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Introduction

In a Universe of won ders, carbon is truly a wondrous ele ment. 
Carbon can be hard or soft, sooty black or clearer than crystal. 
It was forged in the fiery interiors of stars; in its clear diamond 
form, it feels cold in your hand; and out of your hand, it is the 
very best conductor of heat. Burning forms of carbon produced 
heat that kept  humans warm for millennia and energy that pow-
ered the Industrial Revolution. We eat tons of it in our lifetime, 
and the unique chemical prowess of this Swiss army knife of 
chemical ele ments forms the virtual backbone of life as we 
know it. We are made of it, as Joni Mitchell wrote in her song 
“Woodstock,” “We are stardust . . .  billion year old carbon.”

This book is dedicated to just one of the naturally occurring 
chemical ele ments. Carbon is considered the sixth ele ment 
 because it has six protons in its nucleus and six electrons to bal-
ance the protons’ positive charge. Considering its abundance in 
the Sun, carbon ranks as the fourth most abundant ele ment 
 after hydrogen, helium, and oxygen. Oddly enough, despite its 
high abundance in stars, carbon is relatively rare inside our 
planet. We see lots of it near the Earth’s surface, where we live, 
but averaged over the  whole planet, it is actually a rare ele ment. 
We live in a carbon- rich environment on the surface of a 
carbon- poor planet. We  will explain how this happened and 
why we are dif er ent from many outer solar system bodies in 
chapter 3.
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In this book we also discuss how carbon was discovered and 
how understanding this impor tant ele ment was a major ad-
vancement of our scientific understanding of nature. We  will 
see how it is made in stars, how carbon atoms ended up on 
Earth, and why it can form so many compounds that are key to 
our existence. We  will explore some of the impacts that the 
sixth ele ment has had on  human history, many of its remarkable 
uses, and its role in the past and  future of our planet.

Like other ele ments heavier than hydrogen, carbon is just a 
tiny core of comparatively massive protons and neutrons that is 
surrounded by electrons. Carbon, however, is unlike all the other 
ele ments in its ability to bond with other atoms to make materi-
als with an extraordinary range of chemical and physical proper-
ties. When other atoms are involved, a nearly unlimited number 
of compounds can be made, including some very complex ones 
that enabled the formation of life and then evolved over geologic 
time to produce the living organisms that we know of.

Carbon may be just one of nearly a hundred naturally occur-
ring ele ments, but it stands out from all the  others. As a pure 
ele ment, it can exist in such diverse solid forms as soot, graphite, 
diamond, buckyballs, nanotubes, and sheets of carbon lattice 
only a single atom thick. When bonded to other ele ments, it 
can form a nearly infinite number of compounds.  These com-
pounds are so impor tant that they are granted their own class 
of “organic chemistry.”

 There are several known natu ral forms of pure elemental car-
bon, and at least one unnatural one. The simplest pure carbon 
form is just a single atom. This is not found on Earth,  because 
carbon atoms stick to every thing and form molecules. Only in 
the isolation of interstellar space are single- carbon atoms found. 
Next are carbon chains, carbon atoms in line, which also exist 
naturally only in interstellar space.
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When carbon atoms bond to each other, they can form 
sheets named graphene. When graphene sheets stack together, 
which is easy, we have graphite, the stuf that allows pencils to 
make black lines. Carbon sheets can curl up to form tiny hollow 
nanotubes. The next in complexity are the fullerenes, named 
 after Buckminster Fuller. The most abundant fullerene in nature 
is the semispherical molecule C60 that resembles a soccer ball. 
Carbon famously also forms crystals of the superlative mineral 
diamond, to which we dedicate one chapter. Rings of pure car-
bon are also pos si ble: cyclocarbon, with  eighteen carbon atoms, 
is the only one that has been made. It was predicted in theory 
but not produced  until 2019. So, even with the incredible diver-
sity of carbon that we do know about,  there is always more to 
discover.

As astronomers, we have inevitably put a broad cosmic focus 
on the many aspects of carbon. As scientists, we have placed 
strong emphasis on the fundamental science issues involved 
with this special ele ment. And  because of carbon’s incredible 
role in both the history of  humans and science, we have also 
chosen to view carbon through a lens of history. The broad 
range of carbon’s history involves its origin, how it served as a 
fundamental gateway to the formation of nearly all of the other 
chemical ele ments, how it evolved in space, how it got to Earth, 
and how it was used to make life and drive the evolution of our 
planet. Early  human dealings with carbon led to making fire and 
cave paintings, and then evolved into the foundations of science 
and our first understandings of atoms and what  matter actually 
is. History does not end now, and the findings of both physics 
and astronomy clearly show the basic roles that carbon  will play 
even trillions of years into the  future, as it cycles between vastly 
dif fer ent environments and is ultimately destroyed in the 
difficult- to- fathom deep time of the distant  future.
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One of the most challenging scientific endeavors of our time 
is predicting and understanding the  future efects of the buildup 
of carbon dioxide and its efects on crops, polar ice, sea level, 
weather, and the global economy. Carbon is unique among ele-
ments in that it has such serious implications for our planet, and 
for our lives. Like it or not, the energy that drives the modern 
world, as it has since the first cavemen, is still largely derived 
from the chemical reaction of burning carbon compounds to 
produce carbon dioxide. It is the only ele ment in the periodic 
 table that has its own tax. Beginning with Finland in 1990, many 
countries now have some form of carbon tax as a way to stimu-
late migration to other forms of energy generation and reduce 
production of the green house gas carbon dioxide. We  will dis-
cuss some of  these issues in chapter 8.

In our first biology class, we learn that life is based on carbon 
and that this ele ment is unique in its ability to make strong bonds 
with itself and many other impor tant ele ments. Yet the many 
roles of carbon and its unique properties and chemistry remain 
often underappreciated. Our main purpose in writing this book 
is to display as many of the glories of the sixth ele ment as we can, 
from the earliest known writings and drawings to the latest nano-
technologies; from its birth in stars to its role in the formation of 
Earth to its many lives in the tools  humans have created from it 
to sustain life and also to beautify and enhance it; to build; to 
invent; and to pass lit er a ture, art,  music, laws, math, and other 
forms of accumulated knowledge to  future generations.

In chapter 6, we focus on the amazing materials, tools, and 
technologies the sixth ele ment has spawned, and some of the ways 
they have  shaped history and our everyday lives. To take just one 
example, consider the impor tant role carbon has played in mak-
ing recorded history pos si ble. As far back as twenty thousand 
years ago, charcoal was used in making the famous Paleolithic 
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cave paintings in the Dordogne region of southwestern France, 
and for most  people who are now alive, much of what they have 
learned was learned from reading letters printed in black carbon. 
 Until recent times, carbon was used to create nearly all written or 
printed words. The Magna Carta, the Declaration of Indepen-
dence, and, of course, all lit er a ture before computer- based 
word pro cessing was written with microscopic carbon particles 
preserved in ink, or with pencil “lead,” which is a mix of carbon 
and clay.

Another often unappreciated function of carbon in our lives 
is its fundamental role in providing us with color. Except for 
the ocean and sky, most of the color that enriches our daily lives 
involves carbon compounds, even if they are just a  binder holding 
inorganic pigments together. Some color pigments are derived 
from coal tar or other petrochemicals. Our quite colorful, carbon- 
coated world provides a stunning contrast to Mars, the Moon, 
and Venus, our comparatively drab neighbors in space. Except 
for invisible carbon dioxide,  these bodies do not contain ap-
preciable amounts of carbon compounds. They are not covered 
with plants or paints, so they are mind- numbingly monochro-
matic,  either gray or reddish.

The sixth ele ment provides us with an astonishing number of 
capabilities that might be commonly overlooked. Steel, the back-
bone of most buildings, bridges, vehicles, and modern warfare, is 
not just iron; it is iron strengthened by the addition of small 
amounts of carbon that dramatically improve its properties. Cars, 
trucks, and buses  ride on a miracle material, “rubber” tires, made 
of a mix of microscopic carbon particles held in a matrix of car-
bon polymers. The roads that  these vehicles travel on are paved 
with  either asphalt or concrete. Asphalt is a mix of petroleum and 
rock. Concrete is made with rocks, lime, and clay. Lime, a key 
ingredient, is made from roasted limestone. Limestone is by far 
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the dominant form of carbon in our planet’s outer layers. Just the 
production of concrete for roads and construction is responsible 
for an astounding 5  percent of the human- produced carbon di-
oxide that is being put into the atmosphere.

All of the foods that  people and animals eat, as well as most 
of their packaging materials, are composed of carbon com-
pounds. The diamonds you wear and  those used to saw slabs of 
granite countertop out of clifs are forms of pure carbon. The 
air you breathe is dominated by nitrogen and oxygen, but car-
bon dioxide, pre sent in minor concentrations (0.04  percent), 
plays major roles in governing the long- term habitability of our 
planet and, of course, is the source of the carbon that allows 
 giant trees and all plants to grow with energy provided by sun-
light. This gas, although enjoyed in champagne and fizzy drinks, 
is commonly derided  because of its role in global warming. It is 
an irony of nature that we  can’t live without this “toxic gas,” 
 because it is the “food of life” on our planet.

We  will talk about plastics, carbon compounds that have 
revolutionized our society.  There are natu ral plastics, such as 
amber, but  humans have produced nearly 10 billion tons of syn-
thetic plastics since the Second World War, usually from petro-
leum, of which carbon is the main component. Plastics have 
become ubiquitous both as litter and as products that we  can’t 
live without. Though plastics are often associated with waste 
and pollution of the Earth and oceans, they also enrich our lives 
in remarkable ways. The uses of plastic are seemingly endless, 
and some of our highest- tech materials are plastics. For exam-
ple, a composite of epoxy and graphite fibers is used to make 
products that include spacecraft, tennis rackets, airplanes, 
skateboards, expensive cars, and warheads for ICBMs. The 
highest- quality displays for  televisions and phones are made of 
organic light- emitting diodes (OLEDs). The use of the word 
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“organic” in the OLED acronym does not mean that it was 
grown on a pesticide- free OLED farm, but rather that it is made 
of carbon- based molecules containing carbon- hydrogen and 
perhaps carbon- carbon bonds. This “misunderstanding” is an 
example of the common misuse or at least an alternative use of 
a scientific term. By scientific definition, CO, CO2 , and cyanide 
are not organic molecules, though almost  every food item in a 
grocery store (including conventionally grown vegetables) is 
made of organic chemicals.

It is hard to imagine living in the modern world without plas-
tics. A  simple example is the elegance of a ziplock bag. For mil-
lennia,  people used gourds, clay pots, baskets, or the internal 
organs of animals as containers to store precious food and 
 water, but the utility of  these containers pales in comparison 
to a strong, watertight bag made of polyethylene that is durable, 
transparent, thinner than a  human hair, physically robust, nearly 
weightless, and can be used for years and years. However, we 
now use so many plastic bags, wraps, and containers that they 
have become a serious environmental nuisance.

We  will see that, like many other  things, the ele ment carbon 
has both positive and negative potentials and attributes. The 
mining and use of coal and oil and even the inhalation of camp-
fire soot has serious consequences on both pre sent and past 
 human health. The burning of fossil fuels has led to a buildup 
of carbon dioxide that is creating a frenzy of concern over 
human- induced global warming and sea level rise. Radioactive 
carbon-14 (14C), which is made naturally by cosmic rays im-
pacting nitrogen at the top of the atmosphere and also by nu-
clear bomb tests, provides a fantastic means to date events since 
the dawn of civilization, but, like coal, it also has side efects. 
Half of the radioactivity inside our bodies, a whopping four 
thousand disintegrations each second, is due to the decay of 



8 I n t r o du c t i o n

carbon-14. It is amazing to consider that a concentration of car-
bon atoms from our bodies can make a Geiger  counter run of the 
scale, and that radioactive carbon made at the edge of the atmo-
sphere as well as normal carbon are utilized in building the 
structure of plants that are ultimately eaten by us. The other half 
of our internal radioactivity comes from the decay of natu ral 
potassium in our bones. Although this radioactivity sounds 
alarmingly bad, the decay of carbon-14 in DNA has been pro-
posed to play a pos si ble role in ge ne tic mutations that allow 
species to evolve over long time scales.

Our investigation of the sixth ele ment  will take us into  these 
and other ethical aspects of its uses, and into the laboratories of 
great scientists— physicists, chemists, astronomers, biologists—
who have contributed to our understanding of carbon and of 
what an ele ment actually is, which played a crucial role in the his-
tory of science. It took scientists, or natu ral  philosophers as 
they  were once called, many centuries to figure out what an 
ele ment is. At first, this could be done only by characterizing its 
be hav ior: if a par tic u lar substance always acted the same way in 
chemical reactions and could not be broken down into subor-
dinate materials with dif er ent properties, then it was deemed 
to be an ele ment. Only  later was the link between ele ment iden-
tity, atoms, and atomic structure understood.

The wondrous ele ment carbon has truly  shaped “our world” 
in the grandest sense that encompasses the origin and evolution 
of biology on Earth and extends to myriad nuclear and chemi-
cal pro cesses that have and  will occur over the entire spatial and 
time scale of the cosmos.
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