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1
The Single-Person
Decision Problem

Imagine yourself in the morning, all dressed up and ready to have breakfast. You
might be lucky enough to live in a nice undergraduate dormitory with access to

an impressive cafeteria, in which case you have a large variety of foods from which
to choose. Or you might be a less-fortunate graduate student, whose studio cupboard
offers the dull options of two half-empty cereal boxes. Either way you face the same
problem: what should you have for breakfast?

This trivial yet ubiquitous situation is an example of a decision problem. Decision
problems confront us daily, as individuals and as groups (such as firms and other
organizations). Examples include a division manager in a firm choosing whether or not
to embark on a new research and development project; a congressional representative
deciding whether or not to vote for a bill; an undergraduate student deciding on a
major; a baseball pitcher contemplating what kind of pitch to deliver; or a lost group
of hikers confused about which direction to take. The list is endless.

Some decision problems are trivial, such as choosing your breakfast. For example,
if Apple Jacks and Bran Flakes are the only cereals in your cupboard, and if you hate
Bran Flakes (they belong to your roommate), then your decision is obvious: eat the
Apple Jacks. In contrast, a manager’s choice of whether or not to embark on a risky
research and development project or a lawmaker’s decision on a bill are more complex
decision problems.

This chapter develops a language that will be useful in laying out rigorous foun-
dations to support many of the ideas underlying strategic interaction in games. The
language will be formal, having the benefit of being able to represent a host of dif-
ferent problems and provide a set of tools that will lend structure to the way in which
we think about decision problems. The formalities are a vehicle that will help make
ideas precise and clear, yet in no way will they overwhelm our ability and intent to
keep the more practical aspect of our problems at the forefront of the analysis.

In developing this formal language, we will be forced to specify a set of assump-
tions about the behavior of decision makers or players. These assumptions will, at
times, seem both acceptable and innocuous. At other times, however, the assump-
tions will be almost offensive in that they will require a significant leap of faith. Still,
as the analysis unfolds, we will see the conclusions that derive from the assumptions

3
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4 . Chapter 1 The Single-Person Decision Problem

that we make, and we will come to appreciate how sensitive the conclusions are to
these assumptions.

As with any theoretical framework, the value of our conclusions will be only as
good as the sensibility of our assumptions. There is a famous saying in computer
science—“garbage in, garbage out”—meaning that if invalid data are entered into
a system, the resulting output will also be invalid. Although originally applied to
computer software, this statement holds true more generally, being applicable, for
example, to decision-making theories like the one developed herein. Hence we will at
times challenge our assumptions with facts and question the validity of our analysis.
Nevertheless we will argue in favor of the framework developed here as a useful
benchmark.

1.1 Actions, Outcomes, and Preferences

Consider the examples described earlier: choosing a breakfast, deciding about a
research project, or voting on a bill. These problems all share a similar structure:
an individual, or player, faces a situation in which he has to choose one of several
alternatives. Each choice will result in some outcome, and the consequences of
that outcome will be borne by the player himself (and sometimes other players
too).

For the player to approach this problem in an intelligent way, he must be aware
of three fundamental features of the problem: What are his possible choices? What
is the result of each of those choices? How will each result affect his well-being?
Understanding these three aspects of a problem will help the player choose his best
action. This simple observation offers us a first working definition that will apply to
any decision problem:

The Decision Problem A decision problem consists of three features:

1. Actions are all the alternatives from which the player can choose.

2. Outcomes are the possible consequences that can result from any of the
actions.

3. Preferences describe how the player ranks the set of possible outcomes, from
most desired to least desired. The preference relation �∼ describes the player’s
preferences, and the notation x �∼ y means “x is at least as good as y.”

To make things simple, let’s begin with our rather trivial decision problem of
choosing between Apple Jacks and Bran Flakes. We can define the set of actions as
A = {a, b}, where a denotes the choice of Apple Jacks and b denotes the choice of
Bran Flakes.1 In this simple example our actions are practically synonymous with the
outcomes, yet to make the distinction clear we will denote the set of outcomes by
X = {x, y}, where x denotes eating Apple Jacks (the consequence of choosing Apple
Jacks) and y denotes eating Bran Flakes.

1. More on the concept of a set and the appropriate notation can be found in Section 19.1 of the
mathematical appendix.
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1.1 Actions, Outcomes, and Preferences . 5

1.1.1 Preference Relations

Turning to the less familiar notion of a preference relation, imagine that you prefer
eating Apple Jacks to Bran Flakes. Then we will write x �∼ y, which should be read as
“x is at least as good as y.” If instead you prefer Bran Flakes, then we will write y �∼ x,
which should be read as “y is at least as good as x.” Thus our preference relation is
just a shorthand way to express the player’s ranking of the possible outcomes.

We follow the common tradition in economics and decision theory by expressing
preferences as a “weak” ranking. That is, the statement “x is at least as good as y” is
consistent with x being better than y or equally as good as y. To distinguish between
these two scenarios we will use the strict preference relation, x � y, for “x is strictly
better than y,” and the indifference relation, x ∼ y, for “x and y are equally good.”

It need not be the case that actions are synonymous with outcome, as in the case
of choosing your breakfast cereal. For example, imagine that you are in a bar with a
drunken friend. Your actions can be to let him drive home or to order him a cab. The
outcome of letting him drive is a certain accident (he’s really drunk), and the outcome
of ordering him a cab is arriving safely at home. Hence for this decision problem your
actions are physically different from the outcomes.

In these examples the action set is finite, but in some cases one might have
infinitely many actions from which to choose. Furthermore there may be infinitely
many outcomes that can result from the actions chosen. A simple example can be
illustrated by me offering you a two-gallon bottle of water to quench your thirst. You
can choose how much to drink and return the remainder to me. In this case your action
set can be described as the interval A = [0, 2]: you can choose any action a as long
as it belongs to the interval [0, 2], which we can write in two ways: 0 ≤ a ≤ 2 or
a ∈ [0, 2].2 If we equate outcomes with actions in this example then X = [0, 2] as
well. Finally it need not be the case that more is better. If you are thirsty then drinking
a pint may be better than drinking nothing. However, drinking a gallon may cause
you to have a stomachache, and you may therefore prefer a pint to a gallon.

Before proceeding with a useful way to represent a player’s preferences over var-
ious outcomes, it is important to stress that we will make two important assumptions
about the player’s ability to think through the decision problem.3 First, we require the
player to be able to rank any two outcomes from the set of outcomes. To put this more
formally:

The Completeness Axiom The preference relation �∼ is complete: any two outcomes
x, y ∈ X can be ranked by the preference relation, so that either x �∼ y or y �∼ x.

At some level the completeness axiom is quite innocuous. If I show you two foods,
you should be able to rank them according to how much you like them (including being
indifferent if they are equally tasty and nutritious). If I offer you two cars, you should
be able to rank them according to how much you enjoy driving them, their safety

2. The notation symbol ∈ means “belongs to.” Hence “x, y ∈ X” means “elements x and y belong to
the set X.” If you are unfamiliar with sets and these kinds of descriptions please refer to Section 19.1
of the mathematical appendix.
3. These assumptions are referred to as “axioms,” following the language used in the seminal book
by von Neumann and Morgenstern (1944) that laid many of the foundations for both decision theory
and game theory.
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6 . Chapter 1 The Single-Person Decision Problem

specifications, and so forth. If I offer you two investment portfolios, you should be
able to rank them according to the extent to which you are willing to balance risk and
return. In other words, the completeness axiom does not let you be indecisive between
any two outcomes.4

The second assumption we make guarantees that a player can rank all of the out-
comes. To do this we introduce a rather mild consistency condition called transitivity:

The Transitivity Axiom The preference relation �∼ is transitive: for any three out-
comes x, y, z ∈ X, if x �∼ y and y �∼ z then x �∼ z.

Faced with several outcomes, completeness guarantees that any two can be ranked,
and transitivity guarantees that there will be no contradictions in the ranking, which
could create an indecisive cycle. To observe a violation of the transitivity axiom,
consider a player who strictly prefers Apple Jacks to Bran Flakes, a � b, Bran
Flakes to Cheerios, b � c, and Cheerios to Apple Jacks, c � a. When faced with
any two boxes of cereal, say A = {a, b}, he has no problem choosing his preferred
cereal a. What happens, however, when he is presented with all three alternatives,
A = {a, b, c}? The poor guy will be unable to decide which of the three to choose,
because for any given box of cereal, there is another box that he prefers. Therefore,
by requiring that the player have complete and transitive preferences, we basically
guarantee that among any set of outcomes, he will always have at least one best
outcome that is as good as or better than any other outcome in that set.

To foreshadow what will be our premise for decision making, a preference relation
that is complete and transitive is called a rational preference relation. We will be
concerned only with players who have such rational preferences, for without such
preferences we can offer neither predictive nor prescriptive insights.

Remark As noted by the Marquis de Condorcet in 1785, it is possible to have a group
of rational individual players who, when put together to make decisions as a group,
will become an “irrational” group. For example, imagine three roommates, called
players 1, 2, and 3, who have to choose one box of cereal for their apartment kitchen.
Player 1’s preferences are given by a �1 c �1 b, player 2’s are given by c �2 b �2 a,

and player 3’s are given by b �3 a �3 c. Imagine that our three players make choices
in a democratic way and use majority voting to reach a decision. What will be the
resulting preferences of the group, �G? When faced with the pair a and c, players
1 and 3 will vote for Apple Jacks, hence a �G c. When faced with the pair c and
b, players 1 and 2 will vote for Cheerios, hence c �G b. When faced with the pair
a and b, players 2 and 3 will vote for Bran Flakes, hence b �G a. As a result,
our three rational players will not be able to reach a conclusive decision using the
group preferences that result from majority voting! This type of group indecisiveness
resulting from majority voting is often referred to as the Condorcet Paradox.Because
we will not be analyzing group decisions, it is not something we will confront, but it
is useful to be mindful of such phenomena, in which imposing individual rationality
does not imply “group rationality.”

4. In other words, this axiom prohibits the kind of problem referred to as “Buridan’s ass.” One version
describes a situation in which an ass is placed between two identical stacks of hay, assuming that the
ass will always go to whichever stack is closer. However, since the stacks are both the same distance
from the ass, it will not be able to choose between them and will die of hunger.
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1.1 Actions, Outcomes, and Preferences . 7

1.1.2 Payoff Functions

When we restrict attention to players with rational preferences, not only do we get
players who behave in a consistent and appealing way, but as an added bonus we
can replace the preference relation with a much friendlier, and more operational,
apparatus. Consider the following simple example. Imagine that you open a lemonade
stand on your neighborhood corner. You have three possible actions: choose low-
quality lemons (l), which imply a cost of $10 and a revenue from sales of $15; choose
medium-quality lemons (m), which imply a cost of $15 and a revenue from sales of
$25; or choose high-quality lemons (h), which imply a cost of $28 and a revenue from
sales of $35. Thus the action set is A = {l, m, h}, and the outcome set is given by net
profits and is X = {5, 10, 7}, where the action l yields a profit of $5, the action m yields
a profit of $10, and the action h yields a profit of $7. Assuming that obtaining higher
profits is strictly better, we have 10 � 7 � 5. Hence you should choose alternative m

and make a profit of $10.
Notice that we took a rather obvious profit-maximizing problem and fit it into

our framework for a decision problem. We derived the preference relation that is
consistent with maximizing profit, the objective of any for-profit business. Arguably
it would be more natural and probably easier to comprehend the problem if we looked
at the actions and their associated profits. In particular we can define the profit
function in the obvious way: every action a ∈ A yields a profit π(a). Then, instead of
considering a preference relation over profit outcomes, we can just look at the profit
from each action directly and choose an action that maximizes profits. In other words,
we can use the profit function to evaluate actions and outcomes.

As this simple example demonstrates, a profit function is a more direct way for a
player to rank his actions. The question then is, can we find similar ways to approach
decision problems that are not about profits? It turns out that we can do exactly that if
we have players with rational preferences, and to do that we define a payoff function.5

Definition 1.1 A payoff function u : X → R represents the preference relation �∼ if
for any pair x, y ∈ X, u(x) ≥ u(y) if and only if x �∼ y.

To put the definition into words, we say that the preference relation �∼ is represented
by the payoff function u : X → R that assigns to each outcome in X a real number, if
and only if the function assigns a higher value to higher-ranked outcomes.

It is important to notice that representing preferences with payoff functions is
convenient, but that payoff values by themselves have no meaning whatsoever. Payoff
is an ordinal construct: it is used to order the alternatives from most to least desirable.
For example, if I like Apple Jacks more than Bran Flakes, then I can construct
the payoff function u(.) so that u(a) = 5 and u(b) = 3. I can also use a different
payoff function ũ(.) that represents the same preferences as follows: ũ(a) = 100 and
ũ(b) = −237. Just as Fahrenheit and Celsius are two different ways to describe hotter
and colder temperatures, there are many ways to represent preferences with payoff
functions.

Using payoff functions instead of preferences will allow us to operationalize a
theory of how decision makers with rational preferences ought to behave, and how
they often will behave. They will choose actions that maximize a payoff function that

5. Recall that a function relates each of its inputs to exactly one output. For more on this see
Section 19.2 of the mathematical appendix.
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8 . Chapter 1 The Single-Person Decision Problem

represents their preferences. One last question we need to ask is whether we know
for sure that this method will work: is it true that players will surely have a payoff
function representing their preferences? One case is easy and worth going through
briefly. In what follows, we provide a formal proposition and a formal, yet fairly easy
to follow, proof.

Proposition 1.1 If the set of outcomes X is finite then any rational preference relation
over X can be represented by a payoff function.

Proof The proof is by construction. Because the preference relation is complete and
transitive, we can find a least-preferred outcome x ∈ X such that all other outcomes
y ∈ X are at least as good as x, that is, y �∼ x for all other y ∈ X. Now define the
“worst outcome equivalence set,” denoted X1, to include x and any other outcome for
which the player is indifferent between it and x. Then, from the remaining elements of
X\X1,

6 define the “second worst outcome equivalence set,” X2, and continue in this
fashion until the “best outcome equivalence set,” Xn, is created. Because X is finite
and �∼ is rational, such a finite collection of n equivalence sets exists. Now consider
n arbitrary values un > un−1 > . . . > u2 > u1, and assign payoffs according to the
function defined by: for any x ∈ Xk, u(x) = uk. This payoff function represents �∼.
Hence we have proved that such a function exists.

This proposition is useful: for many realistic situations, we can create payoff
functions that work in a similar way as profit functions, giving the player a useful
tool to see which actions are best and which ought to be avoided. We will not explore
this issue further, but payoff representations exist in many other cases that include
infinitely many outcomes. The treatment of such cases is beyond the scope of this
textbook, but you are welcome to explore one of the many texts that offer a more
complete treatment of the topic, which is referred to under the title “representation
theorems.” (See, e.g., Kreps [1990a, pp. 18–37, and 1988] for an in-depth treatment
of this topic.)

As we have seen so far, the formal structure of a decision problem offers a coherent
framework for analysis. For decades, however, teachers, students, and practitioners
have instead used the intuitive and graphically simple tool of decision trees.

Imagine that, in addition to Apple Jacks (a) and Bran Flakes (b), your breakfast
options include a muffin (m) and a scone (s). Your preferences are given as s �
a � m � b. (Recall that we now consider preferences over outcomes as directly over
actions.) Consider the following payoff representation: v(s) = 4, v(a) = 3, v(m) = 2,
and v(b) = 1. We can write down the corresponding decision tree, which is depicted
in Figure 1.1.

To read this simple decision tree, notice that the player resides at the “root” of
the tree on the left, and that the tree then branches off, each branch representing a
possible action. In the example of choosing breakfast, each action results in a final
payoff, and these payoffs are written to correspond to each of the action branches.
Our rational decision maker will look down the tree, consider the payoff from each
branch, and choose the branch with the highest payoff.

The node at which the player has to make a choice is called a decision node. The
nodes at the end of the tree where payoffs are attached are called terminal nodes. As

6. The notation A\B means “the elements that are in A but are not in B,” or sometimes “the set A

less the set B.”
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FIGURE 1.1 A simple breakfast decision tree.

the next chapter demonstrates, the structure of a decision tree will become slightly
more involved and useful to capture more complex decision problems. We will return
to similar trees in Chapter 7, where we consider the strategic interaction between
many possible players, which is the main focus of this book.

1.2 The Rational Choice Paradigm

We now introduce Homo economicus or “economic man.” Homo economicus is
“rational” in that he chooses actions that maximize his well-being as defined by
his payoff function over the resulting outcomes.7 The assumption that the player is
rational lies at the foundation of what is known as the rational choice paradigm.
Rational choice theory asserts that when a decision maker is choosing between
potential actions he will be guided by rationality to choose his best action. This can
be assumed to be true for individual human behavior, as well as for the behavior of
other entities, such as corporations, committees, or nation-states.

It is important to note, however, that by adopting the paradigm of rational choice
theory we are imposing some implicit assumptions, which we now make explicit.

Rational Choice Assumptions The player fully understands the decision problem by
knowing:

1. all possible actions, A;

2. all possible outcomes, X;

3. exactly how each action affects which outcome will materialize; and

4. his rational preferences (payoffs) over outcomes.

Perhaps at a first glance this set of assumptions may seem a bit demanding, and
further contemplation may make you feel that it is impossible to satisfy for most
decision problems. Still, it is a benchmark for a world in which decision problems are
completely understood by the player, in which case he can approach the problems
in a systematic and structured way. If we let go of any of these four knowledge

7. A naive application of the Homo economicus model assumes that our player knows what is best for
his long-term well-being and can be relied upon to always make the right decision for himself. We
take this naive approach throughout the book, though we will sometimes question how appropriate
this approach is.
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10 . Chapter 1 The Single-Person Decision Problem

requirements then we cannot impose the notion of rational choice. If (1) is unknown
then the player may be unaware of his best course of action. If (2) or (3) are unknown
then he may not correctly foresee the actual consequences of his actions. Finally if
(4) is unknown then he may incorrectly perceive the effect of his choice’s consequence
on his well-being.

To operationalize this paradigm of rationality we must choose among actions,
yet we have defined preferences—and payoffs—over outcomes and not actions. It
would be useful, therefore, if we could define preferences—and payoffs—over actions
instead of outcomes. In the simple examples of choosing a cereal or how much water
to drink, actions and outcomes were synonymous, yet this need not always be the
case. Consider the situation of letting your friend drive drunk, in which the actions
and outcomes are not the same. Still each action led to one and only one outcome:
letting him drive leads to an accident, and getting him a cab leads to safe arrival.
Hence, even though preferences and payoff were defined over outcomes, this one-
to-one correspondence, or function, between actions and outcomes means that we
can consider the preferences and payoffs to be over actions, and we can use this
correspondence between actions and outcomes to define the payoff over actions as
follows: if x(a) is the outcome resulting from action a, then the payoff from action a

is given by v(a) = u(x(a)), the payoff from x(a). We will therefore use the notation
v(a) to represent the payoff from action a.8 Now we can precisely define a rational
player as follows:

Definition 1.2 A player facing a decision problem with a payoff function v(.) over
actions is rational if he chooses an action a ∈ A that maximizes his payoff. That is,
a∗ ∈ A is chosen if and only if v(a∗) ≥ v(a) for all a ∈ A.

We now have a formal definition of Homo economicus: a player who has rational
preferences and is rational in that he understands all the aspects of his decision
problem and always chooses an option that yields him the highest payoff from the
set of possible actions.

So far we have seen some simple examples with finite action sets. Consider instead
an example with a continuous action space, which requires some calculus. Imagine
that you’re at a party and are considering engaging in social drinking. Given your
physique, you’d prefer some wine, both for taste and for the relaxed feeling it gives
you, but too much will make you sick. There is a one-liter bottle of wine, so your action
set is A = [0, 1], where a ∈ A is how much you choose to drink. Your preferences are
represented by the following payoff function over actions: v(a) = 2a − 4a2, which
is depicted in Figure 1.2. As you can see, some wine is better than no wine (0.1 liter
gives you some positive payoff, while drinking nothing gives you zero), but drinking
a whole bottle will be worse than not drinking at all (v(1) = −2). How much should
you drink? Your maximization problem is

max
a∈[0,1]

2a − 4a2.

Taking the derivative of this function and equating it to zero to find the solution, we
obtain that 2 − 8a = 0, or a = 0.25, which is a bit more than two normal glasses of

8. To be precise, let x : A → X be the function that maps actions into outcomes, and let the payoff
function over outcomes be u : X → R. Define the payoff over actions as the composite function
v = u ◦ x : A → R, where v(a) = u(x(a)).
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FIGURE 1.2 The payoff from drinking wine.

wine.9 Thus, by considering how much wine to drink as a decision problem, you were
able to find your optimal action.

1.3 Summary

. A simple decision problem has three components: actions, outcomes, and
preferences over outcomes.

. A rational player has complete and transitive preferences over outcomes and
hence can always identify a best alternative from among his possible actions.
These preferences can be represented by a payoff (or profit) function over
outcomes and the corresponding payoffs over actions.

. A rational player chooses the action that gives him the highest possible payoff
from the possible set of actions at his disposal. Hence by maximizing his
payoff function over his set of alternative actions, a rational player will choose
his optimal decision.

. A decision tree is a simple graphic representation for decision problems.

1.4 Exercises

1.1 Your Decision: Think of a simple decision you face regularly and formalize
it as a decision problem, carefully listing the actions and outcomes without
the preference relation. Then assign payoffs to the outcomes and draw the
decision tree.

1.2 Going to the Movies: There are two movie theaters in your neighborhood:
Cineclass, which is located one mile from your home, and Cineblast, located
three miles from your home. Each is showing three films. Cineclass is showing
Casablanca, Gone with the Wind, and Dr. Strangelove, while Cineblast is
showing The Matrix, Blade Runner, and Aliens. Your problem is to decide
which movie to go to.

9. To be precise, we must also make sure that first, the second derivative is negative for the solution
a = 0.25 to be a local maximum, and second, the value of v(a) is not greater at the two boundaries
a = 0 and a = 1. For more on maximizing the value of a function, see Section 19.3 of the mathematical
appendix.
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12 . Chapter 1 The Single-Person Decision Problem

a. Draw a decision tree that represents this problem without assigning
payoff values.

b. Imagine that you don’t care about distance and that your preferences
for movies are alphabetic (i.e., you like Aliens the most and The Matrix
the least). Using payoff values 1 through 6 complete the decision tree
you drew in part (1). Which option would you choose?

c. Now imagine that your car is in the shop and that the cost of walking
each mile is equal to one unit of payoff. Update the payoffs in the
decision tree. Would your choice change?

1.3 Fruit or Candy: A banana costs $0.50 and a piece of candy costs $0.25
at the local cafeteria. You have $1.25 in your pocket and you value money.
The money-equivalent value (payoff ) you get from eating your first banana is
$1.20, and that of each additional banana is half the previous one (the second
banana gives you a value of $0.60, the third $0.30, and so on). Similarly the
payoff you get from eating your first piece of candy is $0.40, and that of each
additional piece is half the previous one ($0.20, $0.10, and so on). Your value
from eating bananas is not affected by how many pieces of candy you eat and
vice versa.

a. What is the set of possible actions you can take given your budget of
$1.25?

b. Draw the decision tree that is associated with this decision problem.
c. Should you spend all your money at the cafeteria? Justify your answer

with a rational choice argument.
d. Now imagine that the price of a piece of candy increases to $0.30. How

many possible actions do you have? Does your answer to (c) change?

1.4 Alcohol Consumption: Recall the example in which you needed to choose
how much to drink. Imagine that your payoff function is given by θa − 4a2,
where θ is a parameter that depends on your physique. Every person may have
a different value of θ , and it is known that in the population (1) the smallest θ

is 0.2; (2) the largest θ is 6; and (3) larger people have higher θs than smaller
people.

a. Can you find an amount that no person should drink?
b. How much should you drink if your θ = 1? If θ = 4?
c. Show that in general smaller people should drink less than larger

people.
d. Should any person drink more than one 1-liter bottle of wine?

1.5 Buying a Car: You plan on buying a used car. You have $12,000, and you are
not eligible for any loans. The prices of available cars on the lot are given as
follows:

Make, model, and year Price

Toyota Corolla 2002 $9,350

Toyota Camry 2001 10,500

Buick LeSabre 2001 8,825

Honda Civic 2000 9,215

Subaru Impreza 2000 9,690
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For any given year,you prefer a Camry to an Impreza, an Impreza to a Corolla,
a Corolla to a Civic, and a Civic to a LeSabre. For any given year, you are
willing to pay up to $999 to move from any given car to the next preferred
one. For example, if the price of a Corolla is $z, then you are willing to
buy it rather than a Civic if the Civic costs more than $(z − 999), but you
would prefer to buy the Civic if it costs less than this amount. Similarly you
prefer the Civic at $z to a Corolla that costs more than $(z + 1000), but
you prefer the Corolla if it costs less. For any given car, you are willing to
move to a model a year older if it is cheaper by at least $500. For example, if
the price of a 2003 Civic is $z, then you are willing to buy it rather than a 2002
Civic if the 2002 Civic costs more than $(z − 500), but you would prefer to
buy the 2002 Civic if it costs less than this amount.

a. What is your set of possible alternatives?
b. What is your preference relation between the alternatives in (a) above?
c. Draw a decision tree and assign payoffs to the terminal nodes associ-

ated with the possible alternatives. What would you choose?
d. Can you draw a decision tree with different payoffs that represents the

same problem?

1.6 Fruit Trees: You have room for up to two fruit-bearing trees in your garden.
The fruit trees that can grow in your garden are either apple, orange, or pear.
The cost of maintenance is $100 for an apple tree, $70 for an orange tree, and
$120 for a pear tree. Your food bill will be reduced by $130 for each apple tree
you plant, by $145 for each pear tree you plant, and by $90 for each orange tree
you plant. You care only about your total expenditure in making any planting
decisions.

a. What is the set of possible actions and related outcomes?
b. What is the payoff of each action/outcome?
c. Draw the associated decision tree. What will a rational player choose?
d. Now imagine that the reduction in your food bill is half for the second

tree of the same kind. (You like variety.) That is, the first apple tree
still reduces your food bill by $130, but if you plant two apple trees
your food bill will be reduced by $130 + $65 = $195, and similarly
for pear and orange trees. What will a rational player choose now?

1.7 City Parks: A city’s mayor has to decide how much money to spend on parks
and recreation. City codes restrict this spending to no more than 5% of the
budget, and the yearly budget of the city is $20,000,000. The mayor wants to
please his constituents, who have diminishing returns from parks. The money-
equivalent benefit from spending $c on parks is v(c) = √

400c − 1
80c.

a. What is the action set for the city’s mayor?
b. How much should the mayor spend?
c. The movie An Inconvenient Truth has shifted public opinion, and

now people are more willing to pay for parks. The new preferences
of the people are given by v(c) = √

1600c − 1
80c. What now is the

action set for the mayor, and how much spending should he choose to
cater to his constituents?
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