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1 Lp Spaces and Banach Spaces

In this work the assumption of quadratic integrability
will be replaced by the integrability of |f(x)|p. The
analysis of these function classes will shed a particu-
lar light on the real and apparent advantages of the
exponent 2; one can also expect that it will provide
essential material for an axiomatic study of function
spaces.

F. Riesz, 1910

At present I propose above all to gather results about
linear operators defined in certain general spaces, no-
tably those that will here be called spaces of type (B)...

S. Banach, 1932

Function spaces, in particular Lp spaces, play a central role in many
questions in analysis. The special importance of Lp spaces may be said
to derive from the fact that they offer a partial but useful generalization
of the fundamental L2 space of square integrable functions.

In order of logical simplicity, the space L1 comes first since it occurs
already in the description of functions integrable in the Lebesgue sense.
Connected to it via duality is the L∞ space of bounded functions, whose
supremum norm carries over from the more familiar space of continuous
functions. Of independent interest is the L2 space, whose origins are
tied up with basic issues in Fourier analysis. The intermediate Lp spaces
are in this sense an artifice, although of a most inspired and fortuitous
kind. That this is the case will be illustrated by results in the next and
succeeding chapters.

In this chapter we will concentrate on the basic structural facts about
the Lp spaces. Here part of the theory, in particular the study of their
linear functionals, is best formulated in the more general context of Ba-
nach spaces. An incidental benefit of this more abstract view-point is
that it leads us to the surprising discovery of a finitely additive measure
on all subsets, consistent with Lebesgue measure.
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1 Lp spaces

Throughout this chapter (X,F , µ) denotes a σ-finite measure space: X
denotes the underlying space, F the σ-algebra of measurable sets, and µ
the measure. If 1 ≤ p < ∞, the space Lp(X,F , µ) consists of all complex-
valued measurable functions on X that satisfy

(1)
∫

X

|f(x)|p dµ(x) < ∞.

To simplify the notation, we write Lp(X, µ), or Lp(X), or simply Lp

when the underlying measure space has been specified. Then, if f ∈
Lp(X,F , µ) we define the Lp norm of f by

‖f‖Lp(X,F,µ) =
(∫

X

|f(x)|p dµ(x)
)1/p

.

We also abbreviate this to ‖f‖Lp(X), ‖f‖Lp , or ‖f‖p.

When p = 1 the space L1(X,F , µ) consists of all integrable functions
on X, and we have shown in Chapter 6 of Book III, that L1 together with
‖ · ‖L1 is a complete normed vector space. Also, the case p = 2 warrants
special attention: it is a Hilbert space.

We note here that we encounter the same technical point that we al-
ready discussed in Book III. The problem is that ‖f‖Lp = 0 does not
imply that f = 0, but merely f = 0 almost everywhere (for the measure
µ). Therefore, the precise definition of Lp requires introducing the equiv-
alence relation, in which f and g are equivalent if f = g a.e. Then, Lp

consists of all equivalence classes of functions which satisfy (1). However,
in practice there is little risk of error by thinking of elements in Lp as
functions rather than equivalence classes of functions.

The following are some common examples of Lp spaces.

(a) The case X = Rd and µ equals Lebesgue measure is often used in
practice. There, we have

‖f‖Lp =
(∫

Rd

|f(x)|p dx

)1/p

.

(b) Also, one can take X = Z, and µ equal to the counting measure.
Then, we get the “discrete” version of the Lp spaces. Measurable
functions are simply sequences f = {an}n∈Z of complex numbers,
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and

‖f‖Lp =

( ∞∑
n=−∞

|an|p
)1/p

.

When p = 2, we recover the familiar sequence space `2(Z).

The spaces Lp are examples of normed vector spaces. The basic prop-
erty satisfied by the norm is the triangle inequality, which we shall prove
shortly.

The range of p which is of interest in most applications is 1 ≤ p < ∞,
and later also p = ∞. There are at least two reasons why we restrict our
attention to these values of p: when 0 < p < 1, the function ‖ · ‖Lp does
not satisfy the triangle inequality, and moreover, for such p, the space
Lp has no non-trivial bounded linear functionals.1 (See Exercise 2.)

When p = 1 the norm ‖ · ‖L1 satisfies the triangle inequality, and L1

is a complete normed vector space. When p = 2, this result continues to
hold, although one needs the Cauchy-Schwarz inequality to prove it. In
the same way, for 1 ≤ p < ∞ the proof of the triangle inequality relies on
a generalized version of the Cauchy-Schwarz inequality. This is Hölder’s
inequality, which is also the key in the duality of the Lp spaces, as we
will see in Section 4.

1.1 The Hölder and Minkowski inequalities

If the two exponents p and q satisfy 1 ≤ p, q ≤ ∞, and the relation

1
p

+
1
q

= 1

holds, we say that p and q are conjugate or dual exponents. Here,
we use the convention 1/∞ = 0. Later, we shall sometimes use p′ to
denote the conjugate exponent of p. Note that p = 2 is self-dual, that is,
p = q = 2; also p = 1,∞ corresponds to q = ∞, 1 respectively.

Theorem 1.1 (Hölder) Suppose 1 < p < ∞ and 1 < q < ∞ are conju-
gate exponents. If f ∈ Lp and g ∈ Lq, then fg ∈ L1 and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Note. Once we have defined L∞ (see Section 2) the corresponding in-
equality for the exponents 1 and ∞ will be seen to be essentially trivial.

1We will define what we mean by a bounded linear functional later in the chapter.
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The proof of the theorem relies on a simple generalized form of the
arithmetic-geometric mean inequality: if A,B ≥ 0, and 0 ≤ θ ≤ 1, then

(2) AθB1−θ ≤ θA + (1− θ)B.

Note that when θ = 1/2, the inequality (2) states the familiar fact that
the geometric mean of two numbers is majorized by their arithmetic
mean.

To establish (2), we observe first that we may assume B 6= 0, and
replacing A by AB, we see that it suffices to prove that Aθ ≤ θA + (1−
θ). If we let f(x) = xθ − θx− (1− θ), then f ′(x) = θ(xθ−1 − 1). Thus
f(x) increases when 0 ≤ x ≤ 1 and decreases when 1 ≤ x, and we see that
the continuous function f attains a maximum at x = 1, where f(1) = 0.
Therefore f(A) ≤ 0, as desired.

To prove Hölder’s inequality we argue as follows. If either ‖f‖Lp = 0
or ‖f‖Lq = 0, then fg = 0 a.e. and the inequality is obviously verified.
Therefore, we may assume that neither of these norms vanish, and after
replacing f by f/‖f‖Lp and g by g/‖g‖Lq , we may further assume that
‖f‖Lp = ‖g‖Lq = 1. We now need to prove that ‖fg‖L1 ≤ 1.

If we set A = |f(x)|p, B = |g(x)|q, and θ = 1/p so that 1− θ = 1/q,
then (2) gives

|f(x)g(x)| ≤ 1
p
|f(x)|p +

1
q
|g(x)|q.

Integrating this inequality yields ‖fg‖L1 ≤ 1, and the proof of the Hölder
inequality is complete.

For the case when the equality ‖fg‖L1 = ‖f‖Lp‖g‖Lq holds, see Exer-
cise 3.

We are now ready to prove the triangle inequality for the Lp norm.

Theorem 1.2 (Minkowski) If 1 ≤ p < ∞ and f, g ∈ Lp, then f + g ∈
Lp and ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

Proof. The case p = 1 is obtained by integrating |f(x) + g(x)| ≤
|f(x)|+ |g(x)|. When p > 1, we may begin by verifying that f + g ∈ Lp,
when both f and g belong to Lp. Indeed,

|f(x) + g(x)|p ≤ 2p(|f(x)|p + |g(x)|p),
as can be seen by considering separately the cases |f(x)| ≤ |g(x)| and
|g(x)| ≤ |f(x)|. Next we note that

|f(x) + g(x)|p ≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.
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If q denotes the conjugate exponent of p, then (p− 1)q = p, so we see
that (f + g)p−1 belongs to Lq, and therefore Hölder’s inequality applied
to the two terms on the right-hand side of the above inequality gives

(3) ‖f + g‖p
Lp ≤ ‖f‖Lp‖(f + g)p−1‖Lq + ‖g‖Lp‖(f + g)p−1‖Lq .

However, using once again (p− 1)q = p, we get

‖(f + g)p−1‖Lq = ‖f + g‖p/q
Lp .

From (3), since p− p/q = 1, and because we may suppose that ‖f +
g‖Lp > 0, we find

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp ,

so the proof is finished.

1.2 Completeness of Lp

The triangle inequality makes Lp into a metric space with distance
d(f, g) = ‖f − g‖Lp . The basic analytic fact is that Lp is complete
in the sense that every Cauchy sequence in the norm ‖ · ‖Lp converges to
an element in Lp.

Taking limits is a necessity in many problems, and the Lp spaces would
be of little use if they were not complete. Fortunately, like L1 and L2,
the general Lp space does satisfy this desirable property.

Theorem 1.3 The space Lp(X,F , µ) is complete in the norm ‖ · ‖Lp .

Proof. The argument is essentially the same as for L1 (or L2); see
Section 2, Chapter 2 and Section 1, Chapter 4 in Book III. Let {fn}∞n=1

be a Cauchy sequence in Lp, and consider a subsequence {fnk
}∞k=1 of

{fn} with the following property ‖fnk+1 − fnk
‖Lp ≤ 2−k for all k ≥ 1.

We now consider the series whose convergence will be seen below

f(x) = fn1(x) +
∞∑

k=1

(fnk+1(x)− fnk
(x))

and

g(x) = |fn1(x)|+
∞∑

k=1

|fnk+1(x)− fnk
(x)|,
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and the corresponding partial sums

SK(f)(x) = fn1(x) +
K∑

k=1

(fnk+1(x)− fnk
(x))

and

SK(g)(x) = |fn1(x)|+
K∑

k=1

|fnk+1(x)− fnk
(x)|.

The triangle inequality for Lp implies

‖SK(g)‖Lp ≤ ‖fn1‖Lp +
K∑

k=1

‖fnk+1 − fnk
‖Lp

≤ ‖fn1‖Lp +
K∑

k=1

2−k.

Letting K tend to infinity, and applying the monotone convergence theo-
rem proves that

∫
gp < ∞, and therefore the series defining g, and hence

the series defining f converges almost everywhere, and f ∈ Lp.
We now show that f is the desired limit of the sequence {fn}. Since

(by construction of the telescopic series) the (K − 1)th partial sum of
this series is precisely fnK

, we find that

fnK
(x) → f(x) a.e. x.

To prove that fnK
→ f in Lp as well, we first observe that

|f(x)− SK(f)(x)|p ≤ [2max(|f(x)|, |SK(f)(x)|)]p
≤ 2p|f(x)|p + 2p|SK(f)(x)|p
≤ 2p+1|g(x)|p,

for all K. Then, we may apply the dominated convergence theorem to
get ‖fnK

− f‖Lp → 0 as K tends to infinity.
Finally, the last step of the proof consists of recalling that {fn} is

Cauchy. Given ε > 0, there exists N so that for all n,m > N we have
‖fn − fm‖Lp < ε/2. If nK is chosen so that nK > N , and ‖fnK

− f‖Lp <
ε/2, then the triangle inequality implies

‖fn − f‖Lp ≤ ‖fn − fnK
‖Lp + ‖fnK

− f‖Lp < ε

whenever n > N . This concludes the proof of the theorem.
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1.3 Further remarks

We begin by looking at some possible inclusion relations between the
various Lp spaces. The matter is simple if the underlying space has
finite measure.

Proposition 1.4 If X has finite positive measure, and p0 ≤ p1, then
Lp1(X) ⊂ Lp0(X) and

1
µ(X)1/p0

‖f‖Lp0 ≤ 1
µ(X)1/p1

‖f‖Lp1 .

We may assume that p1 > p0. Suppose f ∈ Lp1 , and set F = |f |p0 ,
G = 1, p = p1/p0 > 1, and 1/p + 1/q = 1, in Hölder’s inequality applied
to F and G. This yields

‖f‖p0
Lp0 ≤

(∫
|f |p1

)p0/p1

· µ(X)1−p0/p1 .

In particular, we find that ‖f‖Lp0 < ∞. Moreover, by taking the pth
0 root

of both sides of the above equation, we find that the inequality in the
proposition holds.

However, as is easily seen, such inclusion does not hold when X has
infinite measure. (See Exercise 1). Yet, in an interesting special case the
opposite inclusion does hold.

Proposition 1.5 If X = Z is equipped with counting measure, then the
reverse inclusion holds, namely Lp0(Z) ⊂ Lp1(Z) if p0 ≤ p1. Moreover,
‖f‖Lp1 ≤ ‖f‖Lp0 .

Indeed, if f = {f(n)}n∈Z, then
∑ |f(n)|p0 = ‖f‖p0

Lp0 , and supn |f(n)| ≤
‖f‖Lp0 . However

∑
|f(n)|p1 =

∑
|f(n)|p0 |f(n)|p1−p0

≤ (sup
n
|f(n)|)p1−p0‖f‖p0

Lp0

≤ ‖f‖p1
Lp0 .

Thus ‖f‖Lp1 ≤ ‖f‖Lp0 .

2 The case p = ∞
Finally, we also consider the limiting case p = ∞. The space L∞ will
be defined as all functions that are “essentially bounded” in the follow-
ing sense. We take the space L∞(X,F , µ) to consist of all (equivalence
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classes of) measurable functions on X, so that there exists a positive
number 0 < M < ∞, with

|f(x)| ≤ M a.e. x.

Then, we define ‖f‖L∞(X,F,µ) to be the infimum of all possible values M
satisfying the above inequality. The quantity ‖f‖L∞ is sometimes called
the essential-supremum of f .

We note that with this definition, we have |f(x)| ≤ ‖f‖L∞ for a.e. x.
Indeed, if E = {x : |f(x)| > ‖f‖L∞}, and En = {x : |f(x)| > ‖f‖L∞ +
1/n}, then we have µ(En) = 0, and E =

⋃
En, hence µ(E) = 0.

Theorem 2.1 The vector space L∞ equipped with ‖ · ‖L∞ is a complete
vector space.

This assertion is easy to verify and is left to the reader. Moreover,
Hölder’s inequality continues to hold for values of p and q in the larger
range 1 ≤ p, q ≤ ∞, once we take p = 1 and q = ∞ as conjugate expo-
nents, as we mentioned before.

The fact that L∞ is a limiting case of Lp when p tends to ∞ can be
understood as follows.

Proposition 2.2 Suppose f ∈ L∞ is supported on a set of finite mea-
sure. Then f ∈ Lp for all p < ∞, and

‖f‖Lp → ‖f‖L∞ as p →∞.

Proof. Let E be a measurable subset of X with µ(E) < ∞, and so
that f vanishes in the complement of E. If µ(E) = 0, then ‖f‖L∞ =
‖f‖Lp = 0 and there is nothing to prove. Otherwise

‖f‖Lp =
(∫

E

|f(x)|p dµ

)1/p

≤
(∫

E

‖f‖p
L∞ dµ

)1/p

≤ ‖f‖L∞µ(E)1/p.

Since µ(E)1/p → 1 as p →∞, we find that lim supp→∞ ‖f‖Lp ≤ ‖f‖L∞ .
On the other hand, given ε > 0, we have

µ({x : |f(x)| ≥ ‖f‖L∞ − ε}) ≥ δ for some δ > 0,

hence ∫

X

|f |p dµ ≥ δ(‖f‖L∞ − ε)p.

Therefore lim infp→∞ ‖f‖Lp ≥ ‖f‖L∞ − ε, and since ε is arbitrary, we
have lim infp→∞ ‖f‖Lp ≥ ‖f‖L∞ . Hence the limit limp→∞ ‖f‖Lp exists,
and equals ‖f‖L∞ .
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3 Banach spaces

We introduce here a general notion which encompasses the Lp spaces as
specific examples.

First, a normed vector space consists of an underlying vector space V
over a field of scalars (the real or complex numbers), together with a
norm ‖ · ‖ : V → R+ that satisfies:

• ‖v‖ = 0 if and only if v = 0.

• ‖αv‖ = |α| ‖v‖, whenever α is a scalar and v ∈ V .

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

The space V is said to be complete if whenever {vn} is a Cauchy
sequence in V , that is, ‖vn − vm‖ → 0 as n, m →∞, then there exists a
v ∈ V such that ‖vn − v‖ → 0 as n →∞.

A complete normed vector space is called a Banach space. Here
again, we stress the importance of the fact that Cauchy sequences con-
verge to a limit in the space itself, hence the space is “closed” under
limiting operations.

3.1 Examples

The real numbers R with the usual absolute value form an initial example
of a Banach space. Other easy examples are Rd, with the Euclidean norm,
and more generally a Hilbert space with its norm given in terms of its
inner product.

Several further relevant examples are as follows:

Example 1. The family of Lp spaces with 1 ≤ p ≤ ∞ which we have just
introduced are also important examples of Banach spaces (Theorem 1.3
and Theorem 2.1). Incidentally, L2 is the only Hilbert space in the
family Lp, where 1 ≤ p ≤ ∞ (Exercise 25) and this in part accounts for
the special flavor of the analysis carried out in L2 as opposed to L1 or
more generally Lp for p 6= 2.

Finally, observe that since the triangle inequality fails in general when
0 < p < 1, ‖ · ‖Lp is not a norm on Lp for this range of p, hence it is not
a Banach space.

Example 2. Another example of a Banach space is C([0, 1]), or more
generally C(X) with X a compact set in a metric space, as will be de-
fined in Section 7. By definition, C(X) is the vector space of continuous
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functions on X equipped with the sup-norm ‖f‖ = supx∈X |f(x)|. Com-
pleteness is guaranteed by the fact that the uniform limit of a sequence
of continuous functions is also continuous.

Example 3. Two further examples are important in various applications.
The first is the space Λα(R) of all bounded functions on R which satisfy
a Hölder (or Lipschitz) condition of exponent α with 0 < α ≤ 1,
that is,

sup
t1 6=t2

|f(t1)− f(t2)|
|t1 − t2|α < ∞.

Observe that f is then necessarily continuous; also the only interesting
case is when α ≤ 1, since a function which satisfies a Hölder condition of
exponent α with α > 1 is constant.2

More generally, this space can be defined on Rd; it consists of contin-
uous functions f equipped with the norm

‖f‖Λα(Rd) = sup
x∈Rd

|f(x)|+ sup
x6=y

|f(x)− f(y)|
|x− y|α .

With this norm, Λα(Rd) is a Banach space (see also Exercise 29).

Example 4. A function f ∈ Lp(Rd) is said to have weak derivatives
in Lp up to order k, if for every multi-index α = (α1, . . . , αd) with |α| =
α1 + · · ·+ αd ≤ k, there is a gα ∈ Lp with

(4)
∫

Rd

gα(x)ϕ(x) dx = (−1)|α|
∫

Rd

f(x)∂α
x ϕ(x) dx

for all smooth functions ϕ that have compact support in Rd. Here, we
use the multi-index notation

∂α
x =

(
∂

∂x

)α

=
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

.

Clearly, the functions gα (when they exist) are unique, and we also write
∂α

x f = gα. This definition arises from the relationship (4) which holds
whenever f is itself smooth, and g equals the usual derivative ∂α

x f , as
follows from an integration by parts (see also Section 3.1, Chapter 5 in
Book III).

2We have already encountered this space in Book I, Chapter 2 and Book III, Chapter 7.
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The space Lp
k(Rd) is the subspace of Lp(Rd) of all functions that have

weak derivatives up to order k. (The concept of weak derivatives will
reappear in Chapter 3 in the setting of derivatives in the sense of distri-
butions.) This space is usually referred to as a Sobolev space. A norm
that turns Lp

k(Rd) into a Banach space is

‖f‖Lp
k(Rd) =

∑

|α|≤k

‖∂α
x f‖Lp(Rd) .

Example 5. In the case p = 2, we note in the above example that an
L2 function f belongs to L2

k(Rd) if and only if (1 + |ξ|2)k/2f̂(ξ) belongs
to L2, and that ‖(1 + |ξ|2)k/2f̂(ξ)‖L2 is a Hilbert space norm equivalent
to ‖f‖L2

k(Rd).
Therefore, if k is any positive number, it is natural to define L2

k as
those functions f in L2 for which (1 + |ξ|2)k/2f̂(ξ) belongs to L2, and we
can equip L2

k with the norm ‖f‖L2
k(Rd) = ‖(1 + |ξ|2)k/2f̂(ξ)‖L2 .

3.2 Linear functionals and the dual of a Banach space

For the sake of simplicity, we restrict ourselves in this and the following
two sections to Banach spaces over R; the reader will find in Section 6
the slight modifications necessary to extend the results to Banach spaces
over C.

Suppose that B is a Banach space over R equipped with a norm ‖ · ‖. A
linear functional is a linear mapping ` from B to R, that is, ` : B → R,
which satisfies

`(αf + βg) = α`(f) + β`(g), for all α, β ∈ R, and f, g ∈ B.

A linear functional ` is continuous if given ε > 0 there exists δ > 0 so
that |`(f)− `(g)| ≤ ε whenever ‖f − g‖ ≤ δ. Also we say that a linear
functional is bounded if there is M > 0 with |`(f)| ≤ M‖f‖ for all f ∈
B. The linearity of ` shows that these two notions are in fact equivalent.

Proposition 3.1 A linear functional on a Banach space is continuous,
if and only if it is bounded.

Proof. The key is to observe that ` is continuous if and only if ` is
continuous at the origin.

Indeed, if ` is continuous, we choose ε = 1 and g = 0 in the above
definition so that |`(f)| ≤ 1 whenever ‖f‖ ≤ δ, for some δ > 0. Hence,
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given any non-zero h, an element of B, we see that δh/‖h‖ has norm equal
to δ, and hence |`(δh/‖h‖)| ≤ 1. Thus |`(h)| ≤ M‖h‖ with M = 1/δ.

Conversely, if ` is bounded it is clearly continuous at the origin, hence
continuous.

The significance of continuous linear functionals in terms of closed
hyperplanes in B is a noteworthy geometric point to which we return
later on. Now we take up analytic aspects of linear functionals.

The set of all continuous linear functionals over B is a vector space
since we may add linear functionals and multiply them by scalars:

(`1 + `2)(f) = `1(f) + `2(f) and (α`)(f) = α`(f).

This vector space may be equipped with a norm as follows. The norm
‖`‖ of a continuous linear functional ` is the infimum of all values M for
which |`(f)| ≤ M‖f‖ for all f ∈ B. From this definition and the linearity
of ` it is clear that

‖`‖ = sup
‖f‖≤1

|`(f)| = sup
‖f‖=1

|`(f)| = sup
f 6=0

|`(f)|
‖f‖ .

The vector space of all continuous linear functionals on B equipped
with ‖ · ‖ is called the dual space of B, and is denoted by B∗.
Theorem 3.2 The vector space B∗ is a Banach space.

Proof. It is clear that ‖ · ‖ defines a norm, so we only check that B∗ is
complete. Suppose that {`n} is a Cauchy sequence in B∗. Then, for each
f ∈ B, the sequence {`n(f)} is Cauchy, hence converges to a limit, which
we denote by `(f). Clearly, the mapping ` : f 7→ `(f) is linear. If M is
so that ‖`n‖ ≤ M for all n, we see that

|`(f)| ≤ |(`− `n)(f)|+ |`n(f)| ≤ |(`− `n)(f)|+ M‖f‖,

so that in the limit as n →∞, we find |`(f)| ≤ M‖f‖ for all f ∈ B.
Thus ` is bounded. Finally, we must show that `n converges to ` in B∗.
Given ε > 0 choose N so that ‖`n − `m‖ < ε/2 for all n,m > N . Then,
if n > N , we see that for all m > N and any f

|(`− `n)(f)| ≤ |(`− `m)(f)|+ |(`m − `n)(f)| ≤ |(`− `m)(f)|+ ε

2
‖f‖.

We can also choose m so large (and dependent on f) so that we also have
|(`− `m)(f)| ≤ ε‖f‖/2. In the end, we find that for n > N ,

|(`− `n)(f)| ≤ ε‖f‖.
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This proves that ‖`− `n‖ → 0, as desired.

In general, given a Banach space B, it is interesting and very useful to
be able to describe its dual B∗. This problem has an essentially complete
answer in the case of the Lp spaces introduced before.

4 The dual space of Lp when 1 ≤ p < ∞
Suppose that 1 ≤ p ≤ ∞ and q is the conjugate exponent of p, that is,
1/p + 1/q = 1. The key observation to make is the following: Hölder’s
inequality shows that every function g ∈ Lq gives rise to a bounded linear
functional on Lp by

(5) `(f) =
∫

X

f(x)g(x) dµ(x),

and that ‖`‖ ≤ ‖g‖Lq . Therefore, if we associate g to ` above, then we
find that Lq ⊂ (Lp)∗ when 1 ≤ p ≤ ∞. The main result in this section
is to prove that when 1 ≤ p < ∞, every linear functional on Lp is of
the form (5) for some g ∈ Lq. This implies that (Lp)∗ = Lq whenever
1 ≤ p < ∞. We remark that this result is in general not true when p = ∞;
the dual of L∞ contains L1, but it is larger. (See the end of Section 5.3
below.)

Theorem 4.1 Suppose 1 ≤ p < ∞, and 1/p + 1/q = 1. Then, with B =
Lp we have

B∗ = Lq,

in the following sense: For every bounded linear functional ` on Lp there
is a unique g ∈ Lq so that

`(f) =
∫

X

f(x)g(x) dµ(x), for all f ∈ Lp.

Moreover, ‖`‖B∗ = ‖g‖Lq .

This theorem justifies the terminology whereby q is usually called the
dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already
seen, is Hölder’s inequality; to which a converse is also needed. The
second is the fact that a linear functional ` on Lp, 1 ≤ p < ∞, leads nat-
urally to a (signed) measure ν. Because of the continuity of ` the measure
ν is absolutely continuous with respect to the underlying measure µ, and
our desired function g is then the density function of ν in terms of µ.

We begin with:



14 Chapter 1. LP SPACES AND BANACH SPACES

Lemma 4.2 Suppose 1 ≤ p, q ≤ ∞, are conjugate exponents.

(i) If g ∈ Lq, then ‖g‖Lq = sup
‖f‖Lp≤1

∣∣∣∣
∫

fg

∣∣∣∣.

(ii) Suppose g is integrable on all sets of finite measure, and

sup
‖f‖Lp ≤ 1

f simple

∣∣∣∣
∫

fg

∣∣∣∣ = M < ∞.

Then g ∈ Lq, and ‖g‖Lq = M .

For the proof of the lemma, we recall the signum of a real number
defined by

sign(x) =





1 if x > 0
−1 if x < 0

0 if x = 0.

Proof. We start with (i). If g = 0, there is nothing to prove, so
we may assume that g is not 0 a.e., and hence ‖g‖Lq 6= 0. By Hölder’s
inequality, we have that

‖g‖Lq ≥ sup
‖f‖Lp≤1

∣∣∣∣
∫

fg

∣∣∣∣ .

To prove the reverse inequality we consider several cases.

• First, if q = 1 and p = ∞, we may take f(x) = sign g(x). Then, we
have ‖f‖L∞ = 1, and clearly,

∫
fg = ‖g‖L1 .

• If 1 < p, q < ∞, then we set f(x) = |g(x)|q−1sign g(x)/‖g‖q−1
Lq . We

observe that ‖f‖p
Lp =

∫ |g(x)|p(q−1) dµ/‖g‖p(q−1)
Lq = 1 since p(q −

1) = q, and that
∫

fg = ‖g‖Lq .

• Finally, if q = ∞ and p = 1, let ε > 0, and E a set of finite posi-
tive measure, where |g(x)| ≥ ‖g‖L∞ − ε. (Such a set exists by the
definition of ‖g‖L∞ and the fact that the measure µ is σ-finite.)
Then, if we take f(x) = χE(x) sign g(x)/µ(E), where χE denotes
the characteristic function of the set E, we see that ‖f‖L1 = 1, and
also

∣∣∣∣
∫

fg

∣∣∣∣ =
1

µ(E)

∫

E

|g| ≥ ‖g‖∞ − ε.
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This completes the proof of part (i).
To prove (ii) we recall3 that we can find a sequence {gn} of simple

functions so that |gn(x)| ≤ |g(x)| while gn(x) → g(x) for each x. When
p > 1 (so q < ∞), we take fn(x) = |gn(x)|q−1 sign g(x)/‖gn‖q−1

Lq . As be-
fore, ‖fn‖Lp = 1. However

∫
fng =

∫ |gn(x)|q
‖gn‖q−1

Lq

= ‖gn‖Lq ,

and this does not exceed M . By Fatou’s lemma it follows that
∫ |g|q ≤

Mq, so g ∈ Lq with ‖g‖Lq ≤ M . The direction ‖g‖Lq ≥ M is of course
implied by Hölder’s inequality.

When p = 1 the argument is parallel with the above but simpler. Here
we take fn(x) = (sign g(x))χEn(x), where En is an increasing sequence
of sets of finite measure whose union is X. The details may be left to
the reader.

With the lemma established we turn to the proof of the theorem. It
is simpler to consider first the case when the underlying space has finite
measure. In this case, with ` the given functional on Lp, we can then
define a set function ν by

ν(E) = `(χE),

where E is any measurable set. This definition makes sense because χE is
now automatically in Lp since the space has finite measure. We observe
that

(6) |ν(E)| ≤ c(µ(E))1/p,

where c is the norm of the linear functional, taking into account the fact
that ‖χE‖Lp = (µ(E))1/p.

Now the linearity of ` clearly implies that ν is finitely-additive. More-
over, if {En} is a countable collection of disjoint measurable sets, and we
put E =

⋃∞
n=1 En, E∗

N =
⋃∞

n=N+1 En, then obviously

χE = χE∗N +
N∑

n=1

χEn .

Thus ν(E) = ν(E∗
N ) +

∑N
n=1 ν(En). However ν(E∗

N ) → 0, as N →∞,
because of (6) and the assumption p < ∞. This shows that ν is countably

3See for instance Section 2 in Chapter 6 of Book III.
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additive and, moreover, (6) also shows us that ν is absolutely continuous
with respect to µ.

We can now invoke the key result about absolutely continuous mea-
sures, the Lebesgue-Radon-Nykodim theorem. (See for example Theo-
rem 4.3, Chapter 6 in Book III.) It guarantees the existence of an in-
tegrable function g so that ν(E) =

∫
E

g dµ for every measurable set E.
Thus we have `(χE) =

∫
χEg dµ. The representation `(f) =

∫
fg dµ then

extends immediately to simple functions f , and by a passage to the limit,
to all f ∈ Lp since the simple functions are dense in Lp, 1 ≤ p < ∞. (See
Exercise 6.) Also by Lemma 4.2, we see that ‖g‖Lq = ‖`‖.

To pass from the situation where the measure of X is finite to the
general case, we use an increasing sequence {En} of sets of finite measure
that exhaust X, that is, X =

⋃∞
n=1 En. According to what we have just

proved, for each n there is an integrable function gn on En (which we
can set to be zero in Ec

n) so that

(7) `(f) =
∫

fgn dµ

whenever f is supported in En and f ∈ Lp. Moreover by conclusion (ii)
of the lemma ‖gn‖Lq ≤ ‖`‖.

Now it is easy to see because of (7) that gn = gm a.e. on Em, whenever
n ≥ m. Thus limn→∞ gn(x) = g(x) exists for almost every x, and by
Fatou’s lemma, ‖g‖Lq ≤ ‖`‖. As a result we have that `(f) =

∫
fg dµ for

each f ∈ Lp supported in En, and then by a simple limiting argument, for
all f ∈ Lp. The fact that ‖`‖ ≤ ‖g‖Lq , is already contained in Hölder’s
inequality, and therefore the proof of the theorem is complete.

5 More about linear functionals

First we turn to the study of certain geometric aspects of linear function-
als in terms of the hyperplanes that they define. This will also involve
understanding some elementary ideas about convexity.

5.1 Separation of convex sets

Although our ultimate focus will be on Banach spaces, we begin by con-
sidering an arbitrary vector space V over the reals. In this general setting
we can define the following notions.

First, a proper hyperplane is a linear subspace of V that arises as
the zero set of a (non-zero) linear functional on V . Alternatively, it is
a linear subspace of V so that it, together with any vector not in V ,
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spans V . Related to this notion is that of an affine hyperplane (which
for brevity we will always refer to as a hyperplane) defined to be a
translate of a proper hyperplane by a vector in V . To put it another
way: H is a hyperplane if there is a non-zero linear functional `, and a
real number a, so that

H = {v ∈ V : `(v) = a}.

Another relevant notion is that of a convex set. The subset K ⊂ V is said
to be convex if whenever v0 and v1 are both in K then the straight-line
segment joining them

(8) v(t) = (1− t)v0 + tv1, 0 ≤ t ≤ 1

also lies entirely in K.

A key heuristic idea underlying our considerations can be enunciated
as the following general principle:

If K is a convex set and v0 /∈ K, then K and v0 can be sep-
arated by a hyperplane.

This principle is illustrated in Figure 1.

K

v0

H

`(v) = a

Figure 1. Separation of a convex set and a point by a hyperplane

The sense in which this is meant is that there is a non-zero linear
functional ` and a real number a, so that

`(v0) ≥ a, while `(v) < a if v ∈ K.

To give an idea of what is behind this principle we show why it holds in
a nice special case. (See also Section 5.2.)
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Proposition 5.1 The assertion above is valid if V = Rd and K is con-
vex and open.

Proof. Since we may assume that K is non-empty, we can also
suppose that (after a possible translation of K and v0) we have 0 ∈ K.
The key construct used will be that of the Minkowski gauge function p
associated to K, which measures (the inverse of) how far we need to go,
starting from 0 in the direction of a vector v, to reach the exterior of K.
The precise definition of p is as follows:

p(v) = inf
r>0

{r : v/r ∈ K}.

Observe that since we have assumed that the origin is an interior point
of K, for each v ∈ Rd there is an r > 0, so that v/r ∈ K. Hence p(v) is
well-defined.

Figure 2 below gives an example of a gauge function in the special case
where V = R and K = (a, b), an open interval that contains the origin.

ba 0 x

y = 1

p

Figure 2. The gauge function of the interval (a, b) in R

We note, for example, that if V is normed and K is the unit ball
{‖v‖ < 1}, then p(v) = ‖v‖.

In general, the non-negative function p completely characterizes K in
that

(9) p(v) < 1 if and only if v ∈ K.

Moreover p has an important sub-linear property:

(10)
{

p(av) = ap(v), if a ≥ 0, and v ∈ V .
p(v1 + v2) ≤ p(v1) + p(v2), if v1 and v2 ∈ V .
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In fact, if v ∈ K then v/(1− ε) ∈ K for some ε > 0, since K is open,
which gives that p(v) < 1. Conversely if p(v) < 1, then v = (1− ε)v′, for
some 0 < ε < 1, and v′ ∈ K. Then since v = (1− ε)v′ + ε · 0 this shows
v ∈ K, because 0 ∈ K and K is convex.

To verify (10) we merely note that (v1 + v2)/(r1 + r2) belongs to K,
if both v1/r1 and v2/r2 belong to K, in view of property (8) defining the
convexity of K with t = r2/(r1 + r2) and 1− t = r1/(r1 + r2).

Now our proposition will be proved once we find a linear functional `,
so that

(11) `(v0) = 1, and `(v) ≤ p(v), v ∈ Rd.

This is because `(v) < 1, for all v ∈ K by (9). We shall construct ` in a
step-by-step manner.

First, such an ` is already determined in the one-dimensional sub-
space V0 spanned by v0, V0 = {Rv0}, since `(bv0) = b`(v0) = b, when
b ∈ R, and this is consistent with (11). Indeed, if b ≥ 0 then p(bv0) =
bp(v0) ≥ b`(v0) = `(bv0) by (10) and (9), while (11) is immediate when
b < 0.

The next step is to choose any vector v1 linearly independent from v0

and extend ` to the subspace V1 spanned by v0 and v1. Thus we can
make a choice for the value of ` on v1, `(v1), so as to satisfy (11) if

a`(v1) + b = `(av1 + bv0) ≤ p(av1 + bv0), for all a, b ∈ R.

Setting a = 1 and bv0 = w yields

`(v1) + `(w) ≤ p(v1 + w) for all w ∈ V0,

while setting a = −1 implies

−`(v1) + `(w′) ≤ p(−v1 + w′), for all w′ ∈ V0.

Altogether then it is required that for all w, w′ ∈ V0

(12) −p(−v1 + w′) + `(w′) ≤ `(v1) ≤ p(v1 + w)− `(w).

Notice that there is a number that lies between the two extremes of the
above inequality. This is a consequence of the fact that −p(−v1 + w′) +
`(w′) never exceeds p(v1 + w)− `(w), which itself follows from the fact
that `(w) + `(w′) ≤ p(w + w′) ≤ p(−v1 + w′) + p(v1 + w), by (11) on V0

and the sub-linearity of p. So a choice of `(v1) can be made that is
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consistent with (12) and this allows one to extend ` to V1. In the same
way we can proceed inductively to extend ` to all of Rd.

The argument just given here in this special context will now be car-
ried over in a general setting to give us an important theorem about
constructing linear functionals.

5.2 The Hahn-Banach Theorem

We return to the general situation where we deal with an arbitrary vector
space V over the reals. We assume that with V we are given a real-valued
function p on V that satisfies the sub-linear property (10). However, as
opposed to the example of the gauge function considered above, which
by its nature is non-negative, here we do not assume that p has this
property. In fact, certain p’s which may take on negative values are
needed in some of our applications later.

Theorem 5.2 Suppose V0 is a linear subspace of V , and that we are
given a linear functional `0 on V0 that satisfies

`0(v) ≤ p(v), for all v ∈ V0.

Then `0 can be extended to a linear functional ` on V that satisfies

`(v) ≤ p(v), for all v ∈ V .

Proof. Suppose V0 6= V , and pick v1 a vector not in V0. We will first
extend `0 to the subspace V1 spanned by V0 and v1, as we did before.
We can do this by defining a putative extension `1 of `0, defined on V1

by `1(αv1 + w) = α`1(v1) + `0(w), whenever w ∈ V0 and α ∈ R, if `1(v1)
is chosen so that

`1(v) ≤ p(v), for all v ∈ V1.

However, exactly as above, this happens when

−p(−v1 + w′) + `0(w′) ≤ `1(v1) ≤ p(v1 + w)− `0(w)

for all w, w′ ∈ V0.
The right-hand side exceeds the left-hand side because of `0(w′) +

`0(w) ≤ p(w′ + w) and the sub-linearity of p. Thus an appropriate choice
of `1(v1) is possible, giving the desired extension of `0 from V0 to V1.

We can think of the extension we have constructed as the key step in
an inductive procedure. This induction, which in general is necessarily
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trans-finite, proceeds as follows. We well-order all vectors in V that do
not belong to V0, and denote this ordering by <. Among these vectors we
call a vector v “extendable” if the linear functional `0 has an extension
of the kind desired to the subspace spanned by V0, v, and all vectors
< v. What we want to prove is in effect that all vectors not in V0 are
extendable. Assume the contrary, then because of the well-ordering we
can find the smallest v1 that is not extendable. Now if V ′

0 is the space
spanned by V0 and all the vectors < v1, then by assumption `0 extends
to V ′

0 . The previous step, with V ′
0 in place of V0 allows us then to extend

`0 to the subspace spanned by V ′
0 and v1, reaching a contradiction. This

proves the theorem.

5.3 Some consequences

The Hahn-Banach theorem has several direct consequences for Banach
spaces. Here B∗ denotes the dual of the Banach space B as defined in
Section 3.2, that is, the space of continuous linear functionals on B.

Proposition 5.3 Suppose f0 is a given element of B with ‖f0‖ = M .
Then there exists a continuous linear functional ` on B so that `(f0) = M
and ‖`‖B∗ = 1.

Proof. Define `0 on the one-dimensional subspace {αf0}α∈R by
`0(αf0) = αM , for each α ∈ R. Note that if we set p(f) = ‖f‖ for every
f ∈ B, the function p satisfies the basic sub-linear property (10). We also
observe that

|`0(αf0)| = |α|M = |α|‖f0‖ = p(αf0),

so `0(f) ≤ p(f) on this subspace. By the extension theorem `0 extends
to an ` defined on B with `(f) ≤ p(f) = ‖f‖, for all f ∈ B. Since this
inequality also holds for −f in place of f we get |`(f)| ≤ ‖f‖, and thus
‖`‖B∗ ≤ 1. The fact that ‖`‖B∗ ≥ 1 is implied by the defining property
`(f0) = ‖f0‖, thereby proving the proposition.

Another application is to the duality of linear transformations. Sup-
pose B1 and B2 are a pair of Banach spaces, and T is a bounded lin-
ear transformation from B1 to B2. By this we mean that T maps B1

to B2; it satisfies T (αf1 + βf2) = αT (f1) + βT (f2) whenever f1, f2 ∈ B
and α and β are real numbers; and that it has a bound M so that
‖T (f)‖B2 ≤ M‖f‖B1 for all f ∈ B1. The least M for which this inequal-
ity holds is called the norm of T and is denoted by ‖T‖.

Often a linear transformation is initially given on a dense subspace. In
this connection, the following proposition is very useful.
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Proposition 5.4 Let B1, B2 be a pair of Banach spaces and S ⊂ B1

a dense linear subspace of B1. Suppose T0 is a linear transformation
from S to B2 that satisfies ‖T0(f)‖B2 ≤ M‖f‖B1 for all f ∈ S. Then T0

has a unique extension T to all of B1 so that ‖T (f)‖B2 ≤ M‖f‖B1 for all
f ∈ B1.

Proof. If f ∈ B1, let {fn} be a sequence in S which converges to
f . Then since ‖T0(fn)− T0(fm)‖B2 ≤ M‖fn − fm‖B1 it follows that
{T0(fn)} is a Cauchy sequence in B2, and hence converges to a limit,
which we define to be T (f). Note that the definition of T (f) is indepen-
dent of the chosen sequence {fn}, and that the resulting transformation
T has all the required properties.

We now discuss duality of linear transformations. Whenever we have
a linear transformation T from a Banach space B1 to another Banach
space B2, it induces a dual transformation, T ∗ of B∗2 to B∗1 , that can
be defined as follows.

Suppose `2 ∈ B∗2 , (a continuous linear functional on B2), then `1 =
T ∗(`2) ∈ B∗1 , is defined by `1(f1) = `2(T (f1)), whenever f1 ∈ B1. More
succinctly

(13) T ∗(`2)(f1) = `2(T (f1)).

Theorem 5.5 The operator T ∗ defined by (13) is a bounded linear trans-
formation from B∗2 to B∗1. Its norm ‖T ∗‖ satisfies ‖T‖ = ‖T ∗‖.

Proof. First, if ‖f1‖B1 ≤ 1, we have that

|`1(f1)| = |`2(T (f1))| ≤ ‖`2‖ ‖T (f1)‖B2 ≤ ‖`2‖ ‖T‖.

Thus taking the supremum over all f1 ∈ B1 with ‖f1‖B1 ≤ 1, we see that
the mapping `2 7→ T ∗(`2) = `1 has norm ≤ ‖T‖.

To prove the reverse inequality we can find for any ε > 0 an f1 ∈ B1

with ‖f1‖B1 = 1 and ‖T (f1)‖B2 ≥ ‖T‖ − ε. Next, with f2 = T (f1) ∈ B2,
by Proposition 5.3 (with B = B2) there is an `2 in B∗2 so that ‖`2‖B∗2 = 1
but `2(f2) ≥ ‖T‖ − ε. Thus by (13) one has T ∗(`2)(f1) ≥ ‖T‖ − ε, and
since ‖f1‖B1 = 1, we conclude ‖T ∗(`2)‖B∗1 ≥ ‖T‖ − ε. This gives ‖T ∗‖ ≥
‖T‖ − ε for any ε > 0, which proves the theorem.

A further quick application of the Hahn-Banach theorem is the obser-
vation that in general L1 is not the dual of L∞ (as opposed to the case
1 ≤ p < ∞ considered in Theorem 4.1).
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Let us first recall that whenever g ∈ L1, the linear functional f 7→ `(f)
given by

(14) `(f) =
∫

fg dµ

is bounded on L∞, and its norm ‖`‖(L∞)∗ is ‖g‖L1 . In this way L1 can be
viewed as a subspace of (L∞)∗, with the L1 norm of g being identical with
its norm as a linear functional. One can, however, produce a continuous
linear functional of L∞ not of this form. For simplicity we do this when
the underlying space is R with Lebesgue measure.

We let C denote the subspace of L∞(R) consisting of continuous
bounded functions on R. Define the linear function `0 on C (the “Dirac
delta”) by

`0(f) = f(0), f ∈ C.
Clearly |`0(f)| ≤ ‖f‖L∞ , f ∈ C. Thus by the extension theorem, with
p(f) = ‖f‖L∞ , we see that there is a linear functional ` on L∞, extend-
ing `0, that satisfies |`(f)| ≤ ‖f‖L∞ , for all f ∈ L∞.

Suppose for a moment that ` were of the form (14) for some g ∈ L1.
Since `(f) = `0(f) = 0 whenever f is a continuous trapezoidal function
that excludes the origin, we would have

∫
fg dx = 0 for such functions f ;

by a simple limiting argument this gives
∫

I
g dx = 0 for all intervals ex-

cluding the origin, and from there for all intervals I. Hence the indefi-
nite integrals G(y) =

∫ y

0
g(x) dx vanish, and therefore G′ = g = 0 by the

differentiation theorem.4 This gives a contradiction, hence the linear
functional ` is not representable as (14).

5.4 The problem of measure

We now consider an application of the Hahn-Banach theorem of a dif-
ferent kind. We present a rather stunning assertion, answering a basic
question of the “problem of measure.” The result states that there is a
finitely-additive5 measure defined on all subsets of Rd that agrees with
Lebesgue measure on the measurable sets, and is translation invariant.
We formulate the theorem in one dimension.

Theorem 5.6 There is an extended-valued non-negative function m̂, de-
fined on all subsets of R with the following properties:

(i) m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) whenever E1 and E2 are disjoint
subsets of R.

4See for instance Theorem 3.11, in Chapter 3 of Book III.
5The qualifier “finitely-additive” is crucial.
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(ii) m̂(E) = m(E) if E is a measurable set and m denotes the Lebesgue
measure.

(iii) m̂(E + h) = m̂(E) for every set E and real number h.

From (i) we see that m̂ is finitely additive; however it cannot be countably
additive as the proof of the existence of non-measurable sets shows. (See
Section 3, Chapter 1 in Book III.)

This theorem is a consequence of another result of this kind, dealing
with an extension of the Lebesgue integral. Here the setting is the circle
R/Z, instead of R, with the former realized as (0, 1]. Thus functions on
R/Z can be thought of as functions on (0, 1], extended to R by periodicity
with period 1. In the same way, translations on R induce corresponding
translations on R/Z. The assertion now is the existence of a generalized
integral (the “Banach integral”) defined on all bounded functions on the
circle.

Theorem 5.7 There is a linear functional f 7→ I(f) defined on all
bounded functions f on R/Z so that:

(a) I(f) ≥ 0, if f(x) ≥ 0 for all x.

(b) I(αf1 + βf2) = αI(f1) + βI(f2) for all α and β real.

(c) I(f) =
∫ 1

0
f(x) dx, whenever f is measurable.

(d) I(fh) = I(f), for all h ∈ R where fh(x) = f(x− h).

The right-hand side of (c) denotes the usual Lebesgue integral.

Proof. The idea is to consider the vector space V of all (real-valued)
bounded functions on R/Z, with V0 the subspace of those functions that
are measurable. We let I0 denote the linear functional given by the
Lebesgue integral, I0(f) =

∫ 1

0
f(x) dx for f ∈ V0. The key is to find the

appropriate sub-linear p defined on V so that

I0(f) ≤ p(f), for all f ∈ V0.

Banach’s ingenious definition of p is as follows: We let A = {a1, . . . , aN}
denote an arbitrary collection of N real numbers, with #(A) = N denot-
ing its cardinality. Given A, we define MA(f) to be the real number

MA(f) = sup
x∈R

(
1
N

N∑
j=1

f(x + aj)

)
,
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and set

p(f) = inf
A
{MA(f)},

where the infimum is taken over all finite collections A.
It is clear that p(f) is well-defined, since f is assumed to be bounded;

also p(cf) = cp(f) if c ≥ 0. To prove p(f1 + f2) ≤ p(f1) + p(f2), we find
for each ε, finite collections A and B so that

MA(f1) ≤ p(f1) + ε and MB(f2) ≤ p(f2) + ε.

Let C be the collection {ai + bj}1≤i≤N1, 1≤j≤N2 where N1 = #(A), and
N2 = #(B). Now it is easy to see that

MC(f1 + f2) ≤ MC(f1) + MC(f2).

Next, we note as a general matter that MA(f) is the same as MA′(f ′)
where f ′ = fh is a translate of f and A′ = A− h . Also the averages
corresponding to C arise as averages of translates of the averages corre-
sponding to A and B, so it is easy to verify that

MC(f1) ≤ MA(f1) and also MC(f2) ≤ MB(f2).

Thus

p(f1 + f2) ≤ MC(f1 + f2) ≤ MA(f1) + MB(f2) ≤ p(f1) + p(f2) + 2ε.

Letting ε → 0 proves the sub-linearity of p.

Next if f is Lebesgue measurable (and hence integrable since it is
bounded), then for each A

I0(f) =
1
N

∫ 1

0

(
N∑

j=1

f(x + aj)

)
dx ≤

∫ 1

0

MA(f) dx = MA(f),

and hence I0(f) ≤ p(f). Let therefore I be the linear functional extend-
ing I0 from V0 to V , whose existence is guaranteed by Theorem 5.2. It
is obvious from its definition that p(f) ≤ 0 if f ≤ 0. From this it follows
that I(f) ≤ 0 when f ≤ 0, and replacing f by −f we see that conclu-
sion (a) holds.

Next we observe that for each real h

(15) p(f − fh) ≤ 0.



26 Chapter 1. LP SPACES AND BANACH SPACES

In fact, for h fixed and N given, define the set AN to be {h, 2h, 3h, . . . , Nh}.
Then the sum that enters in the definition of MAN

(f − fh) is

1
N

N∑
j=1

(f(x + jh)− f(x + (j − 1)h)) ,

and thus |MAN
(f − fh)| ≤ 2M/N , where M is an upper bound for |f |.

Since p(f − fh) ≤ MAN
(f − fh) → 0, as N →∞, we see that (15) is

proved. This shows that I(f − fh) ≤ 0, for all f and h. However, replac-
ing f by fh and then h by −h, we see that I(fh − f) ≤ 0 and thus (d) is
also established, finishing the proof of Theorem 5.7.

As a direct consequence we have the following.

Corollary 5.8 There is a non-negative function m̂ defined on all subsets
of R/Z so that:

(i) m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) for all disjoint subsets E1 and E2.

(ii) m̂(E) = m(E) if E is measurable.

(iii) m̂(E + h) = m̂(E) for every h in R.

We need only take m̂(E) = I(χE), with I as in Theorem 5.7, where χE

denotes the characteristic function of E.

We now turn to the proof of Theorem 5.6. Let Ij denote the interval
(j, j + 1], where j ∈ Z. Then we have a partition

⋃∞
j=−∞ Ij of R into

disjoint sets.
For clarity of exposition, we temporarily relabel the measure m̂ on

(0, 1] = I0 given by the corollary and call it m̂0. So whenever E ⊂ I0 we
defined m̂(E) to be m̂0(E). More generally, if E ⊂ Ij we set m̂(E) =
m̂0(E − j).

With these things said, for any set E define m̂(E) by

(16) m̂(E) =
∞∑

j=−∞
m̂(E ∩ Ij) =

∞∑
j=−∞

m̂0((E ∩ Ij)− j).

Thus m̂(E) is given as an extended non-negative number. Note that if
E1 and E2 are disjoint so are (E1 ∩ Ij)− j and (E2 ∩ Ij)− j. It follows
that m̂(E1 ∪ E2) = m̂(E1) + m̂(E2). Moreover if E is measurable then
m̂(E ∩ Ij) = m(E ∩ Ij) and so m̂(E) = m(E).

To prove m̂(E + h) = m̂(E), consider first the case h = k ∈ Z. This is
an immediate consequence of the definition (16) once one observes that
((E + k) ∩ Ij+k)− (j + k) = (E ∩ Ij)− j, for all j, k ∈ Z.
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Next suppose 0 < h < 1. We then decompose E ∩ Ij as E′
j ∪ E′′

j , with
E′

j = E ∩ (j, j + 1− h] and E′′
j = E ∩ (j + 1− h, j + 1]. The point of

this decomposition is that E′
j + h remains in Ij but E′′

j + h is placed
in Ij+1. In any case, E =

⋃
j E′

j ∪
⋃

j E′′
j , and the union is disjoint.

Thus using the first additivity property proved above and then (16)
we see that

m̂(E) =
∞∑

j=−∞

(
m̂(E′

j) + m̂(E′′
j )

)
.

Similarly

m̂(E + h) =
∞∑

j=−∞

(
m̂(E′

j + h) + m̂(E′′
j + h)

)
.

Now both E′
j and E′

j + h are in Ij , hence m̂(E′
j) = m̂(E′

j + h) by the
translation invariance of m̂0 and the definition of m̂ on subsets of Ij .
Also E′′

j is in Ij and E′′
j + h is in Ij+1, and their measures agree for the

same reasons. This establishes that m̂(E) = m̂(E + h), for 0 < h < 1.
Now combining this with the translation invariance with respect to Z
already proved, we obtain conclusion (iii) of Theorem 5.6 for all h, and
hence the theorem is completely proved.

For the corresponding extension of Lebesgue measure in Rd and other
related results, see Exercise 36 and Problems 8∗ and 9∗.

6 Complex Lp and Banach spaces

We have supposed in Section 3.2 onwards that our Lp and Banach spaces
are taken over the reals. However, the statements and the proofs of
the corresponding theorems for those spaces taken with respect to the
complex scalars are for the most part routine adaptations of the real case.
There are nevertheless several instances that require further comment.
First, in the argument concerning the converse of Hölder’s inequality
(Lemma 4.2), the definition of f should read

f(x) = |g(x)|q−1 sign g(x)
‖g‖q−1

Lq

,

where now “sign” denotes the complex version of the signum function,
defined by sign z = z/|z| if z 6= 0, and sign 0 = 0. There are similar oc-
currences with g replaced by gn.

Second, while the Hahn-Banach theorem is valid as stated only for real
vector spaces, a version of the complex case (sufficient for the applications
in Section 5.3 where p(f) = ‖f‖) can be found in Exercise 33 below.
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7 Appendix: The dual of C(X)

In this appendix, we describe the bounded linear functionals of the space C(X)
of continuous real-valued functions on X. To begin with, we assume that X is a
compact metric space. Our main result then states that if ` ∈ C(X)∗, then there
exists a finite signed Borel measure µ (this measure is sometimes referred to as a
Radon measure) so that

`(f) =

Z

X

f(x) dµ(x) for all f ∈ C(X).

Before proceeding with the argument leading to this result, we collect some basic
facts and definitions.

Let X be a metric space with metric d, and assume that X is compact; that is,
every covering of X by open sets contains a finite sub-covering. The vector space
C(X) of real-valued continuous functions on X equipped with the sup-norm

‖f‖ = sup
x∈X

|f(x)|, f ∈ C(X)

is a Banach space over R. Given a continuous function f on X we define the
support of f , denoted supp(f), as the closure of the set {x ∈ X : f(x) 6= 0}.6

We recall some simple facts about continuous functions and open and closed
sets in X that we shall use below.

(i) Separation. If A and B are two disjoint closed subsets of X, then there
exists a continuous function f with f = 1 on A, f = 0 on B, and 0 < f < 1 in the
complements of A and B.

Indeed, one can take for instance

f(x) =
d(x, B)

d(x, A) + d(x, B)
,

where d(x, B) = infy∈B d(x, y), with a similar definition for d(x, A).

(ii) Partition of unity. If K is a compact set which is covered by finitely many
open sets {Ok}N

k=1, then there exist continuous functions ηk for 1 ≤ k ≤ N so
that 0 ≤ ηk ≤ 1, supp(ηk) ⊂ Ok, and

PN
k=1 ηk(x) = 1 whenever x ∈ K. Moreover,

0 ≤PN
k=1 ηk(x) ≤ 1 for all x ∈ X.

One can argue as follows. For each x ∈ K, there exists a ball B(x) centered at x
and of positive radius such that B(x) ⊂ Oi for some i. Since

S
x∈K B(x) covers K,

we can select a finite subcovering, say
SM

j=1 B(xj). For each 1 ≤ k ≤ N , let Uk

be the union of all open balls B(xj) so that B(xj) ⊂ Ok; clearly K ⊂ SN
k=1 Uk.

By (i) above, there exists a continuous function 0 ≤ ϕk ≤ 1 so that ϕk = 1 on Uk

and supp(ϕk) ⊂ Ok. If we define

η1 = ϕ1, η2 = ϕ2(1− ϕ1), . . . , ηN = ϕN (1− ϕ1) · · · (1− ϕN−1)

6This is the common usage of the terminology “support.” In Book III, Chapter 2, we
used “support of f” to indicate the set where f(x) 6= 0, which is convenient when dealing
with measurable functions.
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then supp(ηk) ⊂ Ok and

η1 + · · ·+ ηN = 1− (1− ϕ1) · · · (1− ϕN ),

thus guaranteeing the desired properties.

Recall7 that the Borel σ-algebra of X, which is denoted by BX , is the smallest
σ-algebra of X that contains the open sets. Elements of BX are called Borel sets,
and a measure defined on BX is called a Borel measure. If a Borel measure is
finite, that is µ(X) < ∞, then it satisfies the following “regularity property”: for
any Borel set E and any ε > 0, there are an open set O and a closed set F such
that E ⊂ O and µ(O − E) < ε, while F ⊂ E and µ(E − F ) < ε.

In general we shall be interested in finite signed Borel measures on X, that
is, measures which can take on negative values. If µ is such a measure, and µ+

and µ− denote the positive and negative variations of µ, then µ = µ+ − µ−, and
integration with respect to µ is defined by

R
f dµ =

R
f dµ+ − R f dµ−. Conversely,

if µ1 and µ2 are two finite Borel measures, then µ = µ1 − µ2 is a finite signed Borel
measure, and

R
f dµ =

R
f dµ1 −

R
f dµ2.

We denote by M(X) the space of finite signed Borel measures on X. Clearly,
M(X) is a vector space which can be equipped with the following norm

‖µ‖ = |µ|(X),

where |µ| denotes the total variation of µ. It is a simple fact that M(X) with this
norm is a Banach space.

7.1 The case of positive linear functionals

We begin by considering only linear functionals ` : C(X) → R which are positive,
that is, `(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. Observe that positive linear
functionals are automatically bounded and that ‖`‖ = `(1). Indeed, note that
|f(x)| ≤ ‖f‖, hence ‖f‖ ± f ≥ 0, and therefore |`(f)| ≤ `(1)‖f‖.

Our main result goes as follows.

Theorem 7.1 Suppose X is a compact metric space and ` a positive linear func-
tional on C(X). Then there exists a unique finite (positive) Borel measure µ so
that

(17) `(f) =

Z

X

f(x) dµ(x) for all f ∈ C(X).

Proof. The existence of the measure µ is proved as follows. Consider the
function ρ on the open subsets of X defined by

ρ(O) = sup {`(f), where supp(f) ⊂ O, and 0 ≤ f ≤ 1} ,

7The definitions and results on measure theory needed in this section, in particular the
extension of a premeasure used in the proof of Theorem 7.1, can be found in Chapter 6
of Book III.
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and let the function µ∗ be defined on all subsets of X by

µ∗(E) = inf{ρ(O), where E ⊂ O and O is open}.

We contend that µ∗ is a metric exterior measure on X.
Indeed, we clearly must have µ∗(E1) ≤ µ∗(E2) whenever E1 ⊂ E2. Also, if O is

open, then µ∗(O) = ρ(O). To show that µ∗ is countably sub-additive on subsets
of X, we begin by proving that µ∗ is in fact sub-additive on open sets {Ok}, that
is,

(18) µ∗

 ∞[

k=1

Ok

!
≤

∞X

k=1

µ∗(Ok).

To do so, suppose {Ok}∞k=1 is a collection of open sets in X, and let O =
S∞

k=1Ok.
If f is any continuous function that satisfies supp(f) ⊂ O and 0 ≤ f ≤ 1, then
by compactness of K = supp(f) we can pick a sub-cover so that (after relabeling
the sets Ok, if necessary) K ⊂ SN

k=1Ok. Let {ηk}N
k=1 be a partition of unity of

{O1, . . . ,ON} (as discussed above in (ii)); this means that each ηk is continuous
with 0 ≤ ηk ≤ 1, supp(ηk) ⊂ Ok and

PN
k=1 ηk(x) = 1 for all x ∈ K. Hence recalling

that µ∗ = ρ on open sets, we get

`(f) =

NX

k=1

`(fηk) ≤
NX

k=1

µ∗(Ok) ≤
∞X

k=1

µ∗(Ok),

where the first inequality follows because supp(fηk) ⊂ Ok and 0 ≤ fηk ≤ 1. Tak-
ing the supremum over f we find that µ∗

`S∞
k=1Ok

´ ≤P∞
k=1 µ∗(Ok).

We now turn to the proof of the sub-additivity of µ∗ on all sets. Suppose {Ek}
is a collection of subsets of X and let ε > 0. For each k, pick an open set Ok

so that Ek ⊂ Ok and µ∗(Ok) ≤ µ∗(Ek) + ε2−k. Since O =
SOk covers

S
Ek, we

must have by (18) that

µ∗(
[

Ek) ≤ µ∗(O) ≤
X

k

µ∗(Ok) ≤
X

k

µ∗(Ek) + ε,

and consequently µ∗(
S

Ek) ≤Pk µ∗(Ek) as desired.
The last property we must verify is that µ∗ is metric, in the sense that if

d(E1, E2) > 0, then µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2). Indeed, the separation con-
dition implies that there exist disjoint open sets O1 and O2 so that E1 ⊂ O1

and E2 ⊂ O2. Therefore, if O is any open subset which contains E1 ∪ E2, then
O ⊃ (O ∩O1) ∪ (O ∩O2), where this union is disjoint. Hence the additivity of µ∗
on disjoint open sets, and its monotonicity give

µ∗(O) ≥ µ∗(O ∩O1) + µ∗(O ∩O2) ≥ µ∗(E1) + µ∗(E2),

since E1 ⊂ (O ∩O1) and E2 ⊂ (O ∩O2). So µ∗(E1 ∪ E2) ≥ µ∗(E1) + µ∗(E2), and
since the reverse inequality has already been shown above, this concludes the proof
that µ∗ is a metric exterior measure.

(continued...)
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maximal function, 70, 76, 85;
(III)100, 261

spherical, 406
maximum principle, 296; (I)92;

(III)235
meager set, 158
mean, 196
measurable, 209
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measure
Borel, 29, 242
continuous, 218
harmonic, 254
hyperbolic, 385
Radon, 28, 100

Minkowski inequality, 4
for integrals, 37

mixed norm, 38
mixing, 207; (III)305
multiplier, 134; (III)220
mutual independence, 193

function, 193
sub-algebras, 211

non-linear dispersion equation, 359
norm, 9, 21

of a continuous linear functional,
12

normal
distribution, 196
number, 231; (III)318

normed vector space, 3, 9
nowhere dense set, 158
nowhere differentiable function, 163,

253; (I)113, 126; (III)154, 383

open mapping, 171
open mapping theorem, 171; (II)92
Orlicz space, 41, 45
oscillation of a function, 161; (I)288
outside cone condition, 268

parallelogram law, 41, 45; (III)176
parametrix, 131
partition of unity, 28
path, 223
periodization operator, 153
phase, 325; (I)3; (II)323
Poisson

kernel, 63; (I)37, 55, 149, 210;
(II)67, 78, 109, 113, 216;
(III)111, 171, 217

conjugate, 63; (I)149; (II)78, 113;
(III)255

Poisson summation formula, 379;
(I)154–156, 165, 174; (II)118

polydisc, 277
principal

curvatures, 333
value, 111

probability
convergence, 195
measure, 192, 195
weak convergence, 219
space, 192

process
stationary, 232
stochastic, 239
stopped, 261

Prokhorov’s lemma, 243
proper hyperplane, 16
pseudo-convex, 296

strongly, 296

Rademacher functions, 192
Radon

measure, 28, 100
transform, 363; (I)200, 203;

(III)363
random

flight, 237
Fourier series, 202
variable, 190
walk, 222
recurrent, 223

recurrent
Brownian motion
neighborhood, 274
pointwise, 274
random walk, 223

reflection, 63
regular

distribution, 117, 132
point, 257

restriction (Lp, Lq), 345
Riemann-Lebesgue lemma, 93;

(I)80; (III)94
Riesz

convexity theorem, 57
diagram, 57
interpolation theorem, 52
product, 235

rotational
curvature, 366
matrix, 365

Schrödinger equation, 348
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Schwartz space, 105; (I)134, 180
second fundamental form, 333
section, 243
separable

Lp space, 36
Banach space, 43
measure space, 36

set
Borel, 29, 242
closure, 158; (II)6
convex, 17, 382; (II)107
cylinder, 191; (III)316
cylindrical, 242
dense, 158
first category, 158
generic, 158
interior, 158; (II)6
invariant, 207
meager, 158
nowhere dense, 158
second category, 158
strongly convex, 383

signature, 294
signum, 14
singular integral, 62, 134
Sobolev

embedding, 151; (III)257
space, 11, 151

spherical maximal function, 406
stationary

process, 232
stationary phase, 325, 398; (II)326
stochastic process, 239
stopped process, 261
stopping time, 254, 255
Strichartz estimates, 351
strong Markov property, 258
strong solution, 360
strongly convex set, 383
strongly pseudo-convex, 296
sub-algebra, 209
support

distribution, 104
function, 104; (III)53
of a function, 28, 146

surface-carried measure, 334
smooth density, 334

surjective mapping, 171

tail algebra, 215

tangential
Cauchy-Riemann vector field, 291
vector field, 290

Tchebychev inequality, 73; (III)91
tempered distribution, 106
test functions, 100, 105
three-lines lemma, 53, 339; (II)133
Tietze extension principle, 269
tight, 33, 243
total curvature, 333
type (of an operator), 56

uniformly convex, 45
universal element, 184
upper

half-plane, 61
half-space, 307

van der Corput inequality, 328
variance, 196; (I)160
vector field, 290

Walsh-Paley functions, 230
wave operator, 155
weak

boundedness, 184
compactness of Lp, 37
convergence, 37, 221, 243;

(III)198
weak sense

continuity, 108
convergence, 103
derivative, 101
derivative in Lp, 10
tangential Cauchy-Riemann

equations, 300
weak∗ convergence, 44
weak-type, 92
weak-type inequality, 71; (III)101
Weierstrass approximation theorem,

299; (I)54, 63, 144, 163
Weierstrass preparation theorem,

282, 319
Wiener measure, 240, 241

Young’s inequality, 39, 40, 60
Yukawa potential, 149

zero-one law, 199, 215
zig-zag function, 165




