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Chapter 1

Questions about Questions
■ ◆ ■||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

“I checked it very thoroughly,” said the computer, “and that
quite definitely is the answer. I think the problem, to be quite
honest with you, is that you’ve never actually known what
the question is.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This chapter briefly discusses the basis for a successful
research project. Like the biblical story of Exodus, a
research agenda can be organized around four questions.

We call these frequently asked questions (FAQs), because they
should be. The FAQs ask about the relationship of interest, the
ideal experiment, the identification strategy, and the mode of
inference.

In the beginning, we should ask, What is the causal rela-
tionship of interest? Although purely descriptive research has
an important role to play, we believe that the most interesting
research in social science is about questions of cause and effect,
such as the effect of class size on children’s test scores, dis-
cussed in chapters 2 and 6. A causal relationship is useful for
making predictions about the consequences of changing cir-
cumstances or policies; it tells us what would happen in alter-
native (or “counterfactual”) worlds. For example, as part of
a research agenda investigating human productive capacity—
what labor economists call human capital—we have both
investigated the causal effect of schooling on wages (Card,
1999, surveys research in this area). The causal effect of
schooling on wages is the increment to wages an individual
would receive if he or she got more schooling. A range of
studies suggest the causal effect of a college degree is about 40
percent higher wages on average, quite a payoff. The causal
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4 Chapter 1

effect of schooling on wages is useful for predicting the earn-
ings consequences of, say, changing the costs of attending
college, or strengthening compulsory attendance laws. This
relation is also of theoretical interest since it can be derived
from an economic model.

As labor economists, we’re most likely to study causal
effects in samples of workers, but the unit of observation in
causal research need not be an individual human being. Causal
questions can be asked about firms or, for that matter, coun-
tries. Take, for example, Acemoglu, Johnson, and Robinson’s
(2001) research on the effect of colonial institutions on eco-
nomic growth. This study is concerned with whether countries
that inherited more democratic institutions from their colonial
rulers later enjoyed higher economic growth as a consequence.
The answer to this question has implications for our under-
standing of history and for the consequences of contemporary
development policy. Today, we might wonder whether newly
forming democratic institutions are important for economic
development in Iraq and Afghanistan. The case for democ-
racy is far from clear-cut; at the moment, China is enjoying
robust economic growth without the benefit of complete polit-
ical freedom, while much of Latin America has democratized
without a big growth payoff.

The second research FAQ is concerned with the experi-
ment that could ideally be used to capture the causal effect
of interest. In the case of schooling and wages, for example,
we can imagine offering potential dropouts a reward for fin-
ishing school, and then studying the consequences. In fact,
Angrist and Lavy (2008) have run just such an experiment.
Although their study looked at short-term effects such as col-
lege enrollment, a longer-term follow-up might well look at
wages. In the case of political institutions, we might like to
go back in time and randomly assign different government
structures in former colonies on their independence day (an
experiment that is more likely to be made into a movie than
to get funded by the National Science Foundation).

Ideal experiments are most often hypothetical. Still, hypo-
thetical experiments are worth contemplating because they
help us pick fruitful research topics. We’ll support this claim by
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Questions about Questions 5

asking you to picture yourself as a researcher with no budget
constraint and no Human Subjects Committee policing your
inquiry for social correctness: something like a well-funded
Stanley Milgram, the psychologist who did pathbreaking work
on the response to authority in the 1960s using highly contro-
versial experimental designs that would likely cost him his job
today.

Seeking to understand the response to authority, Milgram
(1963) showed he could convince experimental subjects to
administer painful electric shocks to pitifully protesting victims
(the shocks were fake and the victims were actors). This turned
out to be controversial as well as clever: some psychologists
claimed that the subjects who administered shocks were psy-
chologically harmed by the experiment. Still, Milgram’s study
illustrates the point that there are many experiments we can
think about, even if some are better left on the drawing board.1

If you can’t devise an experiment that answers your question
in a world where anything goes, then the odds of generat-
ing useful results with a modest budget and nonexperimental
survey data seem pretty slim. The description of an ideal exper-
iment also helps you formulate causal questions precisely. The
mechanics of an ideal experiment highlight the forces you’d
like to manipulate and the factors you’d like to hold constant.

Research questions that cannot be answered by any exper-
iment are FUQs: fundamentally unidentified questions. What
exactly does a FUQ look like? At first blush, questions about
the causal effect of race or gender seem good candidates
because these things are hard to manipulate in isolation
(“imagine your chromosomes were switched at birth”). On
the other hand, the issue economists care most about in the
realm of race and sex, labor market discrimination, turns on
whether someone treats you differently because they believe
you to be black or white, male or female. The notion of a
counterfactual world where men are perceived as women or
vice versa has a long history and does not require Douglas
Adams-style outlandishness to entertain (Rosalind disguised

1Milgram was later played by the actor William Shatner in a TV special,
an honor that no economist has yet received, though Angrist is still hopeful.
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6 Chapter 1

as Ganymede fools everyone in Shakespeare’s As You Like
It). The idea of changing race is similarly near-fetched: in The
Human Stain, Philip Roth imagines the world of Coleman
Silk, a black literature professor who passes as white in pro-
fessional life. Labor economists imagine this sort of thing all
the time. Sometimes we even construct such scenarios for the
advancement of science, as in audit studies involving fake job
applicants and résumés.2

A little imagination goes a long way when it comes to
research design, but imagination cannot solve every problem.
Suppose that we are interested in whether children do bet-
ter in school by virtue of having started school a little older.
Maybe the 7-year-old brain is better prepared for learning than
the 6-year-old brain. This question has a policy angle com-
ing from the fact that, in an effort to boost test scores, some
school districts are now imposing older start ages (Deming and
Dynarski, 2008). To assess the effects of delayed school entry
on learning, we could randomly select some kids to start first
grade at age 7, while others start at age 6, as is still typical.
We are interested in whether those held back learn more in
school, as evidenced by their elementary school test scores. To
be concrete, let’s look at test scores in first grade.

The problem with this question—the effects of start age on
first grade test scores—is that the group that started school at
age 7 is . . . older. And older kids tend to do better on tests, a
pure maturation effect. Now, it might seem we can fix this by
holding age constant instead of grade. Suppose we wait to test
those who started at age 6 until second grade and test those
who started at age 7 in first grade, so that everybody is tested
at age 7. But the first group has spent more time in school, a
fact that raises achievement if school is worth anything. There
is no way to disentangle the effect of start age on learning
from maturation and time-in-school effects as long as kids are
still in school. The problem here is that for students, start age

2A recent example is Bertrand and Mullainathan (2004), who compared
employers’ reponses to résumés with blacker-sounding and whiter-sounding
first names, such as Lakisha and Emily (though Fryer and Levitt, 2004, note
that names may carry information about socioeconomic status as well as race.)
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equals current age minus time in school. This deterministic
link disappears in a sample of adults, so we can investigate
pure start-age effects on adult outcomes, such as earnings or
highest grade completed (as in Black, Devereux, and Salvanes,
2008). But the effect of start age on elementary school test
scores is impossible to interpret even in a randomized trial,
and therefore, in a word, FUQed.

The third and fourth research FAQs are concerned with
the nuts-and-bolts elements that produce a specific study.
Question number 3 asks, What is your identification strat-
egy? Angrist and Krueger (1999) used the term identification
strategy to describe the manner in which a researcher uses
observational data (i.e., data not generated by a random-
ized trial) to approximate a real experiment. Returning to
the schooling example, Angrist and Krueger (1991) used the
interaction between compulsory attendance laws in American
states and students’ season of birth as a natural experiment to
estimate the causal effects of finishing high school on wages
(season of birth affects the degree to which high school stu-
dents are constrained by laws allowing them to drop out after
their 16th birthday). Chapters 3–6 are primarily concerned
with conceptual frameworks for identification strategies.

Although a focus on credible identification strategies is
emblematic of modern empirical work, the juxtaposition of
ideal and natural experiments has a long history in economet-
rics. Here is our econometrics forefather, Trygve Haavelmo
(1944, p. 14), appealing for more explicit discussion of both
kinds of experimental designs:

A design of experiments (a prescription of what the physi-
cists call a “crucial experiment”) is an essential appendix
to any quantitative theory. And we usually have some such
experiment in mind when we construct the theories, although—
unfortunately—most economists do not describe their design
of experiments explicitly. If they did, they would see that the
experiments they have in mind may be grouped into two dif-
ferent classes, namely, (1) experiments that we should like to
make to see if certain real economic phenomena—when arti-
ficially isolated from “other influences”—would verify certain
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8 Chapter 1

hypotheses, and (2) the stream of experiments that Nature is
steadily turning out from her own enormous laboratory, and
which we merely watch as passive observers. In both cases
the aim of the theory is the same, to become master of the
happenings of real life.

The fourth research FAQ borrows language from Rubin
(1991): What is your mode of statistical inference? The answer
to this question describes the population to be studied, the
sample to be used, and the assumptions made when construct-
ing standard errors. Sometimes inference is straightforward, as
when you use census microdata samples to study the American
population. Often inference is more complex, however, espe-
cially with data that are clustered or grouped. The last chapter
covers practical problems that arise once you’ve answered
question number 4. Although inference issues are rarely very
exciting, and often quite technical, the ultimate success of even
a well-conceived and conceptually exciting project turns on the
details of statistical inference. This sometimes dispiriting fact
inspired the following econometrics haiku, penned by Keisuke
Hirano after completing his thesis:

T-stat looks too good
Try clustered standard errors—
Significance gone

As should be clear from the above discussion, the four
research FAQs are part of a process of project development.
The following chapters are concerned mostly with the econo-
metric questions that come up after you’ve answered the
research FAQs—in other words, issues that arise once your
research agenda has been set. Before turning to the nuts and
bolts of empirical work, however, we begin with a more
detailed explanation of why randomized trials give us our
benchmark.
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