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Chapter

Introduction

The central theme in this book is to investigate and explore various proper-
ties of the class of totally nonnegative matrices.
At first it may appear that the notion of total positivity is artificial; how-

ever, this class of matrices arises in a variety of important applications. For
example, totally positive (or nonnegative) matrices arise in statistics (see
[GM96, Goo86, Hei94]), mathematical biology (see [GM96]), combinatorics
(see [BFZ96, Bre95, Gar96, Peñ98]), dynamics (see [GK02]), approximation
theory (see [GM96, Pri68, CP94b]), operator theory (see [Sob75]), and ge-
ometry (see [Stu88]). Historically, the theory of totally positive matrices
originated from the pioneering work of Gantmacher and Krein ([GK60]) and
was elegantly brought together in a revised version of their original mono-
graph [GK02]). Also, under the influence of I. Schoenberg (see, for example,
[Sch30]), Karlin published an influential treatise, Total Positivity ([Kar68]),
which mostly concerns totally positive kernels but also deals with the discrete
version, totally positive matrices. Since then there has been a considerable
amount of work accomplished on total positivity, some of which is contained
in the exceptional survey paper by T. Ando ([And87]). Two more recent
survey papers have appeared ([Fal01] [Hog07, Chap. 21]) and both take the
point of view of bidiagonal factorizations of totally nonnegative matrices.
Before we continue, as mentioned in the Preface, we issue here a word

of warning. In the existing literature, the terminology used is not always
consistent with what is presented above. Elsewhere in the literature the
term totally positive (see below) corresponds to “strictly totally positive”
(see, for example, the text [Kar68]) and the term totally nonnegative defined
here sometimes corresponds to “totally positive” (as in some of the papers
in [GM96]).

0.0 DEFINITIONS AND NOTATION

The set of all m-by-n matrices with entries from a field IF will be denoted
by Mm,n(IF). If IF = IR, the set of all real numbers, then we may shorten
this notation to Mm,n. Our matrices will, for the most part, be real entried.
In the case m = n, the matrices are square and Mn,n(IF) or Mm,n will be
shortened to Mn(IF) or Mn. For A ∈ Mm,n(IF), the notation A = [aij ]
will indicate that the entries of A are aij ∈ IF, for i = 1, 2, . . . , m and
j = 1, 2, . . . , n. The transpose of a matrix A will be denoted by AT .
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For A ∈ Mm,n(IF), α ⊆ {1, 2, . . . , m}, and β ⊆ {1, 2, . . . , n}, the submatrix
of A lying in rows indexed by α and columns indexed by β will be denoted
by A[α, β]. Similarly, A(α, β) is the submatrix obtained from A by deleting
the rows indexed by α and columns indexed by β. Throughout the book,
we let αc denote the complement of the index set α. So, in particular,
A(α, β) = A[αc, βc]. If A ∈ Mn(IF) and α = β, then the principal submatrix
A[α, α] is abbreviated to A[α], and the complementary principal submatrix is
A(α). On the other hand, if α �= β, then the submatrix A[α, β] is referred to
as a nonprincipal submatrix of A. In the special case when α = {1, 2, . . . , k}
with 1 ≤ k ≤ n, we refer to the principal submatrix A[α] as a leading
principal submatrix. In the same manner, for an n-vector x ∈ IFn, x[α]
denotes the entries of x in the positions indexed by α and x(α) denotes the
complementary vector. If x = [xi] ∈ IFn, then we let diag(xi) denote the
n-by-n diagonal matrix with main diagonal entries xi. For brevity, we often
denote the sets {1, 2, . . . , m} and {1, 2, . . . , n} by M and N , respectively.
A minor in a given matrix A is by definition the determinant of a (square)

submatrix of A ∈ Mm,n(IF). Here and throughout, det(·) denotes the deter-
minant of a square matrix. For example, if |α| = |β|, the minor detA[α, β]
may also be denoted by Aα,β , and the principal minor (ifA is square) detA[α]
may be abbreviated to Aα.
We are interested here in those matrices A ∈ Mm,n with allminors positive

(nonnegative) and, occasionally, with all minors Aα,β , with |α| = |β| ≤ k
positive (nonnegative). The former are called the totally positive (totally
nonnegative) matrices and are denoted by TP (TN); we denote the latter as
TPk (TNk). TP (TN) is used both as an abbreviation and as a name of a set.
The reader should consult [HJ85, HJ91] or any other standard reference on
matrix theory for standard notation and terminology not defined herein. In
terms of compounds, TPk, for example, simply means that the first through
the kth compounds are entry-wise positive.
Several related classes of matrices are both of independent interest and

useful in developing the theory of TP (TN) matrices. We give our notation
for those classes here; we continue to use the subscript k to denote a require-
ment made on all minors of no more than k rows. No subscript indicates
that the requirement is made on all minors. Each class is defined irrespec-
tive of the m and n in Mm,n, except that a subscript k makes sense only for
k ≤ m, n.
By InTN (InTNk), we denote the square and invertible TN matrices (TNk

matrices), and by IrTN (IrTNk), we mean the square and irreducible TN
matrices (TNk matrices). The intersection of these two classes is denoted
by IITN (IITNk); this class is also referred to as the oscillatory matrices
[GK60], which are defined as those TN matrices with a TP integral power.
The equivalence will be demonstrated in Chapter 2. We may also use the
symbol OSC to denote oscillatory matrices.
A TN (TNk) matrix may have a zero line (row or column), which often

leads to an exception to convenient statements. So we denote TN (TNk)
matrices with no zero lines as TN′ (TN′

k).
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A square, triangular matrix cannot be TP, but one that is TN and has all
its minors positive unless they are identically 0 because only of the triangular
structure is called triangular TP ; these are denoted by ΔTP. Similarly, ΔTN
denotes the triangular, TN matrices. An adjective “upper” or “lower”

denotes the form of triangularity. Finally, the positive diagonal matrices
(Dn) are the intersections of upper ΔTP and lower ΔTP matrices, and thus
are InTN.
For convenience of reference we present these classes in tabular form in

Table 1. Note: Omission of subscript k means all minors.

TPk : all minors on no more than k rows are positive
TNk : all minors on no more than k rows are nonnegative
TN′

k : TNk with no all zero lines
InTNk : TNk and invertible
IrTNk : TNk and irreducible
IITNk : TNk, irreducible and invertible
ΔTP: triangular TP; all minors that may be positive are positive
ΔTN : triangular TN
Dn : positive diagonal matrices in Mn

Table 1: Various Classes of Matrices of Interest

The ith standard basis vector is the n-vector whose only nonzero entry
occurs in the ith component and that entry is a one, and is denoted by ei;
the (i, j)th standard basis matrix, the m-by-n matrix whose only nonzero
entry is in the (i, j)th position and this entry is a one, will be denoted by Eij .
Observe that if m = n, then Eij = eie

T
j . We also let e denote the n-vector

consisting of all ones (the size of e will be determined from the context).
Finally, we let Jm,n (Jn,n ≡ Jn) and In denote the m-by-n matrix of all
ones and the n-by-n identity matrix, respectively. The subscript is dropped
when the sizes of these matrices is clear from the context.

0.1 JACOBI MATRICES AND OTHER EXAMPLES OF TN

MATRICES

An n-by-n matrix A = [aij ] is called a diagonal matrix if aij = 0 whenever
i �= j. For example,

A =

⎡
⎢⎢⎣
1 0 0 0
0 4 0 0
0 0 3 0
0 0 0 3

⎤
⎥⎥⎦

is a 4-by-4 diagonal matrix. We may also write A as A = diag (1, 4, 3, 3).
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An n-by-n matrix A = [aij ] is referred to as a tridiagonal matrix if aij = 0
whenever |i − j| > 1. For example,

A =

⎡
⎢⎢⎣
1 4 0 0
3 4 1 0
0 0 3 4
0 0 1 3

⎤
⎥⎥⎦

is a 4-by-4 tridiagonal matrix. The entries of A = [aij ] that lie in positions
(i, i+ 1) i = 1, . . . n− 1 are referred to as the superdiagonal, and the entries
of A in positions (i, i − 1) i = 2, . . . , n are called subdiagonal.
Hence a matrix is tridiagonal if the only nonzero entries of A are contained

on its sub-, main, and superdiagonal.
Tridiagonal matrices are perhaps one of the most studied classes of ma-

trices. Much of the reason for this is that many algorithms in linear algebra
require significantly less computational labor when they are applied to tridi-
agonal matrices. Some elementary examples include

(1) eigenvalues,

(2) solving linear systems,

(3) LU factorization,

(4) evaluating determinants.

For instance, the determinant of a tridiagonal matrix A = [aij ] can be eval-
uated by solving the recursive equation

detA = a11 detA[{2, . . . , n}]− a12a21 detA[{3, . . . , n}]. (1)

Equation (1) is a simple consequence of the Laplace expansion of detA along
row (or column) 1. Furthermore, both A[{2, . . . , n}] and A[{3, . . . , n}] are
(smaller sized) tridiagonal matrices.
The recursive relation (1) also ties the eigenvalues of a (symmetric) tridi-

agonal matrix to certain orthogonal polynomials (Chebyshev), as the charac-
teristic polynomials of A and its principal submatrices also satisfy a relation
like (1). In addition, (1) arises in the Runge-Kutta methods for solving
partial differential equations.
Suppose the tridiagonal matrix A has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0

c1 a2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . bn−1

0 · · · · · · cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Observe that a tridiagonal matrix A in the form (2) is called symmetric if
bi = ci, i = 1, . . . , n − 1 and is called irreducible if both bi �= 0 and ci �= 0,
for i = 1, . . . , n − 1.
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An n-by-n matrix is called a P0-matrix if all its principal minors are non-
negative. We let P0 denote the class of all P0-matrices. Furthermore, an
n-by-n matrix is called a P -matrix if all its principal minors are positive.
We let P denote the class of all P -matrices.
Suppose A in (2) is an irreducible nonnegative (ai, bi, ci ≥ 0) tridiagonal

matrix. If ai ≥ bi + ci−1 i = 1, . . . , n, where c0 ≡ 0, bn ≡ 0, then A
is a P0-matrix. To verify this claim we need the following fact. If A is
tridiagonal, then the principal submatrix A[{1, 2, 4, 6, 7, 8}] can be written
as A[{1, 2, 4, 6, 7}] = A[{1, 2}]⊕ A[4] ⊕ A[{6, 7, 8}], where ⊕ denotes direct
sum. In particular,

detA[{1, 2, 4, 6, 7}] = detA[{1, 2}] · detA[{4}] · detA[{6, 7, 8}].
Hence to calculate any principal minor of a tridiagonal matrix, it is enough to
compute principal minors based on associated contiguous index sets. More-
over, any principal submatrix of a tridiagonal matrix based on contiguous
index sets is again a tridiagonal matrix. To verify that any tridiagonal of
the form (2) that is nonnegative, irreducible and satisfies ai ≥ bi+ ci−1 (row
diagonal dominance) is a P0-matrix, it is sufficient, by induction, to verify
that detA ≥ 0.
Consider the case n = 3. Then by (1),

detA = a1 detA[{2, 3}]− b1c1 detA[{3}]
= a1(a2a3 − b2c2)− b1c1a3

= a1a2a3 − a1b2c2 − b1c1a3

≥ a1(c1 + b2)a3 − a1b2c2 − b1c1a3

= a1b2(a3 − c2) + a3c1(a1 − b1)
> 0.

In addition, since detA[{3}] > 0 it follows from (1) that

detA ≤ a1 detA[{2, 3}]. (3)

Consider the general case and let A′ be the n-by-nmatrix obtained from A
by using an elementary row operation to eliminate c1. Then, as a1 > b1 > 0,

detA = a1 det

⎡
⎢⎢⎢⎢⎢⎢⎣

a2 − b1c1
a1

b2 0 · · · 0
c2 a3 b3 · · · 0
...

. . . . . . . . .
...

0
...

. . . . . . bn−1

0 · · · · · · cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Observe that this matrix is an irreducible, nonnegative tridiagonal matrix
that still satisfies the row dominance relation and hence by induction has a
positive determinant. Thus detA > 0.
Furthermore, we note that by (1) we have

detA ≤ a1 detA[{2, . . . , n}].
So, if a nonnegative, irreducible tridiagonal matrix satisfies the simple dom-
inance relation it is a P0-matrix. In fact, even more is true.
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Since tridiagonal matrices satisfy aij = 0 whenever |i−j| > 1 it is a simple
consequence that

detA[{i1, . . . , ik}, {j1, . . . , jk}] = 0

whenever there exists an s ∈ {1, . . . , k} such that |is − js| > 1.
Furthermore, if A[{i1, . . . , ik}, {j1, . . . , jk}] is any submatrix of A that

satisfies |is − js| ≤ 1, s = 1, . . . , k, then detA[{i1, . . . , ik}, {j1, . . . , jk}] is
a product of principal minors and nonprincipal minors, where the principal
minors are based on contiguous index sets and the nonprincipal minors are
simply entries from the super- and/or subdiagonal.
For example, suppose A is a 10-by-10 tridiagonal matrix of the form in

(2).
Then

detA[{1, 2, 3, 5, 6, 8, 10}, {2, 3, 4, 5, 6, 8, 9}] = b1b2b3 detA[{5, 6}]a8c9.

Consequently, any irreducible, nonnegative tridiagonal matrix that satisfies
the condition ai ≥ bi + ci−1 has all its minors nonnegative.
We remark here that the irreducibility assumption was needed for conve-

nience only. If the tridiagonal matrix is reducible, then we simply concen-
trate on the direct summands and apply the same arguments as above.
The upshot of the previous discussion is that if A is a nonnegative tridi-

agonal matrix that also satisfies ai ≥ bi + ci−1, then A is TN.
In the pivotal monograph [GK60], the chapter on oscillatory matrices be-

gan by introducing a class of tridiagonal matrices the authors called Jacobi
matrices. An n-by-nmatrix J = [aij ] is a Jacobi matrix if J is a tridiagonal
matrix of the form ⎡

⎢⎢⎢⎢⎣
a1 −b1 · · · 0

−c1
. . . . . .

...

0
. . . . . . −bn−1

0 · · · −cn−1 an

⎤
⎥⎥⎥⎥⎦ .

Further, J is called a normal Jacobi matrix if, in addition, bi, ci ≥ 0. Jacobi
matrices were of interest to Gantmacher and Krein for at least two reasons.
First, many of the fundamental properties of general oscillatory matrices can
be obtained by an examination of analogous properties of Jacobi matrices.
Second Jacobi matrices are among the basic types of matrices that arose
from studying the oscillatory properties of an elastic segmental continuum
(no supports between the endpoints) under small transverse oscillations.
One of the first things that we observe about Jacobi matrices is that they

are not TN or even entrywise nonnegative. However, they are not that far
off, as we shall see in the next result.
The following result on the eigenvalues of a tridiagonal matrix is well

known, although we present a proof here for completeness.

Lemma 0.1.1 Let T be an n-by-n tridiagonal matrix in the form



INTRODUCTION 7

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 0 0 · · · 0
c1 a2 b2 0 0 · · · 0
0 c2 a3 b3 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 cn−3 an−2 bn−2 0
0 · · · 0 0 cn−2 an−1 bn−1

0 · · · 0 0 0 cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

If bici > 0 for i = 1, 2, . . . , n − 1, then the eigenvalues of T are real and have
algebraic multiplicity one (i.e., are simple). Moreover, T is similar (via a
positive diagonal matrix) to a symmetric nonnegative tridiagonal matrix.

Proof. Let D = [dij ] be the n-by-n diagonal matrix where d11 = 1, and for

k > 1, dkk =
√

b1b2···bk−1
c1c2···ck−1

. Then it is readily verified that

DTD−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

√
b1c1 0 · · · 0√

b1c1 a2

√
b2c2 · · · 0

0
. . . . . . . . .

...
...

√
bn−2cn−2 an−1

√
bn−1cn−1

0 · · · 0
√

bn−1cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since DTD−1 is symmetric and T and DTD−1 have the same eigenvalues,
this implies that the eigenvalues of T are real. Suppose λ is an eigenvalue of
T . Then λI − T is also of the form (4). If the first row and last column of
λI − T are deleted, then the resulting matrix is an (n− 1)-by-(n− 1) upper
triangular matrix with no zero entries on its main diagonal, since bici > 0,
for i = 1, 2, . . . , n − 1. Hence this submatrix has rank n − 1. It follows that
λI − T has rank at least n − 1. However, λI − T has rank at most n − 1
since λ is an eigenvalue of T . So by definition λ has geometric multiplicity
one. This completes the proof, as DTD−1 is also a nonnegative matrix. �

A diagonal matrix is called a signature matrix if all its diagonal entries
are ±1. Furthermore, two n-by-n matrices A and B are said to be signature
similar if A = SBS−1, where S is a signature matrix. It is not difficult
to verify that a normal Jacobi matrix is signature similar to a nonnegative
tridiagonal matrix. Furthermore, the eigenvalues of a normal Jacobi matrix
are real and distinct.
Observe that if an irreducible normal Jacobi matrix satisfies the dominance

condition (ai ≥ |bi|+ |ci|), then it is similar to a symmetric TN tridiagonal
matrix. In particular (since a symmetric TN matrix is an example of a
positive semidefinite matrix [HJ85]), the eigenvalues are nonnegative and
distinct by Lemma 0.1.1.
Moreover, if the above normal Jacobi matrix is also invertible, then the

eigenvalues are positive and distinct.
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Since the eigenvalues are distinct, each eigenvalue has exactly one eigen-
vector (up to scalar multiple), and these (unique) eigenvectors satisfy many
more interesting “sign” properties.
Let

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0

c1 a2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . bn−1

0 · · · · · · cn−1 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, with bici > 0.

Given J above, define

D0(λ)≡ 1,
Dk(λ) = det((J − λI)[1, . . . , k]),
Dn(λ) = char. poly. of J .

Recall that the functions Dk satisfy the recurrence relation

Dk+1(λ) = (ak+1 − λ)Dk(λ) − bkckDk−1(λ) (5)

for k = 1, 2, . . . , n − 1. Evidently,

D0(λ)≡ 1,
D1(λ) = a1 − λ,

D2(λ) = (a2 − λ)D1(λ)− b1c1D0(λ)
= (a2 − λ)(a1 − λ)− b1c1,

and so on.
A key observation that needs to be made is the following:

“When Dk(λ) vanishes (1 < k < n), the polynomials Dk−1(λ)
and Dk+1(λ) differ from zero and have opposite sign.”

Suppose that, for some k, 1 < k < n, this property fails. That is, for fixed
λ0,

Dk(λ0) = Dk−1(λ0) = Dk+1(λ0) = 0.

Go back to the recurrence relation (5), and notice that if the above inequal-
ities hold, then

Dk−2(λ0) = 0, and Dk+2(λ0) = 0.

Consequently, Dk(λ0) = 0 for all k = 2, 3, . . . , n. But then observe

D3(λ0) = (ak − λ)D2(λ0)− b2c2D1(λ0),

which implies D1(λ0) = 0. Now we arrive at a contradiction since

D2(λ0) = (a2 − λ)D1(λ0)− b1c1D0(λ0) = 0 = 0− b1c1,

and b1c1 > 0.



INTRODUCTION 9

Since we know that the roots are real and distinct, when λ passes through
a root of Dk(λ), the product DkDk−1 must reverse sign from + to −. A
consequence of this is that the roots of successive Dk’s strictly interlace.
Using this interlacing property we can establish the following simple but very
important property of the functions Dk(λ). Between each two adjacent roots
of the polynomial Dk(λ) lies exactly one root of the polynomial Dk−1(λ)
(that is, the roots interlace).

Observation: The sequence

Dn−1(λ), Dn−2(λ), . . . , D0(λ)

has j − 1 sign changes when λ = λj where λ1 < λ2 < · · · < λn are the
distinct eigenvalues of J .
Further note thatDk(λ) = (−λ)k+· · · , and so it follows that limλ→−∞ Dk(λ) =

∞.
Finally, we come to the coordinates of the eigenvectors of J . Assume for

the moment that for each i, bi = 1 and ci = 1 (for simplicity’s sake).
Suppose

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦

is an eigenvector of J corresponding to the eigenvalue λ. Then examining
the vector equation J x = λx yields the system of equations

(a1 − λ)x1 − x2 = 0,
−x1 + (a2 − λ)x2 − x3 = 0,

−xn−2 + (an−1 − λ)xn−1 − xn = 0,
−xn−1 + (an − λ)xn = 0.

Since Dn(λ) = 0, it follows that Dn−1(λ) �= 0; hence the first n−1 equations
are linearly independent, and the nth equation is a linear combination of the
previous n − 1.
Looking more closely at the first n− 1 equations we arrive at the relation

xk = (ak−1 − λ)xk−1 − xk−2.

Hence the coordinates of x satisfy the same relation as Dk−1(λ).
Hence xk = CDk−1(λ), C �= 0 constant. Thus, since at λ = λj the

sequence Dn−1, . . . , D0 has exactly j − 1 sign changes, it follows that the
eigenvector corresponding to λj has exactly j − 1 sign changes. The inter-
lacing of sign changes in the eigenvectors follows as well.
We close with a remark that offers a nice connection between tridiagonal

TN matrices and a certain type of additive closure (a property not enjoyed
by general TN matrices). Suppose A is a TN matrix. Then a simple exami-
nation of the 2-by-2 minors of A involving exactly one main diagonal entry
will be enough to verify the following statement. The matrix A is tridiagonal
if and only if A+D is TN for all positive diagonal matrices D. This result
also brings out the fact that tridiagonal P0 matrices are, in fact, TN.
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0.1.1 Other Examples of TN Matrices

In the previous subsection we demonstrated that any entrywise nonnegative
tridiagonal P0-matrix was in fact TN. Other consequences include (1) an
entry-wise nonnegative invertible P0 tridiagonal matrix is both InTN and a
P-matrix, and (2) an entrywise nonnegative invertible P0 tridiagonal matrix
is IITN and hence oscillatory.
From tridiagonal matrices, it is natural to consider their inverses as an-

other example class of InTN matrices.

Example 0.1.2 (Inverses of tridiagonal matrices) Let T be an InTN tridi-
agonal matrix. Then ST−1S is another InTN matrix. For example, if

T =

⎡
⎣ 2 1 0
1 2 1
0 2 1

⎤
⎦ , then

ST−1S =

⎡
⎣ 1 1 1
1 2 2
1 2 3

⎤
⎦ .

In fact, note that the matrix

[min{i, j}] =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · 1
1 2 2 · 2
1 2 3 · 3
...

...
...

. . .
...

1 2 3 · · · n

⎤
⎥⎥⎥⎥⎥⎦

is the inverse of a tridiagonal matrix and is also InTN.
We also acknowledge that these matrices are referred to as “single-pair

matrices” in [GK60, pp. 79–80], are very much related to “Green’s matrices”
in [Kar68, pp. 110–112], and are connected with “matrices of type D” found
in [Mar70a].
Tridiagonal and inverse tridiagonal TN matrices have appeared in numer-

ous places throughout mathematics. One instance is the case of the Cayley
transform. Let A ∈ Mn(C) such that I +A is invertible. The Cayley trans-
form of A, denoted by C(A), is defined to be

C(A) = (I +A)−1(I − A).

The Cayley transform was defined in 1846 by A. Cayley. He proved that
if A is skew-Hermitian, then C(A) is unitary, and conversely, provided, of
course, that C(A) exists. This feature is useful, for example, in solving matrix
equations subject to the solution being unitary by transforming them into
equations for skew-Hermitian matrices. One other important property of
the Cayley transform is that it can be viewed as an extension to matrices of
the conformal mapping

T (z) =
1− z

1 + z
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from the complex plane into itself. In [FT02] the following result was proved
connecting essentially nonnegative tridiagonal matrices and TN matrices.
Recall that a matrix is called essentially nonnegative if all its off-diagonal
entries are nonnegative.

Theorem 0.1.3 Let A ∈ Mn(IR) be an irreducible matrix. Then A is an
essentially nonnegative tridiagonal matrix with |λ| < 1 for all eigenvalues λ
of A if and only if I + A and (I − A)−1 are TN matrices. In particular,
C(−A) = (I − A)−1(I +A) is a factorization into TN matrices.

Proof. To verify necessity, observe that if I + A is TN, then A is certainly
essentially nonnegative. Also, since (I −A)−1 is TN, it follows that I −A is
invertible and has the checkerboard sign pattern (i.e., the sign of its (i, j)th
entry is (−1)i+j). Hence ai,i+2 = 0 and ai+2,i = 0 for all i ∈ {1, 2, . . . , n−2},
and since A is irreducible and I +A is TN, ai,j = 0 for |i − j| > 1. That is,
A is tridiagonal. The remaining conclusion now readily follows.
For the converse, if A is an essentially nonnegative irreducible tridiagonal

matrix with |λ| < 1 for all eigenvalues λ of A, then I + A is a nonnegative
tridiagonal P -matrix and thus totally nonnegative (see previous section).
Similarly, I − A is a tridiagonal M -matrix since |λ| < 1 for all eigenvalues
λ of A (recall that an n-by-n P -matrix is called an M -matrix if all off-
diagonal entries are nonpositive), and hence (I − A)−1 is TN (this follows
from the remarks in the previous section). Since TN matrices are closed
under multiplication, C(−A) = (I − A)−1(I + A) is TN. �

A natural question arising from Theorem 0.1.3 is whether in every factor-
ization F̂ = (I − A)−1(I +A) of a totally nonnegative matrix F̂ the factors
(I − A)−1 and (I +A) are TN. We conclude with an example showing that
neither of these factors need be TN.
Consider the TN matrix

F̂ =

⎡
⎣ 1 .9 .8

.9 1 .9
0 .9 1

⎤
⎦

and consider A = −C(F̂ ). Then F̂ = C(−A) = (I − A)−1(I + A), where
neither

(I −A)−1 =

⎡
⎣ 1 .45 .4

.45 1 .45
0 .45 1

⎤
⎦ nor I +A =

⎡
⎣ .8203 .3994 .2922

.6657 .5207 .3994
−.2996 .6657 .8203

⎤
⎦

is TN.

Example 0.1.4 (Vandermonde) Vandermonde matrices have been an ex-
ample class of matrices that have garnered much interest for some time. In
many respects it is not surprising that certain Vandermonde matrices are
TP (see Chapter 1 for more discussion). For n real numbers 0 < x1 < x2 <
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. . . xn, the Vandermonde matrix V (x1, x2, · · · < xn) is defined to be

V (x1, x2, . . . , xn) =

⎡
⎢⎢⎢⎢⎢⎣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

...

1 xn x2
n · · · xn−1

n

⎤
⎥⎥⎥⎥⎥⎦ ,

and is a TP matrix (see [GK60, p. 111]). Recall the classical determinantal
formula,

detV (x1, x2, . . . , xn) =
∏
i>j

(xi − xj),

which is positive whenever 0 < x1 < x2 < · · · < xn.
The reader is also encouraged to consult [GK60] for similar notions in-

volving generalized Vandermonde matrices. Totally positive Vandermonde
matrices were also treated in the survey paper on bidiagonal factorizations
of TN matrices [Fal01], which we discuss further below.
It is really quite remarkable that the inequalities 0 < x1 < x2 < x3

are actually sufficient to guarantee that all minors of V above are positive.
Indeed, any 2-by-2 submatrix of V has the form

A =
[

xα1
i xα2

i

xα1
j xα2

j

]
,

where i, j ∈ {1, 2, 3}, i < j, α1, α2 ∈ {0, 1, 2}, and α1 < α2. Since 0 <
xi < xj , it follows that detA > 0. Hence, in this case, A is TP. For an
arbitrary k-by-k submatrix of V , consider the following argument, which
is similar to that given in [GK60] and in [Fal01]. Any k-by-k submatrix
of V (x1, . . . , xn) is of the form A = [xαj

li
], where l1, . . . , lk ∈ {1, . . . , n},

l1 < l2 < · · · < lk, α1, . . . , αk ∈ {0, 1, . . . , n − 1}, and α1 < α2 < · · · < αk.
Let f(x) = c1x

α1 + c2x
α2 + · · · + ckxαk be a real polynomial. Descartes’s

rule of signs ensures that the number of positive real roots of f(x) does not
exceed the number of sign changes among the coefficients c1, . . . , ck, so f(x)
has at most k − 1 positive real roots. Therefore, the system of equations

f(xli) =
k∑

j=1

cjx
αj

li
= 0, i = 1, 2, . . . , k

has only the trivial solution c1 = c2 = · · · = ck = 0, so detA = det[xαj

li
] �= 0.

To establish that detA > 0, we use induction on the size of A. We know
this to be true when the size of A is 2, so assume detA > 0 whenever the size
ofA is at most k−1. LetA = [xαj

li
] be k-by-k, in which l1, . . . , lk ∈ {1, . . . , n},

l1 < l2 < · · · < lk, α1, . . . , αk ∈ {0, 1, . . . , n − 1}, and α1 < α2 < · · · < αk.
Then expanding detA along the last row gives

detA = g(xlk) = akxαk

lk
− ak−1x

αk−1
lk

+ · · ·+ (−1)k−1a1x
α1
lk

.

But ak = det[xαt

ls
], where s, t ∈ {1, 2, . . . , k− 1}, so the induction hypothesis

ensures that ak > 0. Thus 0 �= g(xlk)→ ∞ as xlk → ∞, so detA = g(xlk) >
0. The conclusion is that V (x1, . . . , xn) is TP whenever 0 < x1 < · · · < xn.
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Example 0.1.5 (Cauchy matrix) An n-by-n matrix C = [cij ] is called a
Cauchy matrix if the entries of C are given by

cij =
1

xi + yj
,

where x1, x2, . . . , xn and y1, y2, . . . , yn are two sequences of real numbers
(chosen accordingly so that cij is well defined). A Cauchy matrix is TP
whenever 0 < x1 < x2 < · · · < xn and 0 < y1 < y2 < · · · < yn (see [GK02,
pp. 77–78]).
We observe that the above claim readily follows from the well-known

(Cauchy) identity

detC =
∏

i<k(xi − xk)
∏

i<k(yi − yk)∏
i,k(xi + yk)

.

As a particular instance, consider the matrix Aa = [1/(ai−j + 1)], where
a �= 1. Then Aa = BaD, where D = diag(a, a2, · · · an), and Ba = [1/(ai +
aj)]. It is now easy to see that both Ba and Aa are TP for all a > 0 and
a �= 1.

Example 0.1.6 (Pascal matrix) Consider the n-by-n matrix Pn = [pij ]
whose first row and column entries are all equal to 1, and, for 2 ≤ i, j ≤ n,
define pij = pi−1,j + pi,j−1 (Pascal’s identity). Then a 4-by-4 symmetric
Pascal matrix is given by

P4 =

⎡
⎢⎢⎣
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎤
⎥⎥⎦ .

The fact that Pn is TP will follow from the existence of a bidiagonal factor-
ization, which is explained in much more detail in Chapter 2.

Example 0.1.7 (Routh-Hurwitz matrix) Let f(x) =
∑n

i=0 aix
i be an nth

degree polynomial in x. The n-by-n Routh-Hurwitz matrix is defined to be

RH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 a7 · · · 0 0
a0 a2 a4 a6 · · · 0 0
0 a1 a3 a5 · · · 0 0
0 a0 a2 a4 · · · 0 0
...

...
...

... · · · ...
...

0 0 0 0 · · · an−1 0
0 0 0 0 · · · an−2 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A specific example of a Routh-Hurwitz matrix for an arbitrary polynomial
of degree six, f(x) =

∑6
i=0 aix

i, is given by

RH =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 0 0 0
a0 a2 a4 a6 0 0
0 a1 a3 a5 0 0
0 a0 a2 a4 a6 0
0 0 a1 a3 a5 0
0 0 a0 a2 a4 a6

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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A polynomial f(x) is stable if all the zeros of f(x) have negative real parts.
It is proved in [Asn70] that f(x) is stable if and only if the Routh-Hurwitz
matrix formed from f is TN.

Example 0.1.8 (More examples)
The matrix A = [e−σ(αi−βj)

2
] is TP whenever σ > 0, 0 < α1 < α2 < · · · <

αn, and 0 < β1 < β2 < · · · < βn. It is worth noting that A may also be
viewed as a positive diagonal scaling of a generalized Vandermonde matrix
given by V = [e2σαiβj ], which is also TP.
If the main diagonal entries of a TP matrix A are all equal to one, then it

is not difficult to observe a “drop-off” effect in the entries of A as you move
away from the main diagonal. For example, if i < j, then

aij ≤ ai,i+1ai+1,i+2 · · · aj−1,j .

A similar inequality holds for i > j.
Thus a natural question to ask is how much of a drop-off is necessary in a

positive matrix to ensure that the matrix is TP. An investigation along these
lines was carried in [CC98]. They actually proved the following interesting
fact. If A = [aij ] is an n-by-n matrix with positive entries that also satisfy

aijai+1,j+1 ≥ c0ai,j+1ai+1,j ,

where c0 ≈ 4.07959562349, then A is TP. The number c0 is actually the
unique real root of x3 − 5x2 + 4x − 1.
More recently, this result was refined by [KV06] where they prove that, if

A = [aij ] is an n-by-nmatrix with positive entries and satisfies aijai+1,j+1 ≥
cai,j+1ai+1,j , with c ≥ 4 cos2( π

n+1 ), then A is TP.
These conditions are particularly appealing for both Hankel and Toeplitz

matrices. Recall that a Hankel matrix is an (n+1)-by-(n+1) matrix of the
form ⎡

⎢⎢⎢⎣
a0 a1 · · · an

a1 a2 · · · an+1

...
... · · · ...

an an+1 · · · a2n

⎤
⎥⎥⎥⎦ .

So if the positive sequence {ai} satisfies ak−1ak+1 ≥ ca2
k, then the corre-

sponding Hankel matrix is TP. An (n + 1)-by-(n+ 1) Toeplitz matrix is of
the form ⎡

⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

a−1 a0 a1 · · · an−1

a−2 a−1 a0 · · · an−2

...
...

... · · · ...
a−n a−(n−1) a−(n−2) · · · a0

⎤
⎥⎥⎥⎥⎥⎦ .

Hence if the positive sequence {ai} satisfies a2
k ≥ cak−1ak+1, then the cor-

responding Toeplitz matrix is TP.
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A sequence a0, a1, . . . of real numbers is called totally positive if the two-
way infinite matrix given by⎡

⎢⎢⎢⎣
a0 0 0 · · ·
a1 a0 0 · · ·
a2 a1 a0 · · ·
...

...
...

⎤
⎥⎥⎥⎦

is TP. An infinite matrix is TP if all its minors are positive. Notice that
the above matrix is a Toeplitz matrix. Studying the functions that generate
totally positive sequences was a difficult and important step in the area of
TP matrices; f(x) generates the sequence a0, a1, . . . if f(x) = a0 + a1x +
a2x

2 + · · · . In [ASW52], and see also [Edr52], it was shown that the above
two-way infinite Toeplitz matrix is TP (i.e., the corresponding sequence is
totally positive) if and only if the generating function f(x) for the sequence
a0, a1, . . . has the form

f(x) = eγx

∏∞
ν=1(1 + αvx)∏∞
ν=1(1− βvx)

,

where γ, αv, βv ≥ 0, and
∑

αv, and
∑

βv are convergent.

0.2 APPLICATIONS AND MOTIVATION

Positivity has roots in every aspect of pure, applied, and numerical math-
ematics. The subdiscipline, total positivity, also is entrenched in nearly all
facets of mathematics. Evidence of this claim can be found in the insightful
and comprehensive proceedings [GM96]. This collection of papers was in-
spired by Karlin’s contributions to total positivity and its applications. This
compilation contains 23 papers based on a five-day meeting held in Septem-
ber 1994. The papers are organized by area of application. In particular,
the specialties listed are (in order of appearance)

(1) Spline functions

(2) Matrix theory

(3) Geometric modeling

(4) Probability and mathematical biology

(5) Approximation theory

(6) Complex analysis

(7) Statistics

(8) Real analysis

(9) Combinatorics

(10) Integral equations
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The above list is by no means comprehensive, but it is certainly extensive and
interesting (other related areas include differential equations, geometry, and
function theory). A recent application includes new advances in accurate
eigenvalue computation and connections with singular value decompositions
on TN matrices (see, for example, [KD02, Koe05, Koe07]).
Historically speaking, total positivity came about in essentially three forms:

(1) Gantmacher/Krein—oscillations of vibrating systems

(2) Schoenberg—real zeros of a polynomials, spline function with applica-
tions to mathematical analysis, and approximation

(3) Karlin—integral equations, kernels, and statistics.

All these have led to the development of the theory of TP matrices by way
of rigorous mathematical analysis.
We will elaborate on the related applications by choosing two specific

examples to highlight.

(1) Statistics/probability

(2) CAGD/spline functions

On our way to discussing these specific applications, which in many ways
represent a motivation for exploring TP matrices, we begin with a classic def-
inition, which may have been the impetus for both Karlin and Schoenberg’s
interest in TP matrices.
A real function (or kernel) k(x, y) in two variables, along with two linearly

ordered sets X, Y is said to be totally positive of order n if for every

x1 < x2 < · · · < xn; y1 < y2 < · · · < yn, xi ∈ X, yj ∈ Y,

we have

det

⎡
⎢⎣

k(x1, y1) · · · k(x1, yn)
...

. . .
...

k(xn, y1) · · · k(xn, yn)

⎤
⎥⎦ > 0.

We use the term TN for a function k(x, y) if the inequalities above are
not necessarily strict.
There are many examples of totally positive functions. For instance,

(1) k(x, y) = exy (see [Kar68, p. 15]), x, y ∈ (−∞,∞),

(2) k(x, y) = xy, x ∈ (0,∞), y ∈ (−∞,∞)

are both examples (over their respective domains) of totally positive func-
tions.
Upon closer examination of the function k(x, y) in (2), we observe that

for a fixed n and given 0 < x1 < x2 < · · · < xn and y1 < y2 < · · · < yn,
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the n-by-n matrix (k(xi, yj))i,j=1 is a generalized Vandermonde matrix. For
instance, if n = 4, then the matrix in question is given by⎡

⎢⎢⎣
xy1

1 xy2
1 xy3

1 xy4
1

xy1
2 xy2

2 xy3
2 xy4

2

xy1
3 xy2

3 xy3
3 xy4

3

xy1
4 xy2

4 xy3
4 xy4

4

⎤
⎥⎥⎦ .

An important instance is when a totally positive function of order n, say
k(x, y), can be written as k(x, y) = f(x − y) (x, y ∈ R). In this case, the
function f(u) is called a Pólya frequency function of order n, and is often
abbreviated as PFn (see [Kar68], for example). Further along these lines, if
k(x, y) = f(x − y) but x, y ∈ Z, then f(u) is said to be a Pólya frequency
sequence of order n.
As an example, we mention a specific application of totally positive func-

tions of order 2 (and PF2) to statistics.
Observe that a function h(u), u ∈ R is PF2 if:

(1) h(u) > 0 for −∞ < u < ∞, and

(2) det
(

h(x1 − y1) h(x1 − y2)
h(x2 − y1) h(x2 − y2)

)
> 0

for all −∞ < x1 < x2 < ∞, −∞ < y1 < y2 < ∞.

In the book [BP75, p. 76], it is noted that conditions (1), (2) on h(u)
above are equivalent to either

(3) log h(u) is concave on R, or

(4) for fixed  > 0,
h(u+)

h(u)
is decreasing in u for a ≤ u ≤ b when

a = inf
h(u)>0

y, b = sup
h(u)>0

u.

Recall that for a continuous random variable u, with probability density
function f(u), its cumulative distribution function is defined to be F (u) =∫ u

−∞ f(t)dt. Then the reliability function, F , is given by F (u) = 1 − F (u).
A distribution function F (u) is called an increasing failure rate distribution
if the function

F (x|t) = F (t+ x)
F (t)

is decreasing in t ∈ R for each x ≥ 0. It turns out that the condition F (x|t)
decreasing is equivalent to the failure rate function

r(t) =
f(t)
F (t)

being an increasing function.
Hence we have that a distribution function F (u) is an increasing failure

rate distribution if and only if F = 1− F is PF2.
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Return to totally positive functions. Suppose k is a function of X × Y ;
then we will consider the derived “determinant function.” Define the set
(following [Kar68])

p(X) = {x = (x1, x2, . . . , xp)| x1 < · · · < xp, xi ∈ X}
(ordered p-tuples).
The determinant function

K[p](x, y) = det

⎡
⎢⎣

k(x1, y1) · · · k(x1, yn)
...

. . .
...

k(xn, y1) · · · k(xn, yn)

⎤
⎥⎦

defined on p(X)×(Y ) is called the compound kernel of order p induced
by k(x, y). If k(x, y) is a totally positive function of order n, then K[p](x, y)
is a nonnegative function on p(X)×p(Y ) for each p = 1, . . . , n.
As an example, consider the (indicator) function k(x, y) defined

k(x, y) =
{
1, 1 ≤ x ≤ y ≤ b,
0, a ≤ y < x ≤ b.

Then k is a totally nonnegative function, and for arbitrary

1 ≤ x1 < x2 < · · · < xn ≤ b,
a ≤ y1 < y2 < · · · < yn ≤ b

we have

Kp[x, y] =
{
1 if x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn,
0 otherwise.

The proof is straightforward and is omitted.
Another example class of totally positive functions is the exponential fam-

ily of (statistical) distributions. Consider the function

k(x, y) = β(y)exy

with respect to sigma finite measure dμ(x). Examples of such distributions
include the normal distribution with variance 1, exponential distributions,
and the gamma distribution.
There is another connection between totally positive matrices and corre-

lation matrices.
Following the paper [SS06], and the references therein, it is known by

empirical analysis that correlation matrices of forward interest rates (which
have applications in risk analysis) seem to exhibit spectral properties that are
similar to TP matrices. In particular, it is shown that the correlation matrix
R of yields can be approximately described by the correlation function

ρij = exp(−β|tj − ti|), β > 0.

If indices with maturities in the above model are identified, then ρij = ρ|i−j|,
where ρ = exp(−β).
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Then

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 · · · ρn−1

ρ
. . . . . . . . .

...

ρ2 . . . . . . . . . ρ2

...
. . . . . . . . . ρ

ρn−1 · · · ρ2 ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(special Toeplitz matrix).

It is well known that R above is oscillatory. For example, appealing to an
old result in [Edr52] and referring to [Kar68] (making use of Polyá frequency
sequences) to demonstrate that R is TN, before establishing that R is OSC.
Without going into details here, we note that R is essentially (up to re-

signing) the inverse of the IITN tridiagonal matrix

T =
1

(1− ρ2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ 0 · · · 0

ρ 1 + ρ2 ρ
. . . 0

0 ρ
. . . . . . 0

...
. . . . . . 1 + ρ2 ρ

0 · · · 0 ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that T satisfies the row dominance conditions mentioned in the
previous section of this chapter. Consequently T is OSC, and hence R is
OSC.
Further applications to risk analysis overlap with the theory of TP matri-

ces.
In [Jew89], where choices between risky prospects are investigated, it is

cited under what conditions it is true that

E(u(Y +X)) = u(Y + C)⇒ E(v(Y +X)) ≤ E(v(Y + C)),

where
X, Y—risky prospects,
u, v—increasing utilities with v more risk averse than u?
Clearly the answer will depend on what is assumed about the joint distri-

bution of X and Y .
Jewitt proves (along with a slight generalization) that the above condition

holds whenever Y is independent of X and has a log-concave density. Recall
from the previous discussion that log-concavity is intimately related to the
density being a totally positive function of order 2 (k(x, y) = h(x − y) a
totally positive function of order 2 is equivalent to being log-concave).
The theory of Pólya frequency functions (PF ) is quite immeasurable and

its history spans 80 years. Further, their connection to TP matrices is very
strong and has produced numerous important results and associated appli-
cations.
A Pólya frequency function of order k (PFk) is a function f in a one real

variable u, u ∈ R for which k(x, y) = f(x − y) is a totally nonnegative
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function of order k for x, y ∈ R. Schoenberg was one of the pioneers in the
study of Pólya frequency functions.
A basic example of a PF function is

f(u) = e−γu2
, γ > 0.

To verify, observe that

f(x − y) = e−γ(x−y)2 = e−γx2
e−γy2

e2γxy.

Since exy is a totally nonnegative function, and the other factors are totally
positive functions, their product above is a totally positive function.
If the argument of a PFk function is restricted to the integers, we call the

resulting sequence a Pólya frequency sequence.
For brevity, we discuss the case of “one-sided” Pólya frequency sequences:

k(m, n) = an−m, generates a sequence {a	}, with the extra stipulation that
a	 = 0 for � < 0. A (one-sided) sequence is said to be a PF∞ sequence if the
corresponding Kernel written as an infinite matrix

A =

⎡
⎢⎢⎢⎢⎣

a0 a1 · · · · · ·
0 a0 a1 · · ·
... 0 a0 a1

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎦

is TN, and similarly {a	} is PFk if A is TNk. Observe that if a0 > 0 and A
is TP2, then the sequence {a	} is either finite or consists entirely of positive
numbers.
To a given sequence {a	}, we associate the usual generating function

f(z) =
∑∞

	=0 a	z
	. Further, if {an} is a PF2 sequence, then f(z) has a

nonzero radius of convergence. Some examples of PF∞ sequences are

(1) f(z) = 1 + αz, α > 0,

(2) f(z) =
1

1− βz
, β > 0.

Observe that the (discrete) kernel corresponding to (2) has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 β β2 · · · · · ·
0 1 β β2 · · ·
... 0 1 β

. . .
...

...
. . . . . . . . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It can be easily verified that A is TN and that the radius of convergence of
f(z) = (1 − βz)−1 is given by |z| < 1/β.
There is an “algebra” associated with PFr sequences. If f(z) and g(z)

generate one-sided PFr sequences, then so do

f(z) · g(z) and 1
f(−z)

.
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Hence combining examples (1) and (2) above, we arrive at the function
n∏

i=1

(1 + αiz)

n∏
j=1

(1 − βjz)

,

with αi > 0 and βj > 0, which generates a one-sided PF sequence. In fact, it
can be shown that eγz, γ > 0 generates a PF sequence. Hence the function

f(z) = eγz

∞∏
i=1

(1 + αiz)

∞∏
j=1

(1− βjz)

,

generates a one-sided PF sequence provided αi ≥ 0, βj ≥ 0 and∑
αi < ∞,

∑
βj < ∞.

A crowning achievement along these lines is a representation of one-sided
PF sequences in 1952 [Edr52]. A function f(z) =

∑
anzn with f(0) = 1

generates a one-sided PF sequence if and only if it has the form

f(z) = eγz

∞∏
i=0

(1 + α1z)

∞∏
j=0

(1− βjz)

,

where γ ≥ 0, αi ≥ 0, βj ≥ 0, and
∑
(αi + βi) < ∞.

It is useful to note that Whitney’s reduction theorem for totally posi-
tive matrices [Whi52] was a key component to proving one direction of the
aforementioned result that appeared in [ASW52].
Edrei later considered doubly infinite sequences and their associated gen-

erating functions; see [Edr53a] and [Edr53b]. A doubly infinite sequence of
real numbers {an}∞−∞ is said to be totally positive if for every k and sets
of integers s1 < s2 < · · · < sk and t1 < t2 < · · · < tk, the determinant of
C = [asi−tj ] for i, j = 1, 2, . . . , k is nonnegative. We also note that some of
Edrei’s work on scalar Toeplitz matrices has been extended to block Toeplitz
matrices (see, for example, [DMS86]), including a connection via matrix fac-
torization.
We close this section on applications with a discussion on totally positive

systems of functions. We incorporate two example applications within such
systems of functions:

(1) spline functions,

(2) TP bases.
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Given a system of real-valued functions u = (u0, u1, . . . , un) defined on
I ⊆ R, the collocation matrix of u at t0 < t1, < · · · < tm in I is defined as
the (m+ 1)-by-(n+ 1) matrix

M =

⎛
⎜⎜⎜⎝

u0(t0) u1(t0) · · · un(t0)
u0(t1) u1(t1) · · · un(t1)
...

...
. . .

...
u0(tm) u1(tm) · · · un(tm)

⎞
⎟⎟⎟⎠ .

We say that a system of functions u is totally positive if all its collocation
matrices are TP. The most basic system of functions that are totally positive
is of course 1, x, x2, . . . , xn when I = (0,∞). In this case the associated
collocation matrices are just Vandermonde matrices.
We say that (u0, u1, . . . , un) is a normalized totally positive system if

n∑
i=0

ui(x) = 1 for x ∈ I.

If, in addition, the system (u0, u1, . . . , un) is linearly independent, then we
call (u0, u1, . . . , un) a totally positive basis for the space Span{u0, . . . , un}.
For example, {1, x, x2, . . . , xn} is a totally positive basis for Pn, the space of
polynomials of degree at most n.
Let u = (u0, . . . , un) be a TP basis defined on I, and let U = span(u0, . . . , un).

It follows that for any TP matrix A the basis v defined by

vT = uT A

is again a TP basis. The converse, which is an extremely important property
of TP bases, is known to hold, namely, that all TP bases are generated in
this manner. The key of course is choosing the appropriate starting basis.
A TP basis u defined on I is called a B-basis if all TP bases v of U satisfy
vT = AT u for some invertible TN matrix A.
Some examples of B-bases include

(1) the Bernstein basis defined on [a, b]

bi(t) =

(
n
i

)
(b − a)n

(t − a)i(b − t)n−i;

(2) the B-spline basis of the space of polynomial splines on a given interval
with a prescribed sequence of knots.

TP bases and normalized TP bases have a natural geometric meaning
which leads to representations with optimal shape-preserving properties.
Given a sequence of positive functions (u0, . . . , un) on [a, b] with

∑
u = 1

and a sequence (A0, A1, . . . , An) of points in R
k, we define the curve

γ(t) =
n∑

i=0

c0 · ui(t), t ∈ [a, b].
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The functions u0, . . . , un are typically called the blending functions and
the points on A0, A1, . . . , An the control points. Let P (A0, . . . , An) denote
the polygonal arc with vertices Ao, . . . , An. Often P (A0, . . . , An) is called
the control polygon of the curve γ.
If u0, . . . , un is a normalized TP basis, then the curve γ preserves many

of the shape properties of the control polygon. For example, the variation-
diminution properties of TP matrices implies that the monotonicity and
convexity of the control polygon are inherited by the curve γ. It is for these
reasons that TP and B-bases are important in computer-aided geometric
design.
As mentioned in example (2), the so-calledB-spline’s are deeply connected

with certain aspects of total positivity. We describe briefly the concepts of
spline functions and B-splines and their relationships to TP matrices.
Let  = {xi, i = 1, . . . , r with x1 < x2 < x3 < · · · < xr}, k > 0, and let

m = (m1, m2, . . . , mr) be a sequence of integers with 1 ≤ mi ≤ k + 1 for
each i.
Suppose [a, b] is a given interval with xi ∈ [a, b], and define x0 = a,

xr+1 = b. A piecewise polynomial function f of degree k on each of the
intervals [xi, xu) for i ≤ r − 1 and on [xr , xr+1], and continuous of order
k − mi (the function and the associated derivatives) at the knot xi is called
a spline of degree k with knots xi of multiplicity mi.
Spline functions have a rich and deep history and have applications in

many areas of mathematics, including in approximation theory.
One important aspect to the theory for splines is determining an appro-

priate basis for the space spanned by the splines described above. B-splines
turn out to be a natural such basis. To describe B-splines we need to in-
troduce a finer partition based on the knots x1 < · · · < xr above and on
[a, b] (here we assume [a, b] is a finite interval for simplicity). Define the new
knots

y1 ≤ y2 ≤ · · · < yk+1 < a,
yk+1 = yk+3 = · · · = yk+m1+1 = x1,
yk+m1+2 = · · · = yk+m1+m2+1 = x2,

...
yk+n−mr+2 = yk+n−mr+3 = · · · = yk+n+1 = xr,

(n =
∑

mi)
b ≤ yk+n+2 ≤ · · · ≤ yn+2k+2.

Observe that yi+k+1 > yi for all i. Given this finer partition we define the
functions

Bi(x) = (yi+k+1 − yi)[yi · · · yi+k+1](y − x)kt ,

a ≤ x ≤ b, 1 ≤ i ≤ n+ k + 1,

when ut = max{0, u} and [yi, . . . , yi+k+1]f(x, y) denotes the (k+1)st divided
difference of f with respect to the variable y with arguments yi, . . . , yi+k+1.
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The functions Bi(x) are called B-splines and form a basis for the space
spanned (with compact support) all spline of degree k with knots xi of
multiplicity mi.
Consider strictly increasing real numbers y1 < · · · < yn+k+1, and let Bi(x)

be as defined above, with [yi, yi+k+1] as the support of Bi.
For distinct real numbers t1 < t2 < · · · < tn, we let

M =

⎛
⎜⎜⎜⎝

B1(t1) · · · Bn(t1)
B1(t2) · · · Bn(t2)
...

...
...

B1(tn) · · · Bn(tn)

⎞
⎟⎟⎟⎠

be the corresponding collocation matrix.
Schoenberg/Whitney [SW 53] proved that M is invertible if and only if

yi < ti < yi+k+1 for i = 1, . . . , n.
In fact, much more is true about the matrix M when y2 < ti < yi+k+1∀i.

M is a TN matrix, as demonstrated by Karlin in [Kar68]. In [dB76] it
was verified that all minors of M are nonnegative and a particular minor
is positive (when yi < ti < yi+k+1) if and only if all main diagonal entries
of that minor are positive. Such matrices are also known as almost totally
positive matrices.

0.3 ORGANIZATION AND PARTICULARITIES

This book is divided into 11 chapters including this introductory chapter on
TN matrices. The next chapter, Chapter 1, carefully spells out a number of
basic and fundamental properties of TN matrices along with a compilation
of facts and results from core matrix theory that are useful for further de-
velopment of this topic. For our purposes, as stated earlier, a matrix will
be considered over the real field, unless otherwise stated. Further, it may
be the case that some of the results will continue to hold over more general
fields, although they will only be stated for matrices over the reals.
Chapter 2 introduces and methodically develops the important and use-

ful topic of bidiagonal factorization. In addition to a detailed description
regarding the existence of such factorizations for TN matrices, we also dis-
cuss a number of natural consequences and explain the rather important
associated combinatorial objects known as planar diagrams.
The next four chapters, Chapters 3–6, highlight the fundamental topics:

recognition of TN matrices (Chapter 3); sign variation of vectors (Chapter
4); spectral properties (Chapter 5); and determinantal inequalities (Chapter
6).
The remaining four chapters cover a wide range of topics associated with

TN matrices that are of both recent and historical interest. Chapter 7 con-
tains a detailed account of the distribution of rank deficient submatrices
within a TN matrix, including a discussion of the important notion of row
and column inclusion. Chapter 8 introduces the Hadamard (or entrywise)
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product and offers a survey of the known results pertaining to Hadamard
products of TN matrices, including a note on Hadamard powers. In Chapter
9, we explore the relatively modern idea of matrix completion problems for
TN matrices. This chapter also includes a section on single entry pertur-
bations, known as retractions, which turn out to be a useful tool for other
problems on TN matrices. In Chapter 10 we conclude with a brief review of
a number of subtopics connected with TN matrices, including powers and
roots of TN matrices, TP/TN polynomial matrices, subdirect sums of TN
matrices, and Perron complements of TN matrices.
For the reader we have included a brief introductory section with each

chapter, along with a detailed account of the necessary terms and notation
used within that chapter. We have aimed at developing, in detail, the theory
of totally nonnegative matrices, and as such this book is sequential in nature.
Hence some results rely on notions in earlier chapters, and are indicated
accordingly by references or citations as necessary. On a few occasions some
forward references have also been used (e.g., in section 2.6 a reference is made
to a result to appear in Chapter 3). We have tried to keep such instances of
forward references to a minimum for the benefit of the reader.
This work is largely self-contained with some minor exceptions (e.g., char-

acterization of sign-regular transformations in Chapter 4). When a relevant
proof has been omitted, a corresponding citation has been provided. In ad-
dition, some of the proofs have been extracted in some way from existing
proofs in the literature, and in this case the corresponding citation accom-
panies the proof.
We have also included, at the end, a reasonably complete list of references

on all facets of total nonnegativity. Finally, for the benefit of the reader, an
index and glossary of symbols (nomenclature) have also been assembled.
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(i, j)-multiplier, 75
(i, j)-pivot, 75
(r − 1)-regular, 165
B-basis, 22
Eij , 3
In, 3
Jm,n, 3
LU -factorization, 47, 48
M -matrix, 11
P -matrix, 5
P0-matrix, 5
ΔTN, 3
ΔTP, 3
Dn, 3
e, 3
ei, 3
k-subdirect sum, 207
kth compound of A, 28
m-by-n matrices over IF, 1
m-by-n real matrices, 1
n-by-n matrices over IF, 1
tth Hadamard power, 167
tth power of A, 205
u-profile, 98

adjacent edge condition, 192
adjugate, 102
allow, 37
almost principal minor, 130
almost totally positive matrix, 24
alternating nodes, 98

backward identity, 34
basic oscillatory matrix, 71
bidiagonal

elementary, 45
factorization, 43
generalized, 45
matrix, 45

biorthogonality, 33
block, 157
bounded ratio, 132

Cauchy matrix, 13
Cauchy-Binet identity, 27, 65
Cayley transform, 10
checkerboard partial order, 81

checkerboard sign pattern, 33
chord, 188
chordal graph, 188
classical adjoint, 29
clique, 188
clique sum, 188
collocation matrix, 22
column compression of A, 93
column space, 154
complement

extended Perron, 213
index set, 2
Perron, 213
Schur, 35

completion, 186
compound, 28
compound kernel of order p, 18
compression of A, 149
conditions

(M), 137
adjacent edge, 193
cycle, 194
eigenvector determinant, 101
set-theoretic zero, 135
threshold, 105

contiguous components, 162
contiguous index set, 75
contiguous minor, 75
contiguous rank property, 165
contiguous submatrix, 75
control points, 23
control polygon of the curve, 23
convex hull of a submatrix, 159
corner minor, 78

determinant, 2
diagonal, 45
diagonal matrix, 3
diagram

planar, 64
weighted planar, 67

dispersion, 35, 74
double echelon form, 37

EB, 45
EB matrix, 45
eigenvector determinant conditions, 101
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elementary bidiagonal matrix, 45
elimination

Neville, 47
Whitney, 50

essentially nonnegative matrix, 11
eternally, 181
eventually positive determinant, 181
eventually TN, 181
eventually TP, 181, 206
exponent, 70
extended Perron complement at t, 213

factorization
LU , 47
bidiagonal, 43
SEB, 51
successive bidiagonal, 52

Fischer matrices, 154
Fischer’s inequality, 68, 129

gap, 133
GEB, 45
generalized corner minor, 79
generalized EB matrix, 45
generalized elementary bidiagonal ma-

trix, 45
generator, 138
graph, 189

chordal, 188
cycle, 193
MLBC, 189

Grassmannian, 31
Green’s matrix, 10

Hadamard core, 170
Hadamard power, 179
Hadamard product, 167
Hadamard’s inequality, 129
Hankel matrix, 14

identity
Cauchy-Binet, 27
Jacobi, 28
Karlin, 30
Plücker, 31
short-term Plücker, 32
Sylvester, 29

identity matrix, 3
IITN, 2
IITNk , 2
index of an eigenvalue, 116
index set, 2
inequality

basic Koteljanskĭı, 133
Fischer, 68, 129
Hadamard, 129
Koteljanskĭı, 130
Oppenheim, 177

infinitesimal element, 63
initial minor, 75
initial sign of a vector, 88
interlace, 9, 118
interval, 137
InTN, 2
InTNk , 2
IrTN, 2
IrTNk, 2

Jacobi matrix, 6
Jacobi’s identity, 28
Jordan structure, 108

Karlin’s identity, 30
Koteljanskĭı matrix, 130
Koteljanskĭı’s inequality, 130

latitudinal section, 163
leading principal submatrix, 2
line, 39
longitudinal section, 163
lower triangular, 45

majorization, 121
majorizes, 137
matrix

P , 5
P0, 5
almost totally positive, 24
basic oscillatory, 71
bidiagonal, 45
Cauchy, 13
collocation, 22
compressed, 149
creation, 63
derivation, 63
diagonal, 45
EB, 45
elementary bidiagonal, 45
essentially nonnegative, 11
function, 63, 212
GEB, 45, 57
generalized bidiagonal, 45
Green’s, 10
Hankel, 14
Hessenberg, 110
identity, 3
Jacobi, 6
Koteljanskĭı, 130
oscillatory, 2
Pólya, 175
partial, 186
partial TN, 186
partial TP, 186
Pascal, 13, 63
polynomial, 212
Routh-Hurwitz, 13
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signature, 7
single pair, 10
symmetric Pascal, 52, 63
Toeplitz, 14
totally nonnegative, 2
totally positive, 2
triangular, 45
triangular TN, 3
triangular TP, 3
tridiagonal, 4, 45
Vandermonde, 11

matrix function, 212
matrix of type D, 10
matrix with entries aij , 1
matrix-valued function, 63
maximum sign variation of x, 87
minimum sign variation of x, 87
minor, 2

almost principal, 130
contiguous, 75
corner, 78
generalized corner, 79
initial, 75
principal, 2
quasi-initial, 83
quasi-principal, 70

MLBC graph, 189
monotone matrix, 82
multiplier, 75, 85

network
planar, 64
weighted planar, 67

Neville elimination, 47
node of a profile, 98
nonzero Jordan structure, 108
normal Jacobi matrix, 6
normalized dominant, 181

Oppenheim’s inequality, 177
OSC, 2
oscillatory, 2

Pólya frequency function, 17
Pólya frequency function of order k, 19
Pólya frequency sequence, 20
Pólya frequency sequence of order n, 17
Pólya matrix, 175
partial matrix, 186
partial TN matrix, 186
partial TP matrix, 186
partitioned rank intersection property,

162
Pascal matrix, 13, 63
Perron complement, 213
Perron’s theorem, 33
Perron-Frobenius theory, 100
pivot, 75

Plücker coordinate, 31, 147
Plücker relations, 31
planar diagrams, 64
planar networks, 64
polynomial matrix, 212
principal rank, 107
principal rank property, 155
principal submatrix, 2
principle of biorthogonality, 33
profile, 98

qualitative Jordan structure, 108
quasi-initial minor, 83
quasi-principal minor, 70
quasi-principal submatrix, 70

rank, 107
rank deficient, 153
realizable, 112
realization, 37
requires, 37
retractable set, 199
retractions of a matrix, 199
Routh-Hurwitz matrix, 13, 169
row space, 154

Schur complement, 35, 36, 213
SEB factorization, 51
section rank property, 163
sections, 163
set of retractions, 199
shadow, 159
sign pattern, 37
signature matrix, 7
single pair matrix, 10
spectral radius, 33
spectral structure, 97
spline of degree k with knots xi, 23
stable polynomial, 14
stretch, 47
subdiagonal, 4
subdirect sum, 60, 207
submatrix, 2

contiguous, 75
leading, 2
nonprincipal, 2
principal, 2

successive bidiagonal factorization, 52
superdiagonal, 4
swath, 157
Sylvester’s identity, 29
symmetric Pascal matrix, 52, 63

terminal sign of a vector, 88
TN′, 2
TNk, 2
TN′

k, 2
Toeplitz matrix, 14
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total sign variation of x, 87
totally nonnegative, 2

matrix, 2
totally nonzero, 87
totally positive

basis, 22
function, 16
matrix, 2
sequence, 15
system, 22

TPk, 2
triangular, 45
triangular TN, 3
triangular TP, 3
tridiagonal, 45
tridiagonal matrix, 4

unisigned, 98
upper triangular, 45

Vandermonde matrix, 11, 47, 73, 169
variation diminishing, 93

weight of a collection, 65
weight of a path, 65
weighted planar diagram, 67
Whitney elimination, 50
Whitney’s Reduction result, 48

zero lines, 82




