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1 Measure Theory

The sets whose measure we can define by virtue of the
preceding ideas we will call measurable sets; we do
this without intending to imply that it is not possible
to assign a measure to other sets.

E. Borel, 1898

This chapter is devoted to the construction of Lebesgue measure in Rd

and the study of the resulting class of measurable functions. After some
preliminaries we pass to the first important definition, that of exterior
measure for any subset E of Rd. This is given in terms of approximations
by unions of cubes that cover E. With this notion in hand we can
define measurability and thus restrict consideration to those sets that
are measurable. We then turn to the fundamental result: the collection
of measurable sets is closed under complements and countable unions,
and the measure is additive if the subsets in the union are disjoint.

The concept of measurable functions is a natural outgrowth of the
idea of measurable sets. It stands in the same relation as the concept
of continuous functions does to open (or closed) sets. But it has the
important advantage that the class of measurable functions is closed
under pointwise limits.

1 Preliminaries

We begin by discussing some elementary concepts which are basic to the
theory developed below.

The main idea in calculating the “volume” or “measure” of a subset
of Rd consists of approximating this set by unions of other sets whose
geometry is simple and whose volumes are known. It is convenient to
speak of “volume” when referring to sets in Rd; but in reality it means
“area” in the case d = 2 and “length” in the case d = 1. In the approach
given here we shall use rectangles and cubes as the main building blocks
of the theory: in R we use intervals, while in Rd we take products of
intervals. In all dimensions rectangles are easy to manipulate and have
a standard notion of volume that is given by taking the product of the
length of all sides.
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Next, we prove two simple theorems that highlight the importance of
these rectangles in the geometry of open sets: in R every open set is a
countable union of disjoint open intervals, while in Rd, d ≥ 2, every open
set is “almost” the disjoint union of closed cubes, in the sense that only
the boundaries of the cubes can overlap. These two theorems motivate
the definition of exterior measure given later.

We shall use the following standard notation. A point x ∈ Rd consists
of a d-tuple of real numbers

x = (x1, x2, . . . , xd), xi ∈ R, for i = 1, . . . , d.

Addition of points is componentwise, and so is multiplication by a real
scalar. The norm of x is denoted by |x| and is defined to be the standard
Euclidean norm given by

|x| = (
x2

1 + · · ·+ x2
d

)1/2
.

The distance between two points x and y is then simply |x− y|.
The complement of a set E in Rd is denoted by Ec and defined by

Ec = {x ∈ Rd : x /∈ E}.

If E and F are two subsets of Rd, we denote the complement of F in E
by

E − F = {x ∈ Rd : x ∈ E and x /∈ F}.

The distance between two sets E and F is defined by

d(E, F ) = inf |x− y|,

where the infimum is taken over all x ∈ E and y ∈ F .

Open, closed, and compact sets

The open ball in Rd centered at x and of radius r is defined by

Br(x) = {y ∈ Rd : |y − x| < r}.

A subset E ⊂ Rd is open if for every x ∈ E there exists r > 0 with
Br(x) ⊂ E. By definition, a set is closed if its complement is open.

We note that any (not necessarily countable) union of open sets is
open, while in general the intersection of only finitely many open sets
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is open. A similar statement holds for the class of closed sets, if one
interchanges the roles of unions and intersections.

A set E is bounded if it is contained in some ball of finite radius.
A bounded set is compact if it is also closed. Compact sets enjoy the
Heine-Borel covering property:

• Assume E is compact, E ⊂ ⋃
αOα, and each Oα is open. Then

there are finitely many of the open sets, Oα1 ,Oα2 , . . . ,OαN
, such

that E ⊂ ⋃N
j=1Oαj .

In words, any covering of a compact set by a collection of open sets
contains a finite subcovering.

A point x ∈ Rd is a limit point of the set E if for every r > 0, the ball
Br(x) contains points of E. This means that there are points in E which
are arbitrarily close to x. An isolated point of E is a point x ∈ E such
that there exists an r > 0 where Br(x) ∩ E is equal to {x}.

A point x ∈ E is an interior point of E if there exists r > 0 such
that Br(x) ⊂ E. The set of all interior points of E is called the interior
of E. Also, the closure E of the E consists of the union of E and all
its limit points. The boundary of a set E, denoted by ∂E, is the set of
points which are in the closure of E but not in the interior of E.

Note that the closure of a set is a closed set; every point in E is a
limit point of E; and a set is closed if and only if it contains all its limit
points. Finally, a closed set E is perfect if E does not have any isolated
points.

Rectangles and cubes

A (closed) rectangle R in Rd is given by the product of d one-dimensional
closed and bounded intervals

R = [a1, b1]× [a2, b2]× · · · × [ad, bd],

where aj ≤ bj are real numbers, j = 1, 2, . . . , d. In other words, we have

R = {(x1, . . . , xd) ∈ Rd : aj ≤ xj ≤ bj for all j = 1, 2, . . . , d}.

We remark that in our definition, a rectangle is closed and has sides
parallel to the coordinate axis. In R, the rectangles are precisely the
closed and bounded intervals, while in R2 they are the usual four-sided
rectangles. In R3 they are the closed parallelepipeds.

We say that the lengths of the sides of the rectangle R are b1 −
a1, . . . , bd − ad. The volume of the rectangle R is denoted by |R|, and
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R2

R

R3

Figure 1. Rectangles in Rd, d = 1, 2, 3

is defined to be

|R| = (b1 − a1) · · · (bd − ad).

Of course, when d = 1 the “volume” equals length, and when d = 2 it
equals area.

An open rectangle is the product of open intervals, and the interior of
the rectangle R is then

(a1, b1)× (a2, b2)× · · · × (ad, bd).

Also, a cube is a rectangle for which b1 − a1 = b2 − a2 = · · · = bd − ad.
So if Q ⊂ Rd is a cube of common side length `, then |Q| = `d.

A union of rectangles is said to be almost disjoint if the interiors of
the rectangles are disjoint.

In this chapter, coverings by rectangles and cubes play a major role,
so we isolate here two important lemmas.

Lemma 1.1 If a rectangle is the almost disjoint union of finitely many
other rectangles, say R =

⋃N
k=1 Rk, then

|R| =
N∑

k=1

|Rk|.
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Proof. We consider the grid formed by extending indefinitely the
sides of all rectangles R1, . . . , RN . This construction yields finitely many
rectangles R̃1, . . . , R̃M , and a partition J1, . . . , JN of the integers between
1 and M , such that the unions

R =
M⋃

j=1

R̃j and Rk =
⋃

j∈Jk

R̃j , for k = 1, . . . , N

are almost disjoint (see the illustration in Figure 2).

RN
R̃M

R1

R2 R̃1 R̃2

R

Figure 2. The grid formed by the rectangles Rk

For the rectangle R, for example, we see that |R| = ∑M
j=1 |R̃j |, since

the grid actually partitions the sides of R and each R̃j consists of taking
products of the intervals in these partitions. Thus when adding the
volumes of the R̃j we are summing the corresponding products of lengths
of the intervals that arise. Since this also holds for the other rectangles
R1, . . . , RN , we conclude that

|R| =
M∑

j=1

|R̃j | =
N∑

k=1

∑
j∈Jk

|R̃j | =
N∑

k=1

|Rk|.

A slight modification of this argument then yields the following:
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Lemma 1.2 If R, R1, . . . , RN are rectangles, and R ⊂ ⋃N
k=1 Rk, then

|R| ≤
N∑

k=1

|Rk|.

The main idea consists of taking the grid formed by extending all sides
of the rectangles R, R1, . . . , RN , and noting that the sets corresponding
to the Jk (in the above proof) need not be disjoint any more.

We now proceed to give a description of the structure of open sets in
terms of cubes. We begin with the case of R.

Theorem 1.3 Every open subset O of R can be writen uniquely as a
countable union of disjoint open intervals.

Proof. For each x ∈ O, let Ix denote the largest open interval contain-
ing x and contained in O. More precisely, since O is open, x is contained
in some small (non-trivial) interval, and therefore if

ax = inf{a < x : (a, x) ⊂ O} and bx = sup{b > x : (x, b) ⊂ O}

we must have ax < x < bx (with possibly infinite values for ax and bx).
If we now let Ix = (ax, bx), then by construction we have x ∈ Ix as well
as Ix ⊂ O. Hence

O =
⋃

x∈O
Ix.

Now suppose that two intervals Ix and Iy intersect. Then their union
(which is also an open interval) is contained in O and contains x. Since
Ix is maximal, we must have (Ix ∪ Iy) ⊂ Ix, and similarly (Ix ∪ Iy) ⊂ Iy.
This can happen only if Ix = Iy; therefore, any two distinct intervals in
the collection I = {Ix}x∈O must be disjoint. The proof will be complete
once we have shown that there are only countably many distinct intervals
in the collection I. This, however, is easy to see, since every open interval
Ix contains a rational number. Since different intervals are disjoint, they
must contain distinct rationals, and therefore I is countable, as desired.

Naturally, if O is open and O =
⋃∞

j=1 Ij , where the Ij ’s are disjoint
open intervals, the measure of O ought to be

∑∞
j=1 |Ij |. Since this rep-

resentation is unique, we could take this as a definition of measure; we
would then note that wheneverO1 andO2 are open and disjoint, the mea-
sure of their union is the sum of their measures. Although this provides
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a natural notion of measure for an open set, it is not immediately clear
how to generalize it to other sets in R. Moreover, a similar approach in
higher dimensions already encounters complications even when defining
measures of open sets, since in this context the direct analogue of The-
orem 1.3 is not valid (see Exercise 12). There is, however, a substitute
result.

Theorem 1.4 Every open subset O of Rd, d ≥ 1, can be written as a
countable union of almost disjoint closed cubes.

Proof. We must construct a countable collection Q of closed cubes
whose interiors are disjoint, and so that O =

⋃
Q∈QQ.

As a first step, consider the grid in Rd formed by taking all closed cubes
of side length 1 whose vertices have integer coordinates. In other words,
we consider the natural grid of lines parallel to the axes, that is, the grid
generated by the lattice Zd. We shall also use the grids formed by cubes
of side length 2−N obtained by successively bisecting the original grid.

We either accept or reject cubes in the initial grid as part of Q accord-
ing to the following rule: if Q is entirely contained in O then we accept
Q; if Q intersects both O and Oc then we tentatively accept it; and if Q
is entirely contained in Oc then we reject it.

As a second step, we bisect the tentatively accepted cubes into 2d cubes
with side length 1/2. We then repeat our procedure, by accepting the
smaller cubes if they are completely contained in O, tentatively accepting
them if they intersect both O and Oc, and rejecting them if they are
contained in Oc. Figure 3 illustrates these steps for an open set in R2.

OO

Step 1 Step 2

Figure 3. Decomposition of O into almost disjoint cubes
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This procedure is then repeated indefinitely, and (by construction)
the resulting collection Q of all accepted cubes is countable and consists
of almost disjoint cubes. To see why their union is all of O, we note
that given x ∈ O there exists a cube of side length 2−N (obtained from
successive bisections of the original grid) that contains x and that is
entirely contained in O. Either this cube has been accepted, or it is
contained in a cube that has been previously accepted. This shows that
the union of all cubes in Q covers O.

Once again, if O =
⋃∞

j=1 Rj where the rectangles Rj are almost dis-
joint, it is reasonable to assign to O the measure

∑∞
j=1 |Rj |. This is

natural since the volume of the boundary of each rectangle should be 0,
and the overlap of the rectangles should not contribute to the volume
of O. We note, however, that the above decomposition into cubes is
not unique, and it is not immediate that the sum is independent of this
decomposition. So in Rd, with d ≥ 2, the notion of volume or area, even
for open sets, is more subtle.

The general theory developed in the next section actually yields a
notion of volume that is consistent with the decompositions of open sets
of the previous two theorems, and applies to all dimensions. Before we
come to that, we discuss an important example in R.

The Cantor set

The Cantor set plays a prominent role in set theory and in analysis in
general. It and its variants provide a rich source of enlightening examples.

We begin with the closed unit interval C0 = [0, 1] and let C1 denote
the set obtained from deleting the middle third open interval from [0, 1],
that is,

C1 = [0, 1/3] ∪ [2/3, 1].

Next, we repeat this procedure for each sub-interval of C1; that is, we
delete the middle third open interval. At the second stage we get

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

We repeat this process for each sub-interval of C2, and so on (Figure 4).
This procedure yields a sequence Ck, k = 0, 1, 2, . . . of compact sets

with

C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck ⊃ Ck+1 ⊃ · · · .
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0 11/3

C2

C3

1/9 2/9
2/3

7/9 8/9

0 1/3 2/3 1

C1

0 1

C0

Figure 4. Construction of the Cantor set

The Cantor set C is by definition the intersection of all Ck’s:

C =
∞⋂

k=0

Ck.

The set C is not empty, since all end-points of the intervals in Ck (all k)
belong to C.

Despite its simple construction, the Cantor set enjoys many interest-
ing topological and analytical properties. For instance, C is closed and
bounded, hence compact. Also, C is totally disconnected: given any
x, y ∈ C there exists z /∈ C that lies between x and y. Finally, C is per-
fect: it has no isolated points (Exercise 1).

Next, we turn our attention to the question of determining the “size”
of C. This is a delicate problem, one that may be approached from
different angles depending on the notion of size we adopt. For instance,
in terms of cardinality the Cantor set is rather large: it is not countable.
Since it can be mapped to the interval [0, 1], the Cantor set has the
cardinality of the continuum (Exercise 2).

However, from the point of view of “length” the size of C is small.
Roughly speaking, the Cantor set has length zero, and this follows from
the following intuitive argument: the set C is covered by sets Ck whose
lengths go to zero. Indeed, Ck is a disjoint union of 2k intervals of length
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3−k, making the total length of Ck equal to (2/3)k. But C ⊂ Ck for all
k, and (2/3)k → 0 as k tends to infinity. We shall define a notion of
measure and make this argument precise in the next section.

2 The exterior measure

The notion of exterior measure is the first of two important concepts
needed to develop a theory of measure. We begin with the definition and
basic properties of exterior measure. Loosely speaking, the exterior mea-
sure m∗ assigns to any subset of Rd a first notion of size; various examples
show that this notion coincides with our earlier intuition. However, the
exterior measure lacks the desirable property of additivity when taking
the union of disjoint sets. We remedy this problem in the next section,
where we discuss in detail the other key concept of measure theory, the
notion of measurable sets.

The exterior measure, as the name indicates, attempts to describe
the volume of a set E by approximating it from the outside. The set
E is covered by cubes, and if the covering gets finer, with fewer cubes
overlapping, the volume of E should be close to the sum of the volumes
of the cubes.

The precise definition is as follows: if E is any subset of Rd, the
exterior measure1 of E is

(1) m∗(E) = inf
∞∑

j=1

|Qj |,

where the infimum is taken over all countable coverings E ⊂ ⋃∞
j=1 Qj by

closed cubes. The exterior measure is always non-negative but could be
infinite, so that in general we have 0 ≤ m∗(E) ≤ ∞, and therefore takes
values in the extended positive numbers.

We make some preliminary remarks about the definition of the exterior
measure given by (1).

(i) It is important to note that it would not suffice to allow finite sums
in the definition of m∗(E). The quantity that would be obtained if one
considered only coverings of E by finite unions of cubes is in general
larger than m∗(E). (See Exercise 14.)
(ii) One can, however, replace the coverings by cubes, with coverings
by rectangles; or with coverings by balls. That the former alternative

1Some authors use the term outer measure instead of exterior measure.
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yields the same exterior measure is quite direct. (See Exercise 15.) The
equivalence with the latter is more subtle. (See Exercise 26 in Chapter 3.)

We begin our investigation of this new notion by providing examples
of sets whose exterior measures can be calculated, and we check that
the latter matches our intuitive idea of volume (length in one dimension,
area in two dimensions, etc.)

Example 1. The exterior measure of a point is zero. This is clear once
we observe that a point is a cube with volume zero, and which covers
itself. Of course the exterior measure of the empty set is also zero.

Example 2. The exterior measure of a closed cube is equal to its volume.
Indeed, suppose Q is a closed cube in Rd. Since Q covers itself, we must
have m∗(Q) ≤ |Q|. Therefore, it suffices to prove the reverse inequality.

We consider an arbitrary covering Q ⊂ ⋃∞
j=1 Qj by cubes, and note

that it suffices to prove that

(2) |Q| ≤
∞∑

j=1

|Qj |.

For a fixed ε > 0 we choose for each j an open cube Sj which contains Qj ,
and such that |Sj | ≤ (1 + ε)|Qj |. From the open covering

⋃∞
j=1 Sj of the

compact set Q, we may select a finite subcovering which, after possibly
renumbering the rectangles, we may write as Q ⊂ ⋃N

j=1 Sj . Taking the
closure of the cubes Sj , we may apply Lemma 1.2 to conclude that |Q| ≤∑N

j=1 |Sj |. Consequently,

|Q| ≤ (1 + ε)
N∑

j=1

|Qj | ≤ (1 + ε)
∞∑

j=1

|Qj |.

Since ε is arbitrary, we find that the inequality (2) holds; thus |Q| ≤
m∗(Q), as desired.

Example 3. If Q is an open cube, the result m∗(Q) = |Q| still holds.
Since Q is covered by its closure Q, and |Q| = |Q|, we immediately see
that m∗(Q) ≤ |Q|. To prove the reverse inequality, we note that if Q0 is
a closed cube contained in Q, then m∗(Q0) ≤ m∗(Q), since any covering
of Q by a countable number of closed cubes is also a covering of Q0 (see
Observation 1 below). Hence |Q0| ≤ m∗(Q), and since we can choose Q0

with a volume as close as we wish to |Q|, we must have |Q| ≤ m∗(Q).
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Example 4. The exterior measure of a rectangle R is equal to its volume.
Indeed, arguing as in Example 2, we see that |R| ≤ m∗(R). To obtain the
reverse inequality, consider a grid in Rd formed by cubes of side length
1/k. Then, if Q consists of the (finite) collection of all cubes entirely
contained in R, and Q′ the (finite) collection of all cubes that intersect
the complement of R, we first note that R ⊂ ⋃

Q∈(Q∪Q′) Q. Also, a simple
argument yields

∑
Q∈Q

|Q| ≤ |R|.

Moreover, there are O(kd−1) cubes2 in Q′, and these cubes have volume
k−d, so that

∑
Q∈Q′ |Q| = O(1/k). Hence

∑

Q∈(Q∪Q′)
|Q| ≤ |R|+ O(1/k),

and letting k tend to infinity yields m∗(R) ≤ |R|, as desired.

Example 5. The exterior measure of Rd is infinite. This follows from
the fact that any covering of Rd is also a covering of any cube Q ⊂ Rd,
hence |Q| ≤ m∗(Rd). Since Q can have arbitrarily large volume, we must
have m∗(Rd) = ∞.

Example 6. The Cantor set C has exterior measure 0. From the con-
struction of C, we know that C ⊂ Ck, where each Ck is a disjoint union
of 2k closed intervals, each of length 3−k. Consequently, m∗(C) ≤ (2/3)k

for all k, hence m∗(C) = 0.

Properties of the exterior measure

The previous examples and comments provide some intuition underlying
the definition of exterior measure. Here, we turn to the further study of
m∗ and prove five properties of exterior measure that are needed in what
follows.

First, we record the following remark that is immediate from the def-
inition of m∗:

2We remind the reader of the notation f(x) = O(g(x)), which means that |f(x)| ≤
C|g(x)| for some constant C and all x in a given range. In this particular example, there
are fewer than Ckd−1 cubes in question, as k →∞.
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• For every ε > 0, there exists a covering E ⊂ ⋃∞
j=1 Qj with

∞∑
j=1

m∗(Qj) ≤ m∗(E) + ε.

The relevant properties of exterior measure are listed in a series of
observations.

Observation 1 (Monotonicity) If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).

This follows once we observe that any covering of E2 by a countable
collection of cubes is also a covering of E1.

In particular, monotonicity implies that every bounded subset of Rd

has finite exterior measure.

Observation 2 (Countable sub-additivity) If E =
⋃∞

j=1 Ej, then
m∗(E) ≤ ∑∞

j=1 m∗(Ej).

First, we may assume that each m∗(Ej) < ∞, for otherwise the in-
equality clearly holds. For any ε > 0, the definition of the exterior mea-
sure yields for each j a covering Ej ⊂

⋃∞
k=1 Qk,j by closed cubes with

∞∑

k=1

|Qk,j | ≤ m∗(Ej) +
ε

2j
.

Then, E ⊂ ⋃∞
j,k=1 Qk,j is a covering of E by closed cubes, and therefore

m∗(E) ≤
∑

j,k

|Qk,j | =
∞∑

j=1

∞∑

k=1

|Qk,j |

≤
∞∑

j=1

(
m∗(Ej) +

ε

2j

)

=
∞∑

j=1

m∗(Ej) + ε.

Since this holds true for every ε > 0, the second observation is proved.

Observation 3 If E ⊂ Rd, then m∗(E) = inf m∗(O), where the infi-
mum is taken over all open sets O containing E.
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By monotonicity, it is clear that the inequality m∗(E) ≤ inf m∗(O)
holds. For the reverse inequality, let ε > 0 and choose cubes Qj such
that E ⊂ ⋃∞

j=1 Qj , with

∞∑
j=1

|Qj | ≤ m∗(E) +
ε

2
.

Let Q0
j denote an open cube containing Qj , and such that |Q0

j | ≤ |Qj |+
ε/2j+1. Then O =

⋃∞
j=1 Q0

j is open, and by Observation 2

m∗(O) ≤
∞∑

j=1

m∗(Q0
j) =

∞∑
j=1

|Q0
j |

≤
∞∑

j=1

(
|Qj |+ ε

2j+1

)

≤
∞∑

j=1

|Qj |+ ε

2

≤ m∗(E) + ε.

Hence inf m∗(O) ≤ m∗(E), as was to be shown.

Observation 4 If E = E1 ∪ E2, and d(E1, E2) > 0, then

m∗(E) = m∗(E1) + m∗(E2).

By Observation 2, we already know that m∗(E) ≤ m∗(E1) + m∗(E2),
so it suffices to prove the reverse inequality. To this end, we first select δ
such that d(E1, E2) > δ > 0. Next, we choose a covering E ⊂ ⋃∞

j=1 Qj by
closed cubes, with

∑∞
j=1 |Qj | ≤ m∗(E) + ε. We may, after subdividing

the cubes Qj , assume that each Qj has a diameter less than δ. In this
case, each Qj can intersect at most one of the two sets E1 or E2. If we
denote by J1 and J2 the sets of those indices j for which Qj intersects
E1 and E2, respectively, then J1 ∩ J2 is empty, and we have

E1 ⊂
∞⋃

j∈J1

Qj as well as E2 ⊂
∞⋃

j∈J2

Qj .
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Therefore,

m∗(E1) + m∗(E2) ≤
∑
j∈J1

|Qj |+
∑
j∈J2

|Qj |

≤
∞∑

j=1

|Qj |

≤ m∗(E) + ε.

Since ε is arbitrary, the proof of Observation 4 is complete.

Observation 5 If a set E is the countable union of almost disjoint cubes
E =

⋃∞
j=1 Qj, then

m∗(E) =
∞∑

j=1

|Qj |.

Let Q̃j denote a cube strictly contained in Qj such that |Qj | ≤ |Q̃j |+
ε/2j , where ε is arbitrary but fixed. Then, for every N , the cubes
Q̃1, Q̃2, . . . , Q̃N are disjoint, hence at a finite distance from one another,
and repeated applications of Observation 4 imply

m∗

(
N⋃

j=1

Q̃j

)
=

N∑
j=1

|Q̃j | ≥
N∑

j=1

(|Qj | − ε/2j
)
.

Since
⋃N

j=1 Q̃j ⊂ E, we conclude that for every integer N ,

m∗(E) ≥
N∑

j=1

|Qj | − ε.

In the limit as N tends to infinity we deduce
∑∞

j=1 |Qj | ≤ m∗(E) + ε

for every ε > 0, hence
∑∞

j=1 |Qj | ≤ m∗(E). Therefore, combined with
Observation 2, our result proves that we have equality.

This last property shows that if a set can be decomposed into almost
disjoint cubes, its exterior measure equals the sum of the volumes of the
cubes. In particular, by Theorem 1.4 we see that the exterior measure of
an open set equals the sum of the volumes of the cubes in a decomposi-
tion, and this coincides with our initial guess. Moreover, this also yields
a proof that the sum is independent of the decomposition.
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One can see from this that the volumes of simple sets that are cal-
culated by elementary calculus agree with their exterior measure. This
assertion can be proved most easily once we have developed the requisite
tools in integration theory. (See Chapter 2.) In particular, we can then
verify that the exterior measure of a ball (either open or closed) equals
its volume.

Despite observations 4 and 5, one cannot conclude in general that if
E1 ∪ E2 is a disjoint union of subsets of Rd, then

(3) m∗(E1 ∪ E2) = m∗(E1) + m∗(E2).

In fact (3) holds when the sets in question are not highly irregular or
“pathological” but are measurable in the sense described below.

3 Measurable sets and the Lebesgue measure

The notion of measurability isolates a collection of subsets in Rd for
which the exterior measure satisfies all our desired properties, including
additivity (and in fact countable additivity) for disjoint unions of sets.

There are a number of different ways of defining measurability, but
these all turn out to be equivalent. Probably the simplest and most
intuitive is the following: A subset E of Rd is Lebesgue measurable,
or simply measurable, if for any ε > 0 there exists an open set O with
E ⊂ O and

m∗(O − E) ≤ ε.

This should be compared to Observation 3, which holds for all sets E.
If E is measurable, we define its Lebesgue measure (or measure)

m(E) by

m(E) = m∗(E).

Clearly, the Lebesgue measure inherits all the features contained in Ob-
servations 1 - 5 of the exterior measure.

Immediately from the definition, we find:

Property 1 Every open set in Rd is measurable.

Our immediate goal now is to gather various further properties of
measurable sets. In particular, we shall prove that the collection of
measurable sets behave well under the various operations of set theory:
countable unions, countable intersections, and complements.
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Property 2 If m∗(E) = 0, then E is measurable. In particular, if F is
a subset of a set of exterior measure 0, then F is measurable.

By Observation 3 of the exterior measure, for every ε > 0 there ex-
ists an open set O with E ⊂ O and m∗(O) ≤ ε. Since (O − E) ⊂ O,
monotonicity implies m∗(O − E) ≤ ε, as desired.

As a consequence of this property, we deduce that the Cantor set C in
Example 6 is measurable and has measure 0.

Property 3 A countable union of measurable sets is measurable.

Suppose E =
⋃∞

j=1 Ej , where each Ej is measurable. Given ε > 0, we
may choose for each j an open set Oj with Ej ⊂ Oj and
m∗(Oj − Ej) ≤ ε/2j . Then the union O =

⋃∞
j=1Oj is open, E ⊂ O, and

(O − E) ⊂ ⋃∞
j=1(Oj − Ej), so monotonicity and sub-additivity of the

exterior measure imply

m∗(O − E) ≤
∞∑

j=1

m∗(Oj −Ej) ≤ ε.

Property 4 Closed sets are measurable.

First, we observe that it suffices to prove that compact sets are mea-
surable. Indeed, any closed set F can be written as the union of compact
sets, say F =

⋃∞
k=1 F ∩Bk, where Bk denotes the closed ball of radius k

centered at the origin; then Property 3 applies.
So, suppose F is compact (so that in particular m∗(F ) < ∞), and let

ε > 0. By Observation 3 we can select an open set O with F ⊂ O and
m∗(O) ≤ m∗(F ) + ε. Since F is closed, the difference O − F is open,
and by Theorem 1.4 we may write this difference as a countable union
of almost disjoint cubes

O − F =
∞⋃

j=1

Qj .

For a fixed N , the finite union K =
⋃N

j=1 Qj is compact; therefore
d(K, F ) > 0 (we isolate this little fact in a lemma below). Since (K ∪
F ) ⊂ O, Observations 1, 4, and 5 of the exterior measure imply

m∗(O) ≥ m∗(F ) + m∗(K)

= m∗(F ) +
N∑

j=1

m∗(Qj).
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Hence
∑N

j=1 m∗(Qj) ≤ m∗(O)−m∗(F ) ≤ ε, and this also holds in the
limit as N tends to infinity. Invoking the sub-additivity property of the
exterior measure finally yields

m∗(O − F ) ≤
∞∑

j=1

m∗(Qj) ≤ ε,

as desired.

We digress briefly to complete the above argument by proving the
following.

Lemma 3.1 If F is closed, K is compact, and these sets are disjoint,
then d(F, K) > 0.

Proof. Since F is closed, for each point x ∈ K, there exists δx > 0 so
that d(x, F ) > 3δx. Since

⋃
x∈K B2δx(x) covers K, and K is compact, we

may find a subcover, which we denote by
⋃N

j=1 B2δj
(xj). If we let δ =

min(δ1, . . . , δN ), then we must have d(K,F ) ≥ δ > 0. Indeed, if x ∈ K
and y ∈ F , then for some j we have |xj − x| ≤ 2δj , and by construction
|y − xj | ≥ 3δj . Therefore

|y − x| ≥ |y − xj | − |xj − x| ≥ 3δj − 2δj ≥ δ,

and the lemma is proved.

Property 5 The complement of a measurable set is measurable.

If E is measurable, then for every positive integer n we may choose an
open set On with E ⊂ On and m∗(On − E) ≤ 1/n. The complement Oc

n

is closed, hence measurable, which implies that the union S =
⋃∞

n=1Oc
n

is also measurable by Property 3. Now we simply note that S ⊂ Ec, and

(Ec − S) ⊂ (On − E),

such that m∗(Ec − S) ≤ 1/n for all n. Therefore, m∗(Ec − S) = 0, and
Ec − S is measurable by Property 2. Therefore Ec is measurable since
it is the union of two measurable sets, namely S and (Ec − S).

Property 6 A countable intersection of measurable sets is measurable.

This follows from Properties 3 and 5, since

∞⋂
j=1

Ej =

( ∞⋃
j=1

Ec
j

)c

.
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In conclusion, we find that the family of measurable sets is closed under
the familiar operations of set theory. We point out that we have shown
more than simply closure with respect to finite unions and intersections:
we have proved that the collection of measurable sets is closed under
countable unions and intersections. This passage from finite operations
to infinite ones is crucial in the context of analysis. We emphasize, how-
ever, that the operations of uncountable unions or intersections are not
permissible when dealing with measurable sets!

Theorem 3.2 If E1, E2, . . ., are disjoint measurable sets, and E =⋃∞
j=1 Ej, then

m(E) =
∞∑

j=1

m(Ej).

Proof. First, we assume further that each Ej is bounded. Then, for
each j, by applying the definition of measurability to Ec

j , we can choose
a closed subset Fj of Ej with m∗(Ej − Fj) ≤ ε/2j . For each fixed N ,

the sets F1, . . . , FN are compact and disjoint, so that m
(⋃N

j=1 Fj

)
=

∑N
j=1 m(Fj). Since

⋃N
j=1 Fj ⊂ E, we must have

m(E) ≥
N∑

j=1

m(Fj) ≥
N∑

j=1

m(Ej)− ε.

Letting N tend to infinity, since ε was arbitrary we find that

m(E) ≥
∞∑

j=1

m(Ej).

Since the reverse inequality always holds (by sub-additivity in Observa-
tion 2), this concludes the proof when each Ej is bounded.

In the general case, we select any sequence of cubes {Qk}∞k=1 that
increases to Rd, in the sense that Qk ⊂ Qk+1 for all k ≥ 1 and

⋃∞
k=1 Qk =

Rd. We then let S1 = Q1 and Sk = Qk −Qk−1 for k ≥ 2. If we define
measurable sets by Ej,k = Ej ∩ Sk, then

E =
⋃

j,k

Ej,k.

The union above is disjoint and every Ej,k is bounded. Moreover Ej =⋃∞
k=1 Ej,k, and this union is also disjoint. Putting these facts together,
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and using what has already been proved, we obtain

m(E) =
∑

j,k

m(Ej,k) =
∑

j

∑

k

m(Ej,k) =
∑

j

m(Ej),

as claimed.

With this, the countable additivity of the Lebesgue measure on mea-
surable sets has been established. This result provides the necessary
connection between the following:

• our primitive notion of volume given by the exterior measure,

• the more refined idea of measurable sets, and

• the countably infinite operations allowed on these sets.

We make two definitions to state succinctly some further consequences.
If E1, E2, . . . is a countable collection of subsets of Rd that increases

to E in the sense that Ek ⊂ Ek+1 for all k, and E =
⋃∞

k=1 Ek, then we
write Ek ↗ E.

Similarly, if E1, E2, . . . decreases to E in the sense that Ek ⊃ Ek+1 for
all k, and E =

⋂∞
k=1 Ek, we write Ek ↘ E.

Corollary 3.3 Suppose E1, E2, . . . are measurable subsets of Rd.

(i) If Ek ↗ E, then m(E) = limN→∞m(EN ).

(ii) If Ek ↘ E and m(Ek) < ∞ for some k, then

m(E) = lim
N→∞

m(EN ).

Proof. For the first part, let G1 = E1, G2 = E2 − E1, and in gen-
eral Gk = Ek − Ek−1 for k ≥ 2. By their construction, the sets Gk are
measurable, disjoint, and E =

⋃∞
k=1 Gk. Hence

m(E) =
∞∑

k=1

m(Gk) = lim
N→∞

N∑

k=1

m(Gk) = lim
N→∞

m

(
N⋃

k=1

Gk

)
,

and since
⋃N

k=1 Gk = EN we get the desired limit.
For the second part, we may clearly assume that m(E1) < ∞. Let

Gk = Ek − Ek+1 for each k, so that

E1 = E ∪
∞⋃

k=1

Gk
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is a disjoint union of measurable sets. As a result, we find that

m(E1) = m(E) + lim
N→∞

N−1∑

k=1

(m(Ek)−m(Ek+1))

= m(E) + m(E1)− lim
N→∞

m(EN ).

Hence, since m(E1) < ∞, we see that m(E) = limN→∞m(EN ), and the
proof is complete.

The reader should note that the second conclusion may fail without
the assumption that m(Ek) < ∞ for some k. This is shown by the simple
example when En = (n,∞) ⊂ R, for all n.

What follows provides an important geometric and analytic insight
into the nature of measurable sets, in terms of their relation to open and
closed sets. Its thrust is that, in effect, an arbitrary measurable set can
be well approximated by the open sets that contain it, and alternatively,
by the closed sets it contains.

Theorem 3.4 Suppose E is a measurable subset of Rd. Then, for every
ε > 0:

(i) There exists an open set O with E ⊂ O and m(O − E) ≤ ε.

(ii) There exists a closed set F with F ⊂ E and m(E − F ) ≤ ε.

(iii) If m(E) is finite, there exists a compact set K with K ⊂ E and
m(E −K) ≤ ε.

(iv) If m(E) is finite, there exists a finite union F =
⋃N

j=1 Qj of closed
cubes such that

m(E4F ) ≤ ε.

The notation E4F stands for the symmetric difference between the
sets E and F , defined by E4F = (E − F ) ∪ (F − E), which consists of
those points that belong to only one of the two sets E or F .

Proof. Part (i) is just the definition of measurability. For the second
part, we know that Ec is measurable, so there exists an open set O with
Ec ⊂ O and m(O − Ec) ≤ ε. If we let F = Oc, then F is closed, F ⊂ E,
and E − F = O − Ec. Hence m(E − F ) ≤ ε as desired.

For (iii), we first pick a closed set F so that F ⊂ E and m(E − F ) ≤
ε/2. For each n, we let Bn denote the ball centered at the origin of radius
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n, and define compact sets Kn = F ∩Bn. Then E −Kn is a sequence
of measurable sets that decreases to E − F , and since m(E) < ∞, we
conclude that for all large n one has m(E −Kn) ≤ ε.

For the last part, choose a family of closed cubes {Qj}∞j=1 so that

E ⊂
∞⋃

j=1

Qj and
∞∑

j=1

|Qj | ≤ m(E) + ε/2.

Since m(E) < ∞, the series converges and there exists N > 0 such that∑∞
j=N+1 |Qj | < ε/2. If F =

⋃N
j=1 Qj , then

m(E4F ) = m(E − F ) + m(F − E)

≤ m

( ∞⋃
j=N+1

Qj

)
+ m

( ∞⋃
j=1

Qj −E

)

≤
∞∑

j=N+1

|Qj |+
∞∑

j=1

|Qj | −m(E)

≤ ε.

Invariance properties of Lebesgue measure

A crucial property of Lebesgue measure in Rd is its translation-invariance,
which can be stated as follows: if E is a measurable set and h ∈ Rd, then
the set Eh = E + h = {x + h : x ∈ E} is also measurable, and m(E +
h) = m(E). With the observation that this holds for the special case
when E is a cube, one passes to the exterior measure of arbitrary sets
E, and sees from the definition of m∗ given in Section 2 that m∗(Eh) =
m∗(E). To prove the measurability of Eh under the assumption that E
is measurable, we note that if O is open, O ⊃ E, and m∗(O − E) < ε,
then Oh is open, Oh ⊃ Eh, and m∗(Oh − Eh) < ε.

In the same way one can prove the relative dilation-invariance of
Lebesgue measure. Suppose δ > 0, and denote by δE the set {δx :
x ∈ E}. We can then assert that δE is measurable whenever E is,
and m(δE) = δdm(E). One can also easily see that Lebesgue mea-
sure is reflection-invariant. That is, whenever E is measurable, so is
−E = {−x : x ∈ E} and m(−E) = m(E).

Other invariance properties of Lebesgue measure are in Exercise 7
and 8, and Problem 4 of Chapter 2.
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σ-algebras and Borel sets

A σ-algebra of sets is a collection of subsets of Rd that is closed under
countable unions, countable intersections, and complements.

The collection of all subsets of Rd is of course a σ-algebra. A more
interesting and relevant example consists of all measurable sets in Rd,
which we have just shown also forms a σ-algebra.

Another σ-algebra, which plays a vital role in analysis, is the Borel
σ-algebra in Rd, denoted by BRd , which by definition is the smallest σ-
algebra that contains all open sets. Elements of this σ-algebra are called
Borel sets.

The definition of the Borel σ-algebra will be meaningful once we have
defined the term “smallest,” and shown that such a σ-algebra exists and
is unique. The term “smallest” means that if S is any σ-algebra that
contains all open sets in Rd, then necessarily BRd ⊂ S. Since we observe
that any intersection (not necessarily countable) of σ-algebras is again a
σ-algebra, we may define BRd as the intersection of all σ-algebras that
contain the open sets. This shows the existence and uniqueness of the
Borel σ-algebra.

Since open sets are measurable, we conclude that the Borel σ-algebra
is contained in the σ-algebra of measurable sets. Naturally, we may ask
if this inclusion is strict: do there exist Lebesgue measurable sets which
are not Borel sets? The answer is “yes.” (See Exercise 35.)

From the point of view of the Borel sets, the Lebesgue sets arise as
the completion of the σ-algebra of Borel sets, that is, by adjoining all
subsets of Borel sets of measure zero. This is an immediate consequence
of Corollary 3.5 below.

Starting with the open and closed sets, which are the simplest Borel
sets, one could try to list the Borel sets in order of their complexity. Next
in order would come countable intersections of open sets; such sets are
called Gδ sets. Alternatively, one could consider their complements, the
countable union of closed sets, called the Fσ sets.3

Corollary 3.5 A subset E of Rd is measurable

(i) if and only if E differs from a Gδ by a set of measure zero,

(ii) if and only if E differs from an Fσ by a set of measure zero.

Proof. Clearly E is measurable whenever it satisfies either (i) or (ii),
since the Fσ, Gδ, and sets of measure zero are measurable.

3The terminology Gδ comes from German “Gebiete” and “Durschnitt”; Fσ comes from
French “fermé” and “somme.”
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Conversely, if E is measurable, then for each integer n ≥ 1 we may
select an open set On that contains E, and such that m(On − E) ≤ 1/n.
Then S =

⋂∞
n=1On is a Gδ that contains E, and (S − E) ⊂ (On − E)

for all n. Therefore m(S − E) ≤ 1/n for all n; hence S − E has exterior
measure zero, and is therefore measurable.

For the second implication, we simply apply part (ii) of Theorem 3.4
with ε = 1/n, and take the union of the resulting closed sets.

Construction of a non-measurable set

Are all subsets of Rd measurable? In this section, we answer this question
when d = 1 by constructing a subset of R which is not measurable.4

This justifies the conclusion that a satisfactory theory of measure cannot
encompass all subsets of R.

The construction of a non-measurable set N uses the axiom of choice,
and rests on a simple equivalence relation among real numbers in [0, 1].

We write x ∼ y whenever x− y is rational, and note that this is an
equivalence relation since the following properties hold:

• x ∼ x for every x ∈ [0, 1]

• if x ∼ y, then y ∼ x

• if x ∼ y and y ∼ z, then x ∼ z.

Two equivalence classes either are disjoint or coincide, and [0, 1] is the
disjoint union of all equivalence classes, which we write as

[0, 1] =
⋃
α

Eα.

Now we construct the set N by choosing exactly one element xα from
each Eα, and setting N = {xα}. This (seemingly obvious) step requires
further comment, which we postpone until after the proof of the following
theorem.

Theorem 3.6 The set N is not measurable.

The proof is by contradiction, so we assume that N is measurable. Let
{rk}∞k=1 be an enumeration of all the rationals in [−1, 1], and consider
the translates

Nk = N + rk.

4The existence of such a set in R implies the existence of corresponding non-measurable
subsets of Rd for each d, as a consequence of Proposition 3.4 in the next chapter.
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We claim that the sets Nk are disjoint, and

(4) [0, 1] ⊂
∞⋃

k=1

Nk ⊂ [−1, 2].

To see why these sets are disjoint, suppose that the intersection
Nk ∩Nk′ is non-empty. Then there exist rationals rk 6= r′k and α and
β with xα + rk = xβ + rk′ ; hence

xα − xβ = rk′ − rk.

Consequently α 6= β and xα − xβ is rational; hence xα ∼ xβ , which con-
tradicts the fact that N contains only one representative of each equiv-
alence class.

The second inclusion is straightforward since each Nk is contained in
[−1, 2] by construction. Finally, if x ∈ [0, 1], then x ∼ xα for some α, and
therefore x− xα = rk for some k. Hence x ∈ Nk, and the first inclusion
holds.

Now we may conclude the proof of the theorem. If N were measurable,
then so would be Nk for all k, and since the union

⋃∞
k=1Nk is disjoint,

the inclusions in (4) yield

1 ≤
∞∑

k=1

m(Nk) ≤ 3.

Since Nk is a translate of N , we must have m(Nk) = m(N ) for all k.
Consequently,

1 ≤
∞∑

k=1

m(N ) ≤ 3.

This is the desired contradiction, since neither m(N ) = 0 nor m(N ) > 0
is possible.

Axiom of choice

That the construction of the set N is possible is based on the following
general proposition.

• Suppose E is a set and {Eα} is a collection of non-empty subsets
of E. (The indexing set of α’s is not assumed to be countable.)
Then there is a function α 7→ xα (a “choice function”) such that
xα ∈ Eα, for all α.
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In this general form this assertion is known as the axiom of choice.
This axiom occurs (at least implicitly) in many proofs in mathematics,
but because of its seeming intuitive self-evidence, its significance was
not at first understood. The initial realization of the importance of
this axiom was in its use to prove a famous assertion of Cantor, the
well-ordering principle. This proposition (sometimes referred to as
“transfinite induction”) can be formulated as follows.

A set E is linearly ordered if there is a binary relation ≤ such that:

(a) x ≤ x for all x ∈ E.

(b) If x, y ∈ E are distinct, then either x ≤ y or y ≤ x (but not both).

(c) If x ≤ y and y ≤ z, then x ≤ z.

We say that a set E can be well-ordered if it can be linearly ordered in
such a way that every non-empty subset A ⊂ E has a smallest element
in that ordering (that is, an element x0 ∈ A such that x0 ≤ x for any
other x ∈ A).

A simple example of a well-ordered set is Z+, the positive integers with
their usual ordering. The fact that Z+ is well-ordered is an essential part
of the usual (finite) induction principle. More generally, the well-ordering
principle states:

• Any set E can be well-ordered.

It is in fact nearly obvious that the well-ordering principle implies the
axiom of choice: if we well-order E, we can choose xα to be the smallest
element in Eα, and in this way we have constructed the required choice
function. It is also true, but not as easy to show, that the converse impli-
cation holds, namely that the axiom of choice implies the well-ordering
principle. (See Problem 6 for another equivalent formulation of the Ax-
iom of Choice.)

We shall follow the common practice of assuming the axiom of choice
(and hence the validity of the well-ordering principle).5 However, we
should point out that while the axiom of choice seems self-evident the
well-ordering principle leads quickly to some baffling conclusions: one
only needs to spend a little time trying to imagine what a well-ordering
of the reals might look like!

5It can be proved that in an appropriate formulation of the axioms of set theory, the
axiom of choice is independent of the other axioms; thus we are free to accept its validity.
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4 Measurable functions

With the notion of measurable sets in hand, we now turn our attention
to the objects that lie at the heart of integration theory: measurable
functions.

The starting point is the notion of a characteristic function of a set
E, which is defined by

χE(x) =
{

1 if x ∈ E,
0 if x /∈ E.

The next step is to pass to the functions that are the building blocks of
integration theory. For the Riemann integral it is in effect the class of
step functions, with each given as a finite sum

(5) f =
N∑

k=1

akχRk
,

where each Rk is a rectangle, and the ak are constants.

However, for the Lebesgue integral we need a more general notion, as
we shall see in the next chapter. A simple function is a finite sum

(6) f =
N∑

k=1

akχEk

where each Ek is a measurable set of finite measure, and the ak are
constants.

4.1 Definition and basic properties

We begin by considering only real-valued functions f on Rd, which we
allow to take on the infinite values +∞ and −∞, so that f(x) belongs
to the extended real numbers

−∞ ≤ f(x) ≤ ∞.

We shall say that f is finite-valued if −∞ < f(x) < ∞ for all x. In
the theory that follows, and the many applications of it, we shall almost
always find ourselves in situations where a function takes on infinite
values on at most a set of measure zero.
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A function f defined on a measurable subset E of Rd is measurable,
if for all a ∈ R, the set

f−1([−∞, a)) = {x ∈ E : f(x) < a}

is measurable. To simplify our notation, we shall often denote the set
{x ∈ E : f(x) < a} simply by {f < a} whenever no confusion is possible.

First, we note that there are many equivalent definitions of measurable
functions. For example, we may require instead that the inverse image of
closed intervals be measurable. Indeed, to prove that f is measurable if
and only if {x : f(x) ≤ a} = {f ≤ a} is measurable for every a, we note
that in one direction, one has

{f ≤ a} =
∞⋂

k=1

{f < a + 1/k},

and recall that the countable intersection of measurable sets is measur-
able. For the other direction, we observe that

{f < a} =
∞⋃

k=1

{f ≤ a− 1/k}.

Similarly, f is measurable if and only if {f ≥ a} (or {f > a}) is measur-
able for every a. In the first case this is immediate from our definition
and the fact that {f ≥ a} is the complement of {f < a}, and in the sec-
ond case this follows from what we have just proved and the fact that
{f ≤ a} = {f > a}c. A simple consequence is that −f is measurable
whenever f is measurable.

In the same way, one can show that if f is finite-valued, then it is
measurable if and only if the sets {a < f < b} are measurable for every
a, b ∈ R. Similar conclusions hold for whichever combination of strict or
weak inequalities one chooses. For example, if f is finite-valued, then it
is measurable if and only if {a ≤ f < b} for all a, b ∈ R. By the same
arguments one sees the following:

Property 1 The finite-valued function f is measurable if and only if
f−1(O) is measurable for every open set O, and if and only if f−1(F ) is
measurable for every closed set F .

Note that this property also applies to extended-valued functions, if we
make the additional hypothesis that both f−1(∞) and f−1(−∞) are
measurable sets.
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Property 2 If f is continuous on Rd, then f is measurable. If f is mea-
surable and finite-valued, and Φ is continuous, then Φ ◦ f is measurable.

In fact, Φ is continuous, so Φ−1((−∞, a)) is an open set O, and hence
(Φ ◦ f)−1((−∞, a)) = f−1(O) is measurable.

It should be noted, however, that in general it is not true that
f ◦ Φ is measurable whenever f is measurable and Φ is continuous. See
Exercise 35.

Property 3 Suppose {fn}∞n=1 is a sequence of measurable functions.
Then

sup
n

fn(x), inf
n

fn(x), lim sup
n→∞

, fn(x) and lim inf
n→∞

fn(x)

are measurable.

Proving that supn fn is measurable requires noting that {supn fn > a} =⋃
n{fn > a}. This also yields the result for infn fn(x), since this quantity

equals − supn(−fn(x)).
The result for the limsup and liminf also follows from the two obser-

vations

lim sup
n→∞

fn(x) = inf
k
{sup

n≥k
fn} and lim inf

n→∞
fn(x) = sup

k
{ inf

n≥k
fn}.

Property 4 If {fn}∞n=1 is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x),

then f is measurable.

Since f(x) = lim supn→∞ fn(x) = lim infn→∞ fn(x), this property is a
consequence of property 3.

Property 5 If f and g are measurable, then

(i) The integer powers fk, k ≥ 1 are measurable.

(ii) f + g and fg are measurable if both f and g are finite-valued.

For (i) we simply note that if k is odd, then {fk > a} = {f > a1/k}, and
if k is even and a ≥ 0, then {fk > a} = {f > a1/k} ∪ {f < −a1/k}.

For (ii), we first see that f + g is measurable because

{f + g > a} =
⋃

r∈Q
{f > a− r} ∩ {g > r},
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with Q denoting the rationals.
Finally, fg is measurable because of the previous results and the fact

that

fg =
1
4
[(f + g)2 − (f − g)2].

We shall say that two functions f and g defined on a set E are equal
almost everywhere, and write

f(x) = g(x) a.e. x ∈ E,

if the set {x ∈ E : f(x) 6= g(x)} has measure zero. We sometimes ab-
breviate this by saying that f = g a.e. More generally, a property or
statement is said to hold almost everywhere (a.e.) if it is true except on
a set of measure zero.

One sees easily that if f is measurable and f = g a.e., then g is measur-
able. This follows at once from the fact that {f < a} and {g < a} differ
by a set of measure zero. Moreover, all the properties above can be re-
laxed to conditions holding almost everywhere. For instance, if {fn}∞n=1

is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x) a.e.,

then f is measurable.

Note that if f and g are defined almost everywhere on a measurable
subset E ⊂ Rd, then the functions f + g and fg can only be defined on
the intersection of the domains of f and g. Since the union of two sets of
measure zero has again measure zero, f + g is defined almost everywhere
on E. We summarize this discussion as follows.

Property 6 Suppose f is measurable, and f(x) = g(x) for a.e. x. Then
g is measurable.

In this light, Property 5 (ii) also holds when f and g are finite-valued
almost everywhere.

4.2 Approximation by simple functions or step functions

The theorems in this section are all of the same nature and provide
further insight in the structure of measurable functions. We begin by
approximating pointwise, non-negative measurable functions by simple
functions.

(continued...)
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Borel, 23
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Borel, 267

σ-finite, 263
σ-finite signed measure, 288
O notation, 12

absolute continuity
of the Lebesgue integral, 66

absolutely continuous
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adjoint, 183, 222
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almost disjoint (union), 4
almost everywhere, a.e., 30
almost periodic function, 202
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(I)103
area of unit sphere, 313
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Bergman kernel, 254
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Bessel’s inequality, 166; (I)80
Blaschke factors, 227; (I)26, 153,

219

Borel
σ-algebra, 23, 267
measure, 269
on R, 281
sets, 23, 267
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theorem, 95
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Cauchy-Schwarz inequality, 157,
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closed set, 2, 267; (II)6
closure, 3
coincidence, 377
compact linear operator, 188
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L2, 159
measure space, 266
mectric space, 69

completion
Borel σ-algebra, 23
Hilbert space, 170; (I)74
measure space, 312

complex-valued function, 67
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continued fraction, 293, 322
continuum hypothesis, 96
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convergence in measure, 96
convex

function, 153
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239
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counting measure, 263
covering dimension, 383
covering lemma

Vitali, 102, 128, 152
cube, 4
curve

closed and simple, 137; (I)102;
(II)20

length, 115
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rectifiable, 115, 134, 332
simple, 137, 332
space-filling, 349, 383
von Koch, 338, 340, 382
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d’Alembert’s formula, 224
dense family of functions, 71
difference set, 44
differentiation of the integral, 99
dimension

Hausdorff, 329
Minkowski, 333
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kernel, 179; (I)37
principle, 229, 243
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(II)212, 216
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dominated convergence theorem, 67
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square, 352

Egorov’s theorem, 33
eigenvalue, 186; (I)233
eigenvector, 186
equivalent functions, 69
ergodic, (I) 111

maximal theorem, 297
mean theorem, 295
measure-preserving

transformation, 302
pointwise theorem, 300

extension principle, 183, 210
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Hausdorff, 325
Lebesgue, 10
metric, 267

Fatou’s lemma, 61
Fatou’s theorem, 173
Fejér kernel, 112; (I)53, 163
finite rank operator, 188
finite-valued function, 27
Fourier

coefficient, 170; (I)16, 34
inversion formula, 86; (I)141, 182;

(II)115
multiplier operator, 200, 220
series, 171, 316; (I)34; (II)101
transform in L1, 87
transform in L2, 207, 211

fractal, 329
Fredholm alternative, 204
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Fubini’s theorem, 75, 276
function

absolutely continuous, 127, 285
almost periodic, 202
boundary-value, 217
bounded variation, 116, 154
Cantor-Lebesgue, 126, 331
characteristic, 27
complex-valued, 67
convex, 153
Dirac delta, 110
finite-valued, 27
increasing, 117
integrable, 59, 275
jump, 132
Lebesgue integrable, 59, 64, 68
Lipschitz (Hölder), 330; (I)43
measurable, 28
negative variation, 118
normalized, 282
nowhere differentiable, 154, 383
positive variation, 118
sawtooth, 200; (I)60, 83
simple, 27, 50, 274
slice, 75
smooth, 222
square integrable, 156
step, 27
strictly increasing, 117
support, 53
total variation, 117

fundamental theorem of the
calculus, 98

Gaussian, 88; (I)135, 181
good kernel, 88, 108; (I)48
gradient, 236
Gram-Schmidt process, 167
Green’s

formula, 313
kernel, 204; (II)217

Hardy space, 174, 203, 213
harmonic function, 234; (I)20; (II)27
Hausdorff

dimension, 329
distance, 345
exterior measure, 325
maximal principle, 48

measure, 327
strict dimension, 329

heat kernel, 111; (I)120, 146, 209
Heaviside function, 285
Heine-Borel covering property, 3
Hermite functions, 205; (I)168, 173
Hermitian operator, 190
Hilbert space, 161; (I)75

L2, 156
finite dimensional, 168
infinite dimensional, 168
orthonormal basis, 164

Hilbert transform, 220, 255
Hilbert-Schmidt operator, 187
homogeneous set, 385

identity operator, 180
inequality

Bessel, 166; (I)80
Brunn-Minkowski, 34, 48
Cauchy-Schwarz, 157, 162; (I)72
iso-diametric, 328, 386
isoperimetric, 143; (I)103
triangle, 157, 162

inner product, 157; (I)71
integrable function, 59, 275
integral operator, 187

kernel, 187
interior

of a set, 3
point, 3

invariance of Lebesgue measure
dilation, 22, 73
linear transformation, 96
rotation, 96, 151
translation, 22, 73, 313

invariant
function, 302
set, 302
vectors, 295

iso-diametric inequality, 328, 386
isolated point, 3
isometry, 198
isoperimetric inequality, 143; (I)103,

122

jump
discontinuity, 131; (I)63
function, 132
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Kakeya set, 362
kernel

Dirichlet, 179; (I)37
Fejér, 112; (I)53
heat, 111; (I)209
Poisson, 111, 171, 217; (I)37, 55,

149, 210; (II)67, 78, 109, 113,
216

Laplacian, 230
Lebesgue

decomposition, 150
density, 106
exterior measure, 10
integrable function, 59, 64, 68
integral, 50, 54, 58, 64
measurable set, 16
set, 106

Lebesgue differentiation theorem,
104, 121

Lebesgue measure, 16
dilation-invariance, 22, 73
rotation-invariance, 96, 151
translation-invariance, 22, 73, 313

Lebesgue-Radon-Nikodym theorem,
290

Lebesgue-Stieltjes integral, 281
Legendre polynomials, 205; (I)95
limit

non-tangential, 196
point, 3
radial, 173

linear functional, 181
null-space, 182

linear operator (transformation),
180

adjoint, 183
bounded, 180
compact, 188
continuous, 181
diagonalized, 185
finite rank, 188
Hilbert-Schmidt, 187
identity, 180
invertible, 311
norm, 180
positive, 307
spectrum, 311
symmetric, 190

linear ordering, 26, 48
linearly independent

elements, 167
family, 167

Lipschitz condition, 90, 147, 151,
330, 362

Littlewood’s principles, 33
locally integrable function, 105
Lusin’s theorem, 34

maximal
function, 100, 261
theorem, 101, 297

maximum principle, 235; (II)92
mean-value property, 214, 234, 313;

(I)152; (II)102
measurable

Carathéodory, 264
function, 28, 273
rectangle, 276
set, 16, 264

measure, 263
absolutely continuous, 288
counting, 263
exterior, 264
Hausdorff, 327
Lebesgue, 16
mutually singular, 288
outer, 264
signed, 285
support, 288

measure space, 263
complete, 266

measure-preserving
isomorphism, 292
transformation, 292

Mellin transform, 253; (II)177
metric, 267

exterior measure, 267
space, 266

Minkowski
content, 138, 151
dimension, 333

mixing, 305
monotone convergence theorem, 62
multiplication formula, 88
multiplier, 220
multiplier sequence, 186, 200
mutually singular measures, 288
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negative variation
function, 118
measure, 287

non-measurable set, 24, 44, 82
non-tangential limit, 196
norm

L1(Rd), 69
L2(Rd), 157
Euclidean, 2
Hardy space, 174, 213
linear operator, 180

normal
number, 318
operator, 202

normalized
increasing function, 282

nowhere differentiable function, 154,
383; (I)113, 126

open
ball, 2, 267
set, 2, 267

ordered set
linear, 26, 48
partial, 48

orthogonal
complement, 177
elements, 164
projection, 178

orthonormal
basis, 164
set, 164

outer
Jordan content, 41
measure, 10, 264

outside-triangle condition, 248

Paley-Wiener theorem, 214, 259;
(II)122

parallelogram law, 176
Parseval’s identity, 167, 172; (I)79
partial differential operator

constant coefficient, 221
elliptic, 258

partitions of a set, 286
Peano

curve, 350
mapping, 350

perfect set, 3

perpendicular elements, 164
Plancherel’s theorem, 208; (I)182
plane, 360
point in Rd, 2
point of density, 106
Poisson

integral representation, 217;
(I)57; (II)45, 67, 109

kernel, 111, 171, 217; (I)37, 55,
149, 210; (II)67, 78, 109, 113,
216

polar coordinates, 279; (I)179
polarization, 168, 184
positive variation

function, 118
measure, 287

pre-Hilbert space, 169, 225; (I)75
premeasure, 270
product

measure, 276
sets, 83

Pythagorean theorem, 164; (I)72

quartic intervals, 351
chain, 351

quasi-simple curve, 332

radial limit, 173
Radon transform, 363; (I)200, 203

maximal, 363
rectangle, 3

measurable, 276
volume, 3

rectifiable curve, 115, 134, 332
refinement (of a partition), 116;

(I)281, 290
regularity of sets, 360
regularization, 209
Riemann integrable, 40, 47, 57;

(I)31, 281, 290
Riemann-Lebesgue lemma, 94
Riesz representation theorem, 182,

290
Riesz-Fischer theorem, 70
rising sun lemma, 121
rotations of the circle, 303

sawtooth function, 200; (I)60, 83
self-adjoint operator, 190
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self-similar, 342
separable Hilbert space, 160, 162
set

bounded eccentricity, 108
cylinder, 316
difference, 44
self-similar, 342
shrink regularly, 108
slice, 75
uniformly locally connected, 387

shift, 317
Sierpinski triangle, 334
signed measure, 285
similarities

separated, 346
similarity, 342

ratio, 342
simple

curve, 332
function, 27, 50, 274

slice, 361
function, 75
set, 75

smooth function, 222
Sobolev embedding, 257
space L1 of integrable functions, 68
space-filling curve, 349, 383
span, 167
special triangle, 248
spectral

family, 306
resolution, 306
theorem, 190, 307; (I)233

spectrum, 191, 311
square integrable functions, 156
Steiner symmetrization, 386
step function, 27
strong convergence, 198
Sturm-Liouville, 185, 204
subspace

closed, 175
linear, 174

support
function, 53
measure, 288

symmetric
difference, 21
linear operator, 184, 190

Tchebychev inequality, 91
Tietze extension principle, 246
Tonelli’s theorem, 80
total variation

function, 117
measure, 286

translation, 73; (I)177
continuity under, 74; (I)133

triangle inequality, 157, 162, 267

uniquely ergodic, 304
unit disc, 173; (II)6
unitary

equivalence, 168
isomorphism, 168
mapping, 168; (I)143, 233

Vitali covering, 102, 128, 152
volume of unit ball, 92, 313; (I)208
von Koch curve, 338, 340, 382

weak
convergence, 197, 198
solution, 223

weak-type inequality, 101, 146, 161
weakly harmonic function, 234
well ordering

principle, 26, 48
well-ordered set, 26
Wronskian, 204




