simplifies to y = −2x− 2.
Thankfully this is the same equation as before—it doesn’t matter which point
you pick, as long as you have used both points to find the slope.
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1.6 Common Functions and Graphs

Here are the most important functions you should know about.

1. Polynomials: these are functions built out of nonnegative integer powers
of x. You start with the building blocks 1, x, x2, x3, and so on, and you are
allowed to multiply these basic functions by numbers and add a finite number
of them together. For example, the polynomial f(x) = 5x4−4x3+10 is formed
by taking 5 times the building block x4, and −4 times the building block x3,
and 10 times the building block 1, and adding them together. You might
also want to include the intermediate building blocks x2 and x, but since they
don’t appear, you need to take 0 times of each. The amount that you multiply
the building block xn by is called the coefficient of xn. For example, in the
polynomial f above, the coefficient of x4 is 5, the coefficient of x3 is −4, the
coefficients of x2 and x are both 0, and the coefficient of 1 is 10. (Why allow
x and 1, by the way? They seem different from the other blocks, but they’re
not really: x = x1 and 1 = x0.) The highest number n such that xn has a
nonzero coefficient is called the degree of the polynomial. For example, the
degree of the above polynomial f is 4, since no power of x greater than 4 is
present. The mathematical way to write a general polynomial of degree n is

p(x) = anxn + an−1x
n−1 + · · ·+ a2x

2 + a1x + a0,

where an is the coefficient of xn, an−1 is the coefficient of xn−1, and so on
down to a0, which is the coefficient of 1.

Since the functions xn are the building blocks of all polynomials, you
should know what their graphs look like. The even powers mostly look similar
to each other, and the same can be said for the odd powers. Here’s what the
graphs look like, from x0 up to x7:
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Sketching the graphs of more general polynomials is more difficult. Even find-
ing the x-intercepts is often impossible unless the polynomial is very simple.
There is one aspect of the graph that is fairly straightforward, which is what
happens at the far left and right sides of the graph. This is determined by
the so-called leading coefficient, which is the coefficient of the highest-degree
term. This is basically the number an defined above. For example, in our
polynomial f(x) = 5x4 − 4x3 + 10 from above, the leading coefficient is 5. In
fact, it only matters whether the leading coefficient is positive or negative. It
also matters whether the degree of the polynomial is odd or even; so there are
four possibilities for what the edges of the graph can look like:
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mirror (y = x)
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n even, an > 0 n odd, an > 0 n even, an < 0 n odd, an < 0

The wiggles in the center of these diagrams aren’t relevant—they depend
on the other terms of the polynomial. The diagram is just supposed to show
what the graphs look like near the left and right edges. In this sense, the
graph of our polynomial f(x) = 5x4− 4x3 +10 looks like the leftmost picture
above, since n = 4 is even and an = 5 is positive.

Let’s spend a little time on degree 2 polynomials, which are called quadrat-

ics. Instead of writing p(x) = a2x
2+a1x+a0, it’s easier to write the coefficients

as a, b, and c, so we have p(x) = ax2 + bx + c. Quadratics have two, one,
or zero (real) roots, depending on the sign of the discriminant. The discrimi-
nant, which is often written as ∆, is given by ∆ = b2 − 4ac. There are three
possibilities. If ∆ > 0, then there are two roots; if ∆ = 0, there is one root,
which is called a double root ; and if ∆ < 0, then there are no roots. In the
first two cases, the roots are given by

−b±
√

b2 − 4ac

2a
.

Notice that the expression in the square root is just the discriminant. An im-
portant technique for dealing with quadratics is completing the square. Here’s
how it works. We’ll use the example of the quadratic 2x2 − 3x + 10. The
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2
−1 first step is to take out the leading coefficient as a factor. So our quadratic

becomes 2(x2 − 3
2x + 5). This reduces the situation to dealing with a monic

quadratic, which is a quadratic with leading coefficient equal to 1. So, let’s
worry about x2 − 3

2x + 5. The main technique now is to take the coefficient
of x, which in our example is − 3

2 , divide it by 2 to get − 3
4 , and square it. We

get 9
16 . We wish that the constant term were 9

16 instead of 5, so let’s do some
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mental gymnastics:

x2 − 3

2
x + 5 = x2 − 3

2
x +

9

16
+ 5− 9

16
.

Why on earth would we want to add and subtract 9
16? Because the first three

terms combine to form (x− 3
4 )2. So, we have

x2 − 3

2
x + 5 =

(
x2 − 3

2
x +

9

16

)
+ 5− 9

16
=

(
x− 3

4

)2
+ 5− 9

16
.

Now we just have to work out the last little bit, which is just arithmetic:
5− 9

16 = 71
16 . Putting it all together, and restoring the factor of 2, we have

2x2 − 3x + 10 = 2

(
x2 − 3

2
x + 5

)
= 2

((
x− 3

4

)2
+

71

16

)

= 2

(
x− 3

4

)2
+

71

8
.

It turns out that this is a much nicer form to deal with in a number of situa-
tions. Make sure you know how to complete the square, since we’ll be using
this technique a lot in Chapters 18 and 19.

2. Rational functions: these are functions of the form

p(x)

q(x)
,

where p and q are polynomials. Rational functions will pop up in many
different contexts, and the graphs can look very different depending on the
polynomials p and q. The simplest examples of rational functions are poly-
nomials themselves, which arise when q(x) is the constant polynomial 1. The
next simplest examples are the functions 1/xn, where n is a positive integer.
Let’s look at some of the graphs of these functions:
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The odd powers look similar to each other, and the even powers look
similar to each other. It’s worth knowing what these graphs look like.
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3. Exponentials and logarithms: you need to know what graphs of expo-
nentials look like. For example, here is y = 2x:

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3
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x
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2
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y = 10x

The graph of y = bx for any other base b > 1 looks similar to this. Things
to notice are that the domain is the whole real line, the y-intercept is 1, the
range is (0,∞), and there is a horizontal asymptote on the left at y = 0.
In particular, the curve y = bx does not, I repeat, not touch the x-axis, no
matter what it looks like on your graphing calculator! (We’ll be looking at
asymptotes again in Chapter 3.) The graph of y = 2−x is just the reflection
of y = 2x in the y-axis:
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How about when the base is less than 1? For example, consider the graph of
y = ( 1

2 )x. Notice that ( 1
2 )x = 1/2x = 2−x, so the above graph of y = 2−x is

also the graph of y = ( 1
2 )x, since 2−x and ( 1

2 )x are equal for any x. The same
sort of thing happens for y = bx for any 0 < b < 1, not just b = 1

2 .

Now, notice that the graph of y = 2x satisfies the horizontal line test,
so there is an inverse function. This is in fact the base 2 logarithm, which is
written y = log2(x). Using the line y = x as a mirror, the graph of y = log2(x)
looks like this:
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mirror (y = x)
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The domain is (0,∞); note that this backs up what I said earlier about not
being able to take logarithms of a negative number or of 0. The range is all of
(−∞,∞), and there’s a vertical asymptote at x = 0. The graphs of log10(x),
and indeed logb(x) for any b > 1, are very similar to this one. The log func-
tion is very important in calculus, so you should really know how to draw the
above graph. We’ll look at other properties of logarithms in Chapter 9.

4. Trig functions: these are so important that the entire next chapter is
devoted to them.

5. Functions involving absolute values: let’s take a close look at the
absolute value function f given by f(x) = |x|. Here’s the definition of |x|:

|x| =
{

x if x ≥ 0,

−x if x < 0.

Another way of looking at |x| is that it is the distance between x and 0 on
the number line. More generally, you should learn this nice fact:

|x− y| is the distance between x and y on the number line.

For example, suppose that you need to identify the region |x− 1| ≤ 3 on the

{x : x ≥ a}
{x : x > a}
{x : x ≤ b}
{x : x < b}

R

a
b

shadow
0
1
4
−2

3
−3

g(x) = x2

f(x) = x3

g(x) = x2

f(x) = x3

mirror (y = x)
f−1(x) = 3

√
x

y = h(x)
y = h−1(x)

y = (x− 1)2

−1

x
Same height

−x
Same length,

opposite signs
y = −2x

−2

1
y = 1

2x− 1

2
−1

y = 2x

y = 10x

y = 2−x

y = log2(x) number line. You can interpret the inequality as “the distance between x and
1 is less than or equal to 3.” That is, we are looking for all the points that
are no more than 3 units away from the number 1. So, let’s take a number
line and mark in the number 1 as follows:
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The points which are no more than 3 units away extend to −2 on the left and
4 on the right, so the region we want looks like this:
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So, the region |x− 1| ≤ 3 can also be described as [−2, 4].
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It’s also true that |x| =
√

x2. To check this, suppose that x ≥ 0; then√
x2 = x, no problem. If instead x < 0, then it can’t be true that

√
x2 = x,

since the left-hand side is positive but the right-hand side is negative. The
correct equation is

√
x2 = −x; now the right-hand side is positive, since it’s

minus a negative number. If you look back at the definition of |x|, you’ll see

that we have just proved that |x| =
√

x2. Even so, to deal with |x|, it’s much

better to use the piecewise definition than to write it as
√

x2.
Finally, let’s take a look at some graphs. If you know what the graph of a

function looks like, you can get the graph of the absolute value of that function
by reflecting everything below the x-axis up to above the x-axis, using the
x-axis as your mirror. For example, here’s the graph of y = |x|, which comes
from reflecting the bottom portion of y = x in the x-axis:
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How about the graph of y = |log2(x)|? Using the reflection of the graph of
y = log2(x) above, this is what the absolute value version looks like:
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Anyway, that’s all I have to say about functions, apart from trig functions
which are the subject of the next chapter. Hopefully you’ve seen a lot of the
stuff in this chapter before. Most of the material in this chapter is used over
and over again in calculus, so make sure you really get on top of it all as soon
as you can!
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absolute convergence, 491, 516
absolute convergence test

for improper integrals, 447–449, 453
for series, 490–491, 516–518

absolute maximum, see global maximum
absolute minimum, see global minimum
absolute values, 23–24

in limits, see limits, involving abso-
lute values

acceleration, 114
constant negative, 115–117

alternating series test, 497–499, 516–518,
548

antiderivatives, 361
approximations, see estimates
arc lengths, 637–639

parametric formula for, 638
polar formula for, 639

arccos(x), see inverse cosine
arcsec(x), see inverse secant
arcsin(x), see inverse sine
arctan(x), see inverse tangent
areas

between curve and y-axis, 344–346

between two curves, 342–344
and definite integrals, 326
and displacement, 314–318
enclosed by polar curves, 591–593
signed, 319–320
unsigned, see unsigned areas
using definite integrals to find, 339–

346

argument, 601
ASTC method, 31–33
asymptotes

horizontal, 47
misconceptions about, 50
vertical, 46

asymptotic functions, 442, 455
asymptotic sequences, 488
average speed, 84
average value of functions, 350
average velocity, 85, 350
axis, 632

base, 167
bell-shaped curve, 703
binomial theorem, 539
blow-up points, 432, see also problem spots

in interior, 436
at left-hand endpoint, 433
at right-hand endpoint, 436

bounded functions, 431

cardioid, 589
Cartesian coordinates, 581, 599

and complex numbers, see Cartesian
form

conversion of from polar coordinates,
582–583

conversion of to polar coordinates, 583–
585

Cartesian form, 600
conversion of from polar form, 601
conversion of to polar form, 601–603

center of power series, 529
chain rule, 107–109

justification of, 113
proof of, 693–694

change of base rule (logarithms), 171
characteristic quadratic equations, 654–656
closed interval, 3
codomain, 1
coefficients

leading, 20
of polynomials, 19
of power series, 527
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coefficients (continued)
of Taylor series, 530

comparison test
for improper integrals, 439–441, 455
for series, 487–488, 510–515

completeness, 686, 687
completing the square, 20, 202, 402

and trig substitutions, 426
complex conjugate, 597
complex numbers, 596

adding, 596
arguments of, 601
Cartesian form of, see Cartesian form
conjugates of, 597
dividing, 596–598
and exponentials, 598–599
imaginary part of, 596
modulus of, 597
multiplying, 596
polar form of, see polar form
real part of, 596
representation of on complex plane,

599–603
solving ez = w, 610–612
solving zn = w, 604–610

summary of method for, 607
subtracting, 596
taking large powers of, 603–604

complex plane, 599–603
composition of functions, 11–14
compound interest, 173–175
concave down, 237
concave up, 237
conditional convergence, 498
conjugate expression, 61
constant functions, derivatives of, 102
constant multiples

and derivatives, 103, 691
and integrals, 373

constant-coefficient differential equations,
653–665

continuity
on an interval, 77
at a point, 76

continuous functions, 77
compositions of, 684–686
and differentiable functions, 96–97
examples of, 77–80

convergence
absolute, 491, 516
conditional, 498
of improper integrals, 433
of power series, 551–558
of sequences, 478

of series, 482
of Taylor series, 530–534

correction term, second order, 522, 523
cosecant, 27

derivative of, 143
graph of, 38
integrals involving powers of, 418
inverse of, see inverse cosecant
symmetry properties of, 38

cosh(x), see hyperbolic cosine
cosine, 26

derivative of, 142
graph of, 36
integrals involving powers of, 413–415
inverse of, see inverse cosine
symmetry properties of, 38

cos(x), see cosine
cos−1(x), see inverse cosine
cotangent, 27

derivative of, 143
graph of, 38
integrals involving powers of, 418
inverse of, see inverse cotangent
symmetry properties of, 38

coth(x), see hyperbolic cotangent
cot(x), see cotangent
critical points, 227

classifying using the first derivative,
240–242

classifying using the second deriva-
tive, 242–243

csch(x), see hyperbolic cosecant
csc(x), see cosecant
cylindrical shells, see shell method

decay constant, 196
decreasing functions, 236
definite integrals

and areas, 326
basic idea of, 325–330
and constants, 337
definition of, 330–334
estimating, 346–350
properties of, 334–338
splitting of into two pieces, 337
and sums and differences, 338

degree
of polynomial, 19
of Taylor polynomial, 533

derivatives, 90
of compositions, 107
of constant functions, 102
of constant multiples, 103, 691
of cos(x), 142
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of cot(x), 143
of csc(x), 143
of differences, 103, 691–692
finding using power or Taylor series,

568–570
higher-order, 94
implicit, see implicit differentiation
of inverse functions, 204–207
involving trig functions, 141–148
left-hand, 95
as limiting ratios, 91–93
of ln(x), 177–179
of logb(x), 177–179
logarithmic, 189–192
of logarithms, 177–179
nonexistence of, 94
of parametric equations, 578–580
of piecewise-defined functions, 119–

123, 697–698
in polar coordinates, 590–591
of products, see product rule
of quotients, see quotient rule
right-hand, 95
of sec(x), 142
second, 94
of sin(x), 141
of sums, 103, 691–692
table of signs for, 247–248
of tan(x), 142
third, 94
using the definition to find, 99
using to classify critical points, 240–

242
using to show inverse exists, 201–203
of xn, 101–102

difference of two cubes, 58
differentiable functions, 90

and continuous functions, 96–97
differential, 281–282
differential equations, 193, 645–646

constant-coefficient, 653–665
first order, 645
first-order homogeneous, 654
first-order linear, 648–653
and initial value problems, see initial

value problems
and modeling, 665–667
nonhomogeneous, 656–663
second-order homogeneous, 654–656
separable, 646–648

differentiation, 90
disc method, 619–620, 622
discontinuity, 76
discriminant, 20

displacement, 85
and areas, 314–318
as integral of velocity, 327

distance (integral of speed), 327
divergence

of improper integrals, 433
of sequences, 478
of series, 482

domain, 1
finding, 4–5
restricting, 2, 9

double root, 20, 595, 656
double-angle formulas, 40, 409
dummy variable, 43, 308, 356

e
definition of, 173–175
limits involving, 181–182

endpoints of integration, 326
envelope, 140
equating coefficients

in differential equations, 658
in partial fractions, 404

error term
in linearization, 281, 285–287, 696–

697
in Taylor series, 524, 536

techniques for estimating, 548–550
estimates

of definite integrals, 346–350
error in, 711–714
using Simpson’s rule, 709–710
using strips, 703–706
using the trapezoidal rule, 706–708

using linearization, 279–281
using quadratics, 521–522
using Taylor polynomials, 519–520,

540–548
Euler’s identity, 599, 615
even functions, 14

product of, 16
symmetry of graph of, 15

exponent, 167
exponential decay, 193, 195–197

equation describing, 197
exponential growth, 193–195

equation describing, 194
exponential rules, 168
exponentials

behavior of near 0, 182–183, 472–473
behavior of near ±∞, 184–186, 461–

464
complex, 598–599
graph of, 22
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exponentials (continued)
relationship of with logarithms, 169
theory of, 689–691

extrema, 225
Extreme Value Theorem, 227

proof of, 694–695

First Fundamental Theorem, 358–361
proof of, 381–382
solving problems using, 366–371
statement of, 360

first-order differential equations, 645
homogeneous, 654
linear, 648–653
nonhomogeneous, 656–663

form
for partial fractions, 399
for particular solutions, 658, 659

functions, 1
asymptotic, 442, 455
average value of, 350
based on integral, 355–358
continuous, see continuous functions
decreasing, 236
differentiable, see differentiable func-

tions
even, see even functions
exponential, see exponentials
hyperbolic, see hyperbolic functions
increasing, 236
integrable, 331
inverse, see inverse functions
inverse hyperbolic, see inverse hyper-

bolic functions
inverse trig, see inverse trig functions
involving absolute values, see abso-

lute values
linear, see linear functions
logarithm, see logarithms
nonintegrable, 353–354
odd, see odd functions
poly-type, 67
rational, see rational functions
symmetry properties of, 14–16
trigonometric, see trig functions
with zero derivative, 236

Fundamental Theorem of Algebra, 595
Fundamental Theorem of Calculus

First, see First Fundamental Theo-
rem

Second, see Second Fundamental The-
orem

geometric progressions, 480–481

geometric series, 484–485, 502–503
global maximum, 226

how to find, 228–230
global minimum, 226

how to find, 228–230
graphs

of common functions, 19–24
method for sketching, 250–252
shifting, 13

growth constant, 194

half-life, 196
half-open interval, 3
harmonic series, 489
homogeneous differential equations, 654

first-order, 654
second-order, 654–656

homogeneous solutions, 658
conflicts with particular solutions, 662–

663
horizontal asymptotes, 47
horizontal line test, 8–9
hyperbolic cosecant, 199

inverse of, 222–223
hyperbolic cosine, 198–200

inverse of, 220–222
hyperbolic cotangent, 199

inverse of, 222–223
hyperbolic functions, 198–200
hyperbolic geometry, 198
hyperbolic secant, 199

inverse of, 222–223
hyperbolic sine, 198–200

inverse of, 220–222
hyperbolic tangent, 199

inverse of, 222–223

imaginary numbers, 596
imaginary part, 596
implicit differentiation, 149–154

in optimization, 274–275
and second derivatives, 154–156

improper integrals, 431–476
absolute convergence test for, see ab-

solute convergence test, for im-
proper integrals

comparison test for, see comparison
test, for improper integrals

definition of, 432
limit comparison test for, see limit

comparison test, for improper in-
tegrals

and negative function values, 453–454
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p-test for, see p-test, for improper in-
tegrals

and series, 487–491
splitting of, 452–453
summary of tests for analyzing, 454–

456
increasing functions, 236
indefinite integrals, 364–366
indeterminate forms, 58, see also l’Hôpital’s

Rule
index of summation, 308
infimum, 230
infinite sequences, see sequences
infinite series, see series
inflection points, 238–239
initial value problems (IVP), 646, 647

constant-coefficient linear, 663–665
input, 1
instantaneous velocity, see velocity
integrable functions, 331
integral test (for series), 494–497, 509–510
integrals

definite, see definite integrals
improper, see improper integrals
indefinite, see indefinite integrals

integrand, 326
integrating factor, 649, 652–653
integration

and partial fractions, see partial frac-
tions

involving powers of cos, 413–415
involving powers of cot, 418
involving powers of csc, 418
involving powers of sec, 416–418
involving powers of sin, 413–415
involving powers of tan, 415–416
involving powers of trig functions, 413–

421
overview of techniques of, 429–430
by parts, 393–397
substitution method of, 383–391
using trig identities, 409–413
using trig substitutions, see trig sub-

stitutions
integration by parts, 393–397
Intermediate Value Theorem (IVT), 80–82

proof of, 686–687
interval notation, 3–4
inverse cosecant

derivative of, 218
domain of, 217
graph of, 217
limits at ±∞, 218

range of, 217
symmetry properties of, 217

inverse cosine
derivative of, 212
domain of, 212
graph of, 211
range of, 212
relationship of with inverse sine, 212–

213
symmetry properties of, 212

inverse cotangent
derivative of, 218
domain of, 217
graph of, 217
limits at ±∞, 218
range of, 217
symmetry properties of, 217

inverse functions, 7–8
derivatives of, 204–207
existence of, 201–203
finding, 9
inverses of, 11

inverse hyperbolic cosecant, 222–223
inverse hyperbolic cosine, 220–222
inverse hyperbolic cotangent, 222–223
inverse hyperbolic functions, 220–223
inverse hyperbolic secant, 222–223
inverse hyperbolic sine, 220–222
inverse hyperbolic tangent, 222–223
inverse secant

derivative of, 217
domain of, 217
graph of, 216
limits at ±∞, 216
range of, 217
symmetry properties of, 217

inverse sine, 208–211
derivative of, 210
domain of, 210
graph of, 209
range of, 210
relationship of with inverse cosine, 212–

213
symmetry properties of, 210

inverse tangent
derivative of, 215
domain of, 215
graph of, 214
limits at ±∞, 215
range of, 215
symmetry properties of, 215

inverse trig functions, 208–218
computing, 218–220
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IVP, see initial value problems
IVT, see Intermediate Value Theorem

large numbers, 48–49
leading coefficient, 20
left-continuous functions, 77
left-hand derivatives, see derivatives, left-

hand
left-hand limits, see limits, left-hand
l’Hôpital’s Rule, 293–303

proof of, 698–700
for sequences, 479
summary of, 302–303
Type A (0/0), 294–296
Type A (∞/∞), 296–297
Type B1 (∞−∞), 298–299
Type B2 (0 ×±∞), 299–300
Type C (1±∞, 00, or ∞0), 301–302

limaçon, 589
limit comparison test

for improper integrals, 441–444, 455–
456

for series, 488–489, 510–515
limits

as derivative in disguise, 117–119
finding using Maclaurin series, 570–

574
formal definition of, 672
game about, 670–672
infinite, 45, 679–680
at ∞ or −∞, 47, 680–682
informal definition of, 42
involving absolute values, 72–73
involving definition of e, 181–182
involving poly-type functions, 66–70
involving rational functions

as x → a, 57–60
as x → −∞, 70–72
as x → ∞, 61–66

involving square roots, 61
involving trig functions, 127–141

at large arguments, 134–136
at small arguments, 128–133
at various other arguments, 137

left-hand, 43–44, 680
nonexistence of, 44–46
overview of methods involving, 303–

306
products of, 675–676
quotients of, 676–677
right-hand, 43–44, 680
of sequences, 682
summary of basic types of, 54

sums and differences of, 674–675
two-sided, 44

limits of integration, 326
equal, 335
reversing, 335

linear functions, 17
derivatives of, 93
graph of, 17
point-slope form of, 18
through two given points, 18

linearization, 278–281, 520–521
error in, see error term, in lineariza-

tion
method for finding, 283–285

ln(x), see logarithms
local maximum, 226
local minimum, 226
log, see logarithms
log rules, 171–172, 176
logarithmic differentiation, 189–192
logarithms

behavior of near 0, 188–189, 473–474
behavior of near 1, 183–184
behavior of near ∞, 187–188, 465–

468
definition of, 168
derivatives of, 177–179
graph of, 22
natural, 176
relationship of with exponentials, 169
rules for, see log rules
theory of, 689–691

lower sums, 324, 354

Maclaurin series, 529–530, 536, 615
common, 558–559
and improper integrals, 474–475
using to find limits, 570–574

Max-Min Theorem, 83
proof of, 687–688

maximum, 83
global, see global maximum
local, see local maximum

Mean Value Theorem (MVT), 233–235, 525
consequences of, 235–236
for integrals, 351–353
proof of, 695–696

mesh, 322, 330
minimum, 83

global, see global minimum
local, see local minimum

mod-arg form, 601
modulus, 597
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monic quadratics, 20
MVT, see Mean Value Theorem

natural logarithms, 176
Newton’s method, 287–292

formula for, 289
potential problems with, 290–292

nonhomogeneous differential equations, 656–
663

nonintegrable functions, 353–354
nonnegative numbers, 2
normal distribution, 703
nth term test, 486–487, 503–504

odd functions, 14
product of, 16
symmetry of graph of, 15

open interval, 3
optimization, 267–278

method for solving problems involv-
ing, 269

using implicit differentiation in, 274–
275

order
of differential equations, 645
of Taylor polynomials, 533

output, 1
overestimates

in linearization, 286
in Taylor series, 541

p-test
for improper integrals, 456
for improper integrals, 444–447
for series, 489–490, 497, 510–515

parameters, 576
and arc lengths, 638
and surface areas, 643

parametric equations, 575–578
derivatives of, 578–580
second derivatives of, 580–581

parametrization, 577
and speed, 639–640

partial fractions, 397–408
form for, 399
main method of, 404

partial sums, 482, 483
particular solutions, 657

conflicts with homogeneous solutions,
662–663

finding, 658–662
partitions, 317, 330, 704

evenly spaced, 705–706
mesh of, see mesh

parts, integration by, 393–397
periodic, 35, 589, 601
piecewise-defined functions, derivatives of,

697–698
point-slope form, 18
points of inflection, 238–239
polar coordinates, 581–590, 599

and arc lengths, 639
and complex numbers, see polar form
conversion of from Cartesian coordi-

nates, 583–585
conversion of to Cartesian coordinates,

582–583
sketching curves in, 585–590

polar curves
areas enclosed by, 591–593
tangents to, 590–591

polar form, 600
conversion of from Cartesian form, 601–

603
conversion of to Cartesian form, 601

poly-type functions, 67
behavior of near 0, 469–470
behavior of near ±∞, 456–459
in limits, see limits, involving poly-

type functions
polynomials, 19

behavior of near 0, 469–470
behavior of near ±∞, 456–459
coefficients of, 19
degree of, 19
leading coefficient of, 20

power series, 527–529, 615
convergence of, 551–558
radius of convergence of, 551–558
using to find derivatives, 568–570

powers of x, derivatives of, 101–102, 192–
193

problem spots, 436, 437, 451
absence of, 452
not at 0 or ∞, 475–476

product rule, 104–105
for three variables, 112
justification of, 111–113
proof of, 692
for three variables, 105

quadrant, 28
quadratics, 20–21

completing the square in, 20
and complex numbers, 598
discriminant of, 20
double root of, 20
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quadratics (continued)
monic, 20

quotient rule, 105–106
proof of, 693

radar, 584
radians, 25
radius of convergence, 551–558
range, 2

finding, 5–6
rates of change, 156
ratio test, 492–493, 504–508
rational functions, 21

in limits, see limits, involving ratio-
nal functions

integrating, see partial fractions
real part, 596
reduction formulas, 419–421
reference angle, 30
related rates, 156–165
relative maximum, see local maximum
relative minimum, see local minimum
remainder term, see error term, in Taylor

series
restricting the domain, see domain, restrict-

ing
Riemann sums, 331, 333, 355, 591, 618,

704
right-continuous functions, 77
right-hand derivatives, see derivatives, right-

hand
right-hand limits, see limits, right-hand
Rolle’s Theorem, 230–233

proof of, 695
root test, 493–494, 508

sandwich principle, 51–54
proof of, 678
for sequences, 479

secant, 27
derivative of, 142
graph of, 37
integrals involving powers of, 416–418
inverse of, see inverse secant
symmetry properties of, 38

sech(x), see hyperbolic secant
second derivatives, 94

and graphs, 237–239
and implicit differentiation, 154–156
of parametric equations, 580–581
table of signs for, 248–250
using to classify critical points, 242

Second Fundamental Theorem, 362–364
solving problems using, 371–374

statement of, 363
second-order correction term, 522, 523
second-order differential equations

homogeneous, 654–656
nonhomogeneous, 656–663

sec(x), see secant
sec−1(x), see inverse secant
separable differential equations, 646–648
sequences, 477

asymptotic, 488
and functions, 478–480
limits of, 682

series
absolute convergence of, 491, 516
absolute convergence test for, see ab-

solute convergence test, for se-
ries

alternating series test for, see alter-
nating series test

basic concepts for, 481–484
comparison test for, see comparison

test, for series
conditional convergence of, 498
flowchart for investigating, 501–502
geometric, see geometric series
harmonic, 489
and improper integrals, 487–491
integral test for, see integral test (for

series)
limit comparison test for, see limit

comparison test, for series
Maclaurin, see Maclaurin series
with negative terms, 515–518
nth term test for, see nth term test
p-test for, see p-test, for series
power, see power series
ratio test for, see ratio test
root test for, see root test
Taylor, see Taylor series
telescoping, 311–314

shell method, 620–622
sigma notation, 307–314
signed areas, 319–320
simple harmonic motion, 145–146
Simpson’s rule, 709–710

error in, 711–714
proof of, 710–711

sine, 26
derivative of, 141
graph of, 35
important limit involving, 137–140
integrals involving powers of, 413–415
inverse of, see inverse sine
symmetry properties of, 38
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sinh(x), see hyperbolic sine
sin(x), see sine
sin−1(x), see inverse sine
sketching graphs, 250–266

of derivatives, 123–126
in polar coordinates, 585–590

slicing, 620, 632
small numbers, 48–49
smoothness, 75
solids of revolution

surface areas of, see surface areas, of
solids of revolution

volumes of, see volumes, of solids of
revolution

speed
average, 84
and parametrization, 639–640

spiral of Archimedes, 589
squeeze principle, see sandwich principle
standard form, of first-order differential equa-

tion, 650
strips, estimating integrals using, 703–706
substitution (integration technique), 383–

391
justification of, 392–393

surface areas of solids of revolution, 640–
644

parametric formula for, 643

table of signs, 245–247
for the derivative, 247–248
for the second derivative, 248–250

tangent (function), 26
derivative of, 142
graph of, 37
integrals involving powers of, 415–416
inverse of, see inverse tangent
symmetry properties of, 38

tangent line, 88–90, see also linearization
finding equation of, 114

tanh(x), see hyperbolic tangent
tan(x), see tangent (function)
tan−1(x), see inverse tangent
Taylor approximation theorem, 522

proof of, 700–702
Taylor polynomials, 522, 535–536

finding, 537–539
Taylor series, 529–530, 535–536

adding, 565–566
convergence of, 530–534
differentiating, 562–563
dividing, 567–568
error term in, see error term, in Tay-

lor series

finding, 537–539
getting new from old, 558–568
integrating, 563–565
multiplying, 566–567
remainder term in, see error term, in

Taylor series
and substitution, 560–561
subtracting, 565–566
using to find derivatives, 568–570

Taylor’s Theorem, 523–526
telescoping series, 311–314
third derivatives, 94
trapezoidal rule, 706–708

error in, 711–714
triangle inequality, 674
trig functions

basic properties of, 25
behavior of near 0, 470–471
behavior of near ±∞, 459–461
derivatives involving, see derivatives,

involving trig functions
extending the domain of, 28–35
graphs of, 35–38
integrals involving powers of, 413–421
limits involving, see limits, involving

trig functions
periodicity of, 35
symmetry properties of, 38

trig identities
complementary, 39
integration involving, 409–413
involving double angles, 40
involving sums and differences, 40
Pythagorean, 39, 410

trig substitutions, 421–429
and completing the square, 426
and square roots, 427–429
summary of, 426–427

trigonometric series, 612–615
triple-boxed principle, 605

unbounded region of integration, 437
underestimates

in linearization, 286
in Taylor series, 541

unit circle, 30
unsigned areas

and absolute values, 376–379
finding using definite integrals, 339–

342
upper sums, 324, 333, 354

velocity, 86–87, 114
average, 85, 350
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velocity (continued)
continuous, 320–323
and derivatives, 91
graphical interpretation of, 87

vertical asymptotes, 46
vertical line test, 6–7
volumes

of general solids, 631–637
of generalized cones, 632–636
by slicing, 620, 632
of solids of revolution, 617–631

disc method for finding, see disc
method

of regions between curve and y-axis,
623–624

of regions between two curves, 625–
628

shell method for finding, see shell
method

whoop-di-doo, 440, 455




