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1

Introduction

FINANCIAL ECONOMIGS is a highly empirical discipline, perhaps the most
empirical among the branches of economics and even among the social
sciences in general. This should come as no surprise, for financial markets
are not mere figments of theoretical abstraction; they thrive in practice
and play a crucial role in the stability and growth of the global economy.
Therefore, although some aspects of the academic finance literature may
seem abstract at first, there is a practical relevance demanded of financial
models that is often waived for the models of other comparable disciplines.!

Despite the empirical nature of financial economics, like the other so-
cial sciences it is almost entirely nonexperimental. Therefore, the primary
method of inference for the financial economist is model-based statistical
inference—financial econometrics. While econometrics is also essential in
other branches of economics, what distinguishes financial economics is the
central role that uncertainty plays in both financial theory and its empirical
implementation. The starting point for every financial model is the uncer-
tainty facing investors, and the substance of every financial model involves
the impact of uncertainty on the behavior of investors and, ultimately, on
market prices. Indeed, in the absence of uncertainty, the problems of fi-
nancial economics reduce to exercises in basic microeconomics. The very
existence of financial economics as a discipline is predicated on uncertainty.

This has important consequences for financial econometrics. The ran-
dom fluctuations that require the use of statistical theory to estimate and test
financial models are intimately related to the uncertainty on which those
models are based. For example, the martingale model for asset prices has
very specific implications for the behavior of test statistics such as the au-
tocorrelation coefficient of price increments (see Chapter 2). This close
connection between theory and empirical analysis is unparalleled in the

'Bernstein (1992) provides a highly readable account of the interplay between theory and
practice in the development of modern financial economics.

3
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4 1. Introduction

social sciences, although it has been the hallmark of the natural sciences
for quite some time. It is one of the most rewarding aspects of financial
econometrics, so much so that we felt impelled to write this graduate-level
textbook as a means of introducing others to this exciting field.

Section 1.1 explains which topics we cover in this book, and how we have
organized the material. We also suggest some ways in which the book might
be used in a one-semester course on financial econometrics or empirical
finance.

In Section 1.2, we describe the kinds of background material that are
most useful for financial econometrics and suggest references for those
readers who wish to review or learn such material along the way. In our
experience, students are often more highly motivated to pick up the nec-
essary background after they see how it is to be applied, so we encourage
readers with a serious interest in financial econometrics but with somewhat
less preparation to take a crack at this material anyway.

In a book of this magnitude, notation becomes a nontrivial challenge
of coordination; hence Section 1.3 describes what method there is in our
notational madness. We urge readers to review this carefully to minimize
the confusion that can arise when ,3 is mistaken for B and X is incorrectly
assumed to be the same as X.

Section 1.4 extends our discussion of notation by presenting notational
conventions for and definitions of some of the fundamental objects of our
study: prices, returns, methods of compounding, and probability distribu-
tions. Although much of this material is well-known to finance students and
investment professionals, we think a brief review will help many readers.

In Section 1.5, we turn our attention to quite a different subject: the
Efficient Markets Hypothesis. Because so much attention has been lavished
on this hypothesis, often at the expense of other more substantive issues,
we wish to dispense with this issue first. Much of the debate involves theo-
logical tenets that are empirically undecidable and, therefore, beyond the
purview of this text. But for completeness—no self-respecting finance text
could omit market efficiency altogether—Section 1.5 briefly discusses the
topic.

1.1 Organization of the Book

In organizing this book, we have followed two general principles. First, the
early chapters concentrate exclusively on stock markets. Although many of
the methods discussed can be applied equally well to other asset markets, the
empirical literature on stock markets is particularly large and by focusing on
these markets we are able to keep the discussion concrete. In later chapters,
we cover derivative securities (Chapters 9 and 12) and fixed-income securi-
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ties (Chapters 10 and 11). The last chapter of the book presents nonlinear
methods, with applications to both stocks and derivatives.

Second, we start by presenting statistical models of asset returns, and
then discuss more highly structured economic models. In Chapter 2, for
example, we discuss methods for predicting stock returns from their own
past history, without much attention to institutional detail; in Chapter 3 we
show how the microstructure of stock markets affects the short-run behavior
of returns. Similarly, in Chapter 4 we discuss simple statistical models of the
cross-section of individual stock returns, and the application of these models
to event studies; in Chapters 5 and 6 we show how the Capital Asset Pricing
Model and multifactor models such as the Arbitrage Pricing Theory restrict
the parameters of the statistical models. In Chapter 7 we discuss longer-run
evidence on the predictability of stock returns from variables other than
past stock returns; in Chapter 8 we explore dynamic equilibrium models
which can generate persistent time-variation in expected returns. We use
the same principle to divide a basic treatment of fixed-income securities
in Chapter 10 from a discussion of equilibrium term-structure models in
Chapter 11.

We have tried to make each chapter as self-contained as possible. While
some chapters naturally go together (e.g., Chapters 5 and 6, and Chapters
10 and 11), there is certainly no need to read this book straight through
from beginning to end. For classroom use, most teachers will find that there
is too much material here to be covered in one semester. There are several
ways to use the book in a one-semester course. For example one teacher
might start by discussing short-run time-series behavior of stock prices using
Chapters 2 and 3, then cover cross-sectional models in Chapters 4, 5, and 6,
then discuss intertemporal equilibrium models using Chapter 8, and finally
cover derivative securities and nonlinear methods as advanced topics using
Chapters 9 and 12. Another teacher might first present the evidence on
short- and long-run predictability of stock returns using Chapters 2 and 7,
then discuss static and intertemporal equilibrium theory using Chapters 5,
6, and 8, and finally cover fixed-income securities using Chapters 10 and 11.

There are some important topics that we have not been able to include
in this text. Most obviously, our focus is almost exclusively on US domestic
asset markets. We say very little about asset markets in other countries, and
we do not try to cover international topics such as exchange-rate behav-
ior or the home-bias puzzle (the tendency for each country’s investors to
hold a disproportionate share of their own country’s assets in their portfo-
lios). We also omit such important econometric subjects as Bayesian analysis
and frequency-domain methods of time-series analysis. In many cases our
choice of topics has been influenced by the dual objectives of the book:
to explain the methods of financial econometrics, and to review the em-
pirical literature in finance. We have tended to concentrate on topics that
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6 1. Introduction

involve econometric issues, sometimes at the expense of other equally inter-
esting material—including much recent work in behavioral finance—that
is econometrically more straightforward.

1.2 Useful Background

The many rewards of financial econometrics come at a price. A solid back-
ground in mathematics, probability and statistics, and finance theory is nec-
essary for the practicing financial econometrician, for precisely the reasons
that make financial econometrics such an engaging endeavor. To assist
readers in obtaining this background (since only the most focused and di-
rected of students will have it already), we outline in this section the topics
in mathematics, probability, statistics, and finance theory that have become
indispensable to financial econometrics. We hope that this outline can serve
as a selfstudy guide for the more enterprising readers and that it will be a
partial substitute for including background material in this book.

1.2.1 Mathematics Background

The mathematics background most useful for financial econometrics is not
unlike the background necessary for econometrics in general: multivariate
calculus, linear algebra, and matrix analysis. References for each of these
topics are Lang (1973), Strang (1976), and Magnus and Neudecker (1988),
respectively. Key concepts include

multiple integration

multivariate constrained optimization
matrix algebra

basic rules of matrix differentiation.

In addition, option- and other derivative-pricing models, and continuous-
time asset pricing models, require some passing familiarity with the /t6 or
stochastic calculus. A lucid and thorough treatment is provided by Merton
(1990), who pioneered the application of stochastic calculus to financial
economics. More mathematically inclined readers may also wish to consult
Chung and Williams (1990).

1.2.2 Probability and Statistics Background

Basic probability theory is a prerequisite for any discipline in which uncer-
tainty is involved. Although probability theory has varying degrees of mathe-
matical sophistication, from coin-flipping calculations to measure-theoretic
foundations, perhaps the most useful approach is one that emphasizes the
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1.2. Useful Background 7

intuition and subtleties of elementary probabilistic reasoning. An amaz-
ingly durable classic that takes just this approach is Feller (1968). Brieman
(1992) provides similar intuition but at a measure-theoretic level. Key con-
cepts include

definition of a random variable
independence

distribution and density functions
conditional probability

modes of convergence

laws of large numbers

central limit theorems.

Statistics is, of course, the primary engine which drives the inferences
that financial econometricians draw from the data. As with probability the-
ory, statistics can be taught at various levels of mathematical sophistication.
Moreover, unlike the narrower (and some would say “purer”) focus of proba-
bility theory, statistics has increased its breadth as it has matured, giving birth
to many well-defined subdisciplines such as multivariate analysis, nonpara-
metrics, time-series analysis, order statistics, analysis of variance, decision
theory, Bayesian statistics, etc. Each of these subdisciplines has been drawn
upon by financial econometricians at one time or another, making it rather
difficult to provide a single reference for all of these topics. Amazingly,
such a reference does exist: Stuart and Ord’s (1987) three-volume tour de
force. A more compact reference that contains most of the relevant material
for our purposes is the elegant monograph by Silvey (1975). For topics in
time-series analysis, Hamilton (1994) is an excellent comprehensive text.
Key concepts include

Neyman-Pearson hypothesis testing

linear regression

maximum likelihood

basic time-series analysis (stationarity, autoregressive and ARMA pro-
cesses, vector autoregressions, unit roots, etc.)

e clementary Bayesian inference.

For continuous-time financial models, an additional dose of stochastic pro-
cesses is a must, at least at the level of Cox and Miller (1965) and Hoel, Port,
and Stone (1972).

1.2.3 Finance Theory Background

Since the raison d’étre of financial econometrics is the empirical implemen-
tation and evaluation of financial models, a solid background in finance
theory is the most important of all. Several texts provide excellent coverage
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of this material: Duffie (1992), Huang and Litzenberger (1988), Ingersoll
(1987), and Merton (1990). Key concepts include

e risk aversion and expected-utility theory
e static mean-variance portfolio theory
o the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing The-

ory (APT)

e dynamic asset pricing models
e option pricing theory.

1.3 Notation

We have found that it is far from simple to devise a consistent notational
scheme for a book of this scope. The difficulty comes from the fact that
financial econometrics spans several very different strands of the finance
literature, each replete with its own firmly established set of notational
conventions. But the conventions in one literature often conflict with the
conventions in another. Unavoidably, then, we must sacrifice either inter-
nal notational consistency across different chapters of this text or external
consistency with the notation used in the professional literature. We have
chosen the former as the lesser evil, but we do maintain the following con-
ventions throughout the book:

We use boldface for vectors and matrices, and regular face for scalars.
Where possible, we use bold uppercase for matrices and bold lowercase
for vectors. Thus x is a vector while X is a matrix.

Where possible, we use uppercase letters for the levels of variables and
lowercase letters for the natural logarithms (logs) of the same variables.
Thus if P is an asset price, p is the log asset price.

Our standard notation for an innovation is the Greek letter e. Where
we need to define several different innovations, we use the alternative
Greek letters n, &, and ¢.

Where possible, we use Greek letters to denote parameters or parameter
vectors.

e We use the Greek letter ¢ to denote a vector of ones.
e We use hats to denote sample estimates, so if 8 is a parameter, f is an

~

estimate of S.

When we use subscripts, we always use uppercase letters for the upper
limits of the subscripts. Where possible, we use the same letters for
upper limits as for the subscripts themselves. Thus subscript ¢ runs
from 1 to T, subscript k runs from 1 to K, and so on. An exception is
that we will let subscript ¢ (usually denoting an asset) run from 1 to N
because this notation is so common. We use ¢ and 1 for time subscripts;
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i for asset subscripts; k, m, and n for lead and lag subscripts; and j as a
generic subscript.

e We use the timing convention that a variable is dated ¢ if it is known by
the end of period ¢. Thus R, denotes a return on an asset held from the
end of period ¢—1 to the end of period ¢.

e In writing variance-covariance matrices, we use {2 for the variance-
covariance matrix of asset returns, X for the variance-covariance matrix
of residuals from a time-series or cross-sectional model, and V for the
variance-covariance matrix of parameter estimators.

e We use script letters sparingly. N denotes the normal distribution, and
L denotes a log likelihood function.

o We use Pr(-) to denote the probability of an event.

The professional literature uses many specialized terms. Inevitably we
also use these frequently, and we italicize them when they first appear in the
book.

1.4 Prices, Returns, and Compounding

Virtually every aspect of financial economics involves returns, and there are at
least two reasons for focusing our attention on returns rather than on prices.
First, for the average investor, financial markets may be considered close to
perfectly competitive, so that the size of the investment does not affect price
changes. Therefore, since the investment “technology” is constant-returns-
to-scale, the return is a complete and scale-free summary of the investment
opportunity.

Second, for theoretical and empirical reasons that will become apparent
below, returns have more attractive statistical properties than prices, such
as stationarity and ergodicity. In particular, dynamic general-equilibrium
models often yield nonstationary prices, but stationary returns (see, for
example, Chapter 8 and Lucas [1978]).

1.4.1 Definitions and Conventions

Denote by P, the price of an asset at date ¢ and assume for now that this asset
pays no dividends. The simple net return, R;, on the asset between dates ¢ — 1
and ¢ is defined as

P,
R, = -1 1.4.1
L= P (1.4.1)

The simple gross return on the asset is just one plus the net return, 1 + R,.
From this definition it is apparent that the asset’s gross return over the
most recent £ periods from date ¢ — & to date ¢, written 1 + R,(k), is simply
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equal to the product of the k single-period returns from t — k+ 1 to ¢, i.e.,

1+ Ri(k)

I

A+R) - A+ R-1)--- 1+ R_py1)
P Py Py P B
P, Py P_3 P Py’

(1.4.2)

and its net return over the most recent k periods, written R;(k), is simply
equal to its k-period gross return minus one. These multiperiod returns are
called compound returns.

Although returns are scale-free, it should be emphasized that they are
not unitless, but are always defined with respect to some time interval, e.g.,
one “period.” In fact, R, is more properly called a rate of return, which is
more cumbersome terminology but more accurate in referring to R, asa rate
or, in economic jargon, a flow variable. Therefore, a return of 20% is not
a complete description of the investment opportunity without specification
of the return horizon. In the academic literature, the return horizon is
generally given explicitly, often as part of the data description, e.g., “The
CRSP monthly returns file was used.”

However, among practitioners and in the financial press, a return-
horizon of one year is usually assumed implicitly; hence, unless stated oth-
erwise, a return of 20% is generally taken to mean an annual return of 20%.
Moreover, multiyear returns are often annualized to make investments with
different horizons comparable, thus:

h—1 1/k

Annualized[R,(k)] = l_I(l + Ri—j) - 1. (1.4.3)
j=0

Since single-period returns are generally small in magnitude, the follow-
ing approximation based on a first-order Taylor expansion is often used to
annualize multiyear returns:

1 k—1
Annualized[R,(k)] ~ %ZR,_j. (1.4.4)
=0

Whether such an approximation is adequate depends on the particular
application at hand; it may suffice for a quick and coarse comparison of
investment performance across many assets, but for finer calculations in
which the volatility of returns plays an important role, i.e., when the higher-
order terms in the Taylor expansion are not negligible, the approximation
(1.4.4) may break down. The only advantage of such an approximation is
convenience—it is easier to calculate an arithmetic rather than a geomet-
ric average—however, this advantage has diminished considerably with the
advent of cheap and convenient computing power.
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Continuous Compounding

The difficulty of manipulating geometric averages such as (1.4.3) motivates
another approach to compound returns, one which is not approximate and
also has important implications for modeling asset returns; this is the notion
of continuous compounding. The continuously compounded return or log return
1, of an asset is defined to be the natural logarithm of'its gross return (14 R;):

P,
r = logl +R) = log Pttl = p— pi1, (1.4.5)

where p; = log P,. When we wish to emphasize the distinction between R,
and 7, we shall refer to R, as a simple return. Our notation here deviates
slightly from our convention that lowercase letters denote the logs of up-
percase letters, since here we have r, = log(l + R,) rather than log(R;); we
do this to maintain consistency with standard conventions.

The advantages of continuously compounded returns become clear
when we consider multiperiod returns, since

Il

ri(k) log(1 + Ri(k)) = log((1 +R) - (1 + Ri—1) -+ (1 + Ri—s41))

log(1 + Ry) +log(1 + Ri—1) + - -+ +log(1 + Ri_p41)

= n+na1+-+ npt, (1.4.6)

and hence the continuously compounded multiperiod return is simply the
sum of continuously compounded single-period returns. Compounding,
a multiplicative operation, is converted to an additive operation by taking
logarithms. However, the simplification is not merely in reducing multi-
plication to addition (since we argued above that with modern calculators
and computers, this is trivial), but more in the modeling of the statistical
behavior of asset returns over time—it is far easier to derive the time-series
properties of additive processes than of multiplicative processes, as we shall
see in Chapter 2.

Continuously compounded returns do have one disadvantage. The sim-
ple return on a portfolio of assets is a weighted average of the simple returns
on the assets themselves, where the weight on each asset is the share of the
portfolio’s value invested in that asset. If portfolio p places weight wjp In as-
set ¢, then the return on the portfolio at time ¢, Ry, is related to the returns
on individual assets, Ry, i = 1...N, by Ry, = le wiy Ry Unfortunately
continuously compounded returns do not share this convenient property.
Since the log of a sum is not the same as the sum of logs, 7,; does not equal
YLy wpti.

In empirical applications this problem is usually minor. When returns
are measured over short intervals of time, and are therefore close to zero,
the continuously compounded return on a portfolio is close to the weighted

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

12 1. Introduction

D, Dy
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]
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t t+1

Figure 1.1.  Dividend Payment Timing Convention

average of the continuously compounded returns on the individual assets:
Tt N Zf_]__l w;pr;.2 We use this approximation in Chapter 3. Nonetheless
it is common to use simple returns when a cross-section of assets is being
studied, as in Chapters 4-6, and continuously compounded returns when

the temporal behavior of returns is the focus of interest, as in Chapters 2
and 7.

Dividend Payments
For assets which make periodic dividend payments, we must modify our
definitions of returns and compounding. Denote by D, the asset’s dividend
payment at date ¢ and assume, purely as a matter of convention, that this
dividend is paid just before the date-t price P, is recorded; hence P, is taken
to be the ex-dividend price at date ¢. Alternatively, one might describe P, as
an end-of-period asset price, as shown in Figure 1.1. Then the net simple
return at date ¢ may be defined as
R = o bk 1. (1.4.7)
P

Multiperiod and continuously compounded returns may be obtained
in the same way as in the no-dividends case. Note that the continuously
compounded return on a dividend-paying asset, r; = log(P;+D,) —log(P;_1),
is a nonlinear function of log prices and log dividends. When the ratio
of prices to dividends is not too variable, however, this function can be
approximated by a linear function of log prices and dividends, as discussed
in detail in Chapter 7.

Excess Returns

It is often convenient to work with an asset’s excess return, defined as the
difference between the asset’s return and the return on some reference
asset. The reference asset is often assumed to be riskless and in practice is
usually a short-term Treasury bill return. Working with simple returns, the

21n the limit where time is continuous, Ito’s Lemma, discussed in Section 9.1.2 of Chapter9,
can be used to relate simple and continuously compounded returns.
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simple excess return on asset ¢ is
Zy = Ry — Ry, (1.4.8)

where Ry, is the reference return. Alternatively one can define a log excess
return as
Zit = Yit — "¢ (149)

The excess return can also be thought of as the payoff on an arbitrage
portfolio that goes long in asset i and short in the reference asset, with no
net investment at the initial date. Since the initial net investment is zero,
the return on the arbitrage portfolio is undefined but its dollar payoff is
proportional to the excess return as defined above.

1.4.2 The Marginal, Conditional, and Joint Distribution of Returns

Having defined asset returns carefully, we can now begin to study their
behavior across assets and over time. Perhaps the most important charac-
teristic of asset returns is their randomness. The return of IBM stock over
the next month is unknown today, and it is largely the explicit modeling
of the sources and nature of this uncertainty that distinguishes financial
economics from other social sciences. Although other branches of eco-
nomics and sociology do have models of stochastic phenomena, in none
of them does uncertainty play so central a role as in the pricing of finan-
cial assets—without uncertainty, much of the financial economics literature,
both theoretical and empirical, would be superfluous. Therefore, we must
articulate at the very start the types of uncertainty that asset returns might
exhibit.

The Joint Distribution

Consider a collection of N assets at date ¢, each with return R;, at date ¢,
where ¢t = 1,..., T. Perhaps the most general model of the collection of
returns {R;} is its joint distribution function:

G(Ri1,...,RN1; Rig, ..., Ry ... Riry ..., Ry x | 9), (1.4.10)

where x is a vector of state variables, variables that summarize the economic
environment in which asset returns are determined, and 6 is a vector of
fixed parameters that uniquely determines G. For notational convenience,
we shall suppress the dependence of G on the parameters 6 unless it is
needed.

The probability law G governs the stochastic behavior of asset returns
and x, and represents the sum total of all knowable information about them.
We may then view financial econometrics as the statistical inference of 6,
given G and realizations of {R;}. Of course, (1.4.10) is far too general to
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be of any use for statistical inference, and we shall have to place further
restrictions on G in the coming sections and chapters. However, (1.4.10)
does serve as a convenient way to organize the many models of asset re-
turns to be developed here and in later chapters. For example, Chapters 2
through 6 deal exclusively with the joint distribution of {R;/}, leaving addi-
tional state variables x to be considered in Chapters 7 and 8. We write this
joint distribution as Gg.

Many asset pricing models, such as the Capital Asset Pricing Model
(CAPM) of Sharpe (1964), Lintner (1965a,b), and Mossin (1966) consid-
ered in Chapter 5, describe the joint distribution of the cross section of re-
turns {Ry,, ..., Ry} at a single date ¢. To reduce (1.4.10) to this essentially
static structure, we shall have to assert that returns are statistically indepen-
dent through time and that the joint distribution of the cross-section of
returns is identical across time. Although such assumptions seem extreme,
they yield a rich set of implications for pricing financial assets. The CAPM,
for example, delivers an explicit formula for the trade-off between risk and
expected return, the celebrated security market line.

The Conditional Distribution

In Chapter 2, we place another set of restrictions on Gg which will allow us
to focus on the dynamics of individual asset returns while abstracting from
cross-sectional relations between the assets. In particular, consider the joint
distribution F of {R;, ..., Ri7} for a given asset 7, and observe that we may
always rewrite F as the following product:

F(Ry, ..., Rit) = Fa(Ra) - Fe(R | Ry)-Fs(Rs | R, Ra)
- Fr(Rir | Rir-1,..., Ry). (1.4.11)

From (1.4.11), the temporal dependencies implicit in {R;} are apparent.
Issues of predictability in asset returns involve aspects of their conditional
distributions and, in particular, how the conditional distributions evolve
through time.

By placing further restrictions on the conditional distributions F;(-), we
shall be able to estimate the parameters 8 implicit in (1.4.11) and exam-
ine the predictability of asset returns explicitly. For example, one version
of the random-walk hypothesis is obtained by the restriction that the con-
ditional distribution of return R; is equal to its marginal distribution, i.e.,
Fy(Ri | -) = Fy(Ry). If this is the case, then returns are temporally indepen-
dentand therefore unpredictable using past returns. Weaker versions of the
random walk are obtained by imposing weaker restrictions on F;(R; | - ).

The Unconditional Distribution

In cases where an asset return’s conditional distribution differs from its
marginal or unconditional distribution, it is clearly the conditional distribu-
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tion that is relevant for issues involving predictability. However, the proper-
ties of the unconditional distribution of returns may still be of some interest,
especially in cases where we expect predictability to be minimal.

One of the most common models for asset returns is the temporally
independently and identically distributed (IID) normal model, in which
returns are assumed to be independent over time (although perhaps cross-
sectionally correlated), identically distributed over time, and normally dis-
tributed. The original formulation of the CAPM employed this assumption
of normality, although returns were only implicitly assumed to be tempo-
rally IID (since it was a static “two-period” model). More recently, models
of asymmetric information such as Grossman (1989) and Grossman and
Stiglitz (1980) also use normality.

While the temporally IID normal model may be tractable, it suffers from
at least two important drawbacks. First, most financial assets exhibit limited
liability, so that the largest loss an investor can realize is his total investment
and no more. This implies that the smallest net return achievable is —1
or —100%. But since the normal distribution’s support is the entire real
line, this lower bound of —1 is clearly violated by normality. Of course, it
may be argued that by choosing the mean and variance appropriately, the
probability of realizations below —1 can be made arbitrarily small; however
it will never be zero, as limited liability requires.

Second, if single-period returns are assumed to be normal, then multi-
period returns cannot also be normal since they are the products of the single-
period returns. Now the sums of normal single-period returns are indeed
normal, but the sum of single-period simple returns does not have any eco-
nomically meaningful interpretation. However, as we saw in Section 1.4.1,
the sum of single-period continuously compounded returns does have a
meaningful interpretation as a multiperiod continuously compounded re-
turn.

The Lognormal Distribution

A sensible alternative is to assume that continuously compounded single-
period returns 7; are IID normal, which implies that single-period
gross simple returns are distributed as IID lognormal variates, since r; =
log(1 + R;;). We may express the lognormal model then as

re ~ N(wi, of). (1.4.12)

Under the lognormal model, if the mean and variance of r;; are u; and 012 ;
respectively, then the mean and variance of simple returns are given by

E[R] = &FF -1 (1.4.13)
Var[Rq] = o[ —1]. (1.4.14)
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Alternatively, if we assume that the mean and variance of simple returns R;

are m; and s?, respectively, then under the lognormal model the mean and
variance of r; are given by

41
E[r] = 1og—mi——2 (1.4.15)
1+(m,s-'0-1)
S; 2
Varlr] = log 1+<m_;1) | (1.4.16)

The lognormal model has the added advantage of not violating limited
liability, since limited liability yields a lower bound of zero on (1 + R;),
which is satisfied by (1 + R;;) = ¢’ when 7;, is assumed to be normal.

The lognormal model has a long and illustrious history, beginning with
the dissertation of the French mathematician Louis Bachelier (1900), which
contained the mathematics of Brownian motion and heat conduction, five
years prior to Einstein’s (1905) famous paper. For other reasons that will be-
come apparent in later chapters (see, especially, Chapter 9), the lognormal
model has become the workhorse of the financial asset pricing literature.

Butas attractive as the lognormal model s, itis not consistent with all the
properties of historical stock returns. At short horizons, historical returns
show weak evidence of skewness and strong evidence of excess kurtosis. The
skewness, or normalized third moment, of a random variable € with mean
and variance o? is defined by

— )3
Sfe] = E[E——-S‘—‘—)—] (1.4.17)
o
The kurtosis, or normalized fourth moment, of € is defined by
AN
K[e] = E[(e—f—)—] (1.4.18)
o

The normal distribution has skewness equal to zero, as do all other sym-
metric distributions. The normal distribution has kurtosis equal to 3, but
fat-tailed distributions with extra probability mass in the tail areas have higher
or even infinite kurtosis.

Skewness and kurtosis can be estimated in a sample of data by construct-
ing the obvious sample averages: the sample mean

I
p = T;e,, (1.4.19)
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the sample variance

6% = thng:(et = )% (1.4.20)
the sample skewness

S = %3- g(et -3, (1.4.21)
and the sample kurtosis

x e 5

K= ;(e, — (1.4.22)

In large samples of normally distributed data, the estimators § and K are
normally distributed with means 0 and 3 and variances 6/ T and 24/ T,
respectively (see Stuart and Ord [1987, Vol. 1]). Since 3 is the kurtosis of the
normal distribution, sample excess kurtosis is defined to be sample kurtosis
less 3. Sample estimates of skewness for daily US stock returns tend to be
negative for stock indexes but close to zero or positive for individual stocks.
Sample estimates of excess kurtosis for daily US stock returns are large and
positive for both indexes and individual stocks, indicating that returns have
more mass in the tail areas than would be predicted by a normal distribution.

Stable Distributions

Early studies of stock market returns attempted to capture this excess kur-
tosis by modeling the distribution of continuously compounded returns as
a member of the stable class (also called the stable Pareto-Lévy or stable Pare-
tian), of which the normal is a special case.> The stable distributions are a
natural generalization of the normal in that, as their name suggests, they are
stable under addition, i.e., a sum of stable random variables is also a stable
random variable. However, nonnormal stable distributions have more prob-
ability mass in the tail areas than the normal. In fact, the nonnormal stable
distributions are so fat-tailed that their variance and all higher moments are
infinite. Sample estimates of variance or kurtosis for random variables with

3The French probabilist Paul Lévy (1924) was perhaps the first to initiate a general investi-
gation of stable distributions and provided a complete characterization of them through their
log-characteristic functions (see below). Lévy (1925) also showed that the tail probabilities
of stable distributions approximate those of the Pareto distribution, hence the term “stable
Pareto-Lévy” or “stable Paretian” distribution. For applications to financial asset returns, see
Blattberg and Gonedes (1974); Fama (1965); Fama and Roll (1971); Fielitz (1976); Fielitz and
Rozell (1983); Granger and Morgenstern (1970); Hagerman (1978); Hsu, Miller, and Wichern
(1974); Mandelbrot (1963); Mandelbrot and Taylor (1967); Officer (1972); Samuelson (1967,
1976); Simkowitz and Beedles (1980); and Tucker (1992).

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

18 1. Introduction

Figure 1.2.  Comparison of Stable and Normal Density Functions

these distributions will not converge as the sample size increases, but will
tend to increase indefinitely.

Closed-form expressions for the density functions of stable random vari-
ables are available for only three special cases: the normal, the Cauchy, and
the Bernoulli cases.* Figure 1.2 illustrates the Cauchy distribution, with
density function

L N S
L e s

In Figure 1.2, (1.4.23) is graphed with parameters § = 0 and y = 1, and it
is apparent from the comparison with the normal density function (dashed
lines) that the Cauchy has fatter tails than the normal.

Although stable distributions were popular in the 1960’s and early 1970’s,
they are less commonly used today. They have fallen out of favor partly be-
cause they make theoretical modelling so difficult; standard finance theory

(1.4.23)

“However, Lévy (1925) derived the following explicit expression for the logarithm of the
characteristic function ¢(t) of any stable random variable X: log¢(t) = logE[e”X] = 10t —
yIt|*[1 — iBsgn(t) tan(am/2)], where (@, 8,6, y) are the four parameters that characterize
each stable distribution. § € (=00, 00) is said to be the location parameter, f € (—00, 0¢) is the
skewness index, y € (0, 00) is the scale parameter, and « € (0, 2] is the exponent. When « = 2,
the stable distribution reduces to a normal. As o decreases from 2 to 0, the tail areas of the
stable distribution become increasingly “fatter” than the normal. When « € (1, 2), the stable
distribution has a finite mean given by é, but when « € (0, 1], even the mean is infinite. The
parameter B measures the symmetry of the stable distribution; when B = 0 the distribution is
symmetric, and when 8 > 0 (or 8 < 0) the distribution is skewed to the right (or left). When
B = 0 and @ = 1 we have the Cauchy distribution, and whena =1/2, =1, =0,and y =1
we have the Bernoulli distribution.
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almost always requires finite second moments of returns, and often finite
higher moments as well. Stable distributions also have some counterfac-
tual implications. First, they imply that sample estimates of the variance
and higher moments of returns will tend to increase as the sample size in-
creases, whereas in practice these estimates seem to converge. Second, they
imply that long-horizon returns will be just as non-normal as short-horizon
returns (since long-horizon returns are sums of short-horizon returns, and
these distributions are stable under addition). In practice the evidence
for non-normality is much weaker for long-horizon returns than for short-
horizon returns.

Recent research tends instead to model returns as drawn from a fat-
tailed distribution with finite higher moments, such as the ¢ distribution,
or as drawn from a mixture of distributions. For example the return might
be conditionally normal, conditional on a variance parameter which is itself
random; then the unconditional distribution of returns is a mixture of nor-
mal distributions, some with small conditional variances that concentrate
mass around the mean and others with large conditional variances that put
mass in the tails of the distribution. The result is a fat-tailed unconditional
distribution with a finite variance and finite higher moments. Since all
moments are finite, the Central Limit Theorem applies and long-horizon
returns will tend to be closer to the normal distribution than short-horizon
returns. It is natural to model the conditional variance as a time-series
process, and we discuss this in detail in Chapter 12.

An Empirical Illustration
Table 1.1 contains some sample statistics for individual and aggregate stock
returns from the Center for Research in Securities Prices (CRSP) for 1962
to 1994 which illustrate some of the issues discussed in the previous sec-
tions. Sample moments, calculated in the straightforward way described
in (1.4.19)-(1.4.22), are reported for value- and equal-weighted indexes
of stocks listed on the New York Stock Exchange (NYSE) and American
Stock Exchange (AMEX), and for ten individual stocks. The individual
stocks were selected from market-capitalization deciles using 1979 end-of-
year market capitalizations for all stocks in the CRSP NYSE/AMEX universe,
where International Business Machines is the largest decile’s representative
and Continental Materials Corp. is the smallest decile’s representative.
Panel A reports statistics for daily returns. The daily index returns have
extremely high sample excess kurtosis, 34.9 and 26.0 respectively, a clear
sign of fat tails. Although the excess kurtosis estimates for daily individual
stock returns are generally less than those for the indexes, they are still large,
ranging from 3.35 to 59.4. Since there are 8179 observations, the standard
error for the kurtosis estimate under the null hypothesis of normality is

v/ 24/8179 = 0.054, so these estimates of excess kurtosis are overwhelmingly
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statistically significant. The skewness estimates are negative for the daily
index returns, —1.33 and —0.93 respectively, but generally positive for the
individual stock returns, ranging from —0.18 to 2.25. Many of the skewness
estimates are also statistically significant as the standard error under the null
hypothesis of normality is 1/6/8179 = 0.027.

Panel B reports sample statistics for monthly returns. These are con-
siderably less leptokurtic than daily returns—the value- and equal-weighted
CRSP monthly index returns have excess kurtosis of only 2.42 and 4.14, re-
spectively, an order of magnitude smaller than the excess kurtosis of daily
returns. As there are only 390 observations the standard error for the kurto-
sis estimate is also much larger, 0.248. This is one piece of evidence that has
led researchers to use fat-tailed distributions with finite higher moments, for
which the Central Limit Theorem applies and drives longer-horizon returns
towards normality.

1.5 Market Efficiency

The origins of the Efficient Markets Hypothesis (EMH) can be traced back
atleast as far as the pioneering theoretical contribution of Bachelier (1900)
and the empirical research of Cowles (1933). The modern literature in eco-
nomics begins with Samuelson (1965), whose contribution is neatly sum-
marized by the title of his article: “Proof that Properly Anticipated Prices
Fluctuate Randomly”.® In an informationally efficient market—not to be
confused with an allocationally or Pareto-efficient market—price changes
must be unforecastable if they are properly anticipated, i.e., if they fully
incorporate the expectations and information of all market participants.

Fama (1970) summarizes this idea in his classic survey by writing: “A
market in which prices always ‘fully reflect’ available information is called
‘efficient’.” Fama’s use of quotation marks around the words “fully reflect”
indicates that these words are a form of shorthand and need to be explained
more fully. More recently, Malkiel (1992) has offered the following more
explicit definition:

A capital market is said to be efficient if it fully and correctly reflects
all relevant information in determining security prices. Formally, the
market is said to be efficient with respect to some information set . . . if
security prices would be unaffected by revealing that information to all
participants. Moreover, efficiency with respect to an information set

5Bernstein (1992) discusses the contributions of Bachelier, Cowles, Samuelson, and many
other early authors. The articles reprinted in Lo (1996) include some of the most important
papers in this literature.
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Table 1.1.  Stock market returns, 1962 to 1994.

Standard Excess
Security Mean Deviation Skewness Kurtosis Minimum  Maximum

Panel A: Daily Returns

Value-Weighted Index 0.044 0.82 —1.33 34.92 —18.10 8.87
Equal-Weighted Index 0.073 0.76 —0.93 26.03 —14.19 9.83
International Business

Machines 0.039 1.42 —-0.18 12.48 —22.96 11.72
General Signal Corp. 0.054 1.66 0.01 3.35 —13.46 9.43
Wrigley Co. 0.072 1.45 —0.00 11.03 —18.67 11.89
Interlake Corp. 0.043 2.16 0.72 12.35 —17.24 23.08
Raytech Corp. 0.050 3.39 2.25 59.40 -57.90 75.00
Ampco-Pittsburgh Corp. 0.053 2.41 0.66 5.02 —19.05 19.18
Energen Corp. 0.054 1.41 0.27 5.91 —12.82 11.11
General Host Corp. 0.070 2.79 0.74 6.18 —23.53 22.92
Garan Inc. 0.079 2.35 0.72 7.13 —16.67 19.07
Continental Materials Corp. 0.143 5.24 0.93 6.49 —26.92 50.00

Panel B: Monthly Returns

Value-Weighted Index 0.96 4.33 -0.29 2.42 -21.81 16.51
Equal-Weighted Index 1.25 5.77 0.07 4.14 —26.80 33.17
International Business

Machines 0.81 6.18 —0.14 0.83 —26.19 18.95
General Signal Corp. 1.17 8.19 —0.02 1.87 —36.77 29.73
Wrigley Co. 1.51 6.68 0.30 1.31 —20.26 29.72
Interlake Corp. 0.86 9.38 0.67 4.09 —30.28 54.84
Raytech Corp. 0.83 14.88 2.73 22.70 —45.65 142.11
Ampco-Pittsburgh Corp. 1.06 10.64 0.77 2.04 —36.08 46.94
Energen Corp. 1.10 5.75 1.47 12.47 —24.61 48.36
General Host Corp. 1.33 11.67 0.35 1.11 —38.05 42.86
Garan Inc. 1.64 11.30 0.76 2.30 —35.48 51.60
Continental Materials Corp. 1.64 17.76 113 3.33  —58.09 84.78

Summary statistics for daily and monthly returns (in percent) of CRSP equal- and value-
weighted stock indexes and ten individual securities continuously listed over the entire sample
period from July 3, 1962 to December 30, 1994. Individual securities are selected to represent
stocks in each size decile. Statistics are defined in (1.4.19)-(1.4.22).

...implies that it is impossible to make economic profits by trading on
the basis of [that information set].

Malkiel’s first sentence repeats Fama’s definition. His second and third sen-
tences expand the definition in two alternative ways. The second sentence
suggests that market efficiency can be tested by revealing information to
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market participants and measuring the reaction of security prices. If prices
do not move when information is revealed, then the market is efficient with
respect to that information. Although this is clear conceptually, it is hard to
carry out such a test in practice (except perhaps in a laboratory).

Malkiel’s third sentence suggests an alternative way to judge the effi-
ciency of a market, by measuring the profits that can be made by trading on
information. This idea is the foundation of almost all the empirical work
on market efficiency. It has been used in two main ways. First, many re-
searchers have tried to measure the profits earned by market professionals
such as mutual fund managers. If these managers achieve superior returns
(after adjustment for risk) then the marketis not efficient with respect to the
information possessed by the managers. This approach has the advantage
that it concentrates on real trading by real market participants, but it has the
disadvantage that one cannot directly observe the information used by the
managers in their trading strategies (see Fama [1970, 1991] for a thorough
review of this literature).

As an alternative, one can ask whether hypothetical trading based on
an explicitly specified information set would earn superior returns. To
implement this approach, one must first choose an information set. The
classic taxonomy of information sets, due to Roberts (1967), distinguishes
among

Weak-form Efficiency: The information set includes only the history of
prices or returns themselves.

Semistrong-Form Efficiency: The information set includes all information
known to all market participants (publicly available information).

Strong-Form Efficiency: The information set includes all information
known to any market participant (private information).

The next step is to specify a model of “normal” returns. Here the classic
assumption is that the normal returns on a security are constant over time,
but in recent years there has been increased interest in equilibrium models
with time-varying normal security returns.

Finally, abnormal security returns are computed as the difference be-
tween the return on a security and its normal return, and forecasts of the
abnormal returns are constructed using the chosen information set. If the
abnormal security return is unforecastable, and in this sense “random,” then
the hypothesis of market efficiency is not rejected.

1.5.1 Efficient Markets and the Law of Iterated Expectations

The idea that efficient security returns should be random has often caused
confusion. Many people seem to think that an efficient security price should
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be smooth rather than random. Black (1971) has attacked this idea rather
effectively:

A perfect market for a stock is one in which there are no profits to
be made by people who have no special information about the com-
pany, and in which it is difficult even for people who do have special
information to make profits, because the price adjusts so rapidly as the
information becomes available. . .. Thus we would like to see randomness
in the prices of successive transactions, rather than great continuity. . ..
Randomness means that a series of small upward movements (or small
downward movements) is very unlikely. If the price is going to move up,
it should move up all at once, rather than in a series of small steps. ...
Large price movements are desirable, so long as they are not consistently
followed by price movements in the opposite direction.

Underlying this confusion may be a belief that returns cannot be random
if security prices are determined by discounting future cash flows. Smith
(1968), for example, writes: “I suspect that even if the random walkers an-
nounced a perfect mathematic proof of randomness, I would go on believing
that in the long run future earnings influence present value.”

In fact, the discounted present-value model of a security price is entirely
consistent with randomness in security returns. The key to understanding
this is the so-called Law of Iterated Expectations. To state this result we define
information sets /; and J;,, where I; C J, so all the information in /; is also in
J: but J;is superior because it contains some extra information. We consider
expectations of a random variable X conditional on these information sets,
written E[X | I,] or E[X | J;]. The Law of Iterated Expectations says that
E[X | I,] = E[E[X | JJJ | 1. In words, if one has limited information
I;, the best forecast one can make of a random variable X is the forecast
of the forecast one would make of X if one had superior information J.
This can be rewritten as E[X — E[X | ] | I;] = 0, which has an intuitive
interpretation: One cannot use limited information /, to predict the forecast
error one would make if one had superior information J;.

Samuelson (1965) was the first to show the relevance of the Law of
Iterated Expectations for security market analysis; LeRoy (1989) gives a
lucid review of the argument. We discuss the point in detail in Chapter 7,
but a brief summary may be helpful here. Suppose that a security price at
time ¢, P, can be written as the rational expectation of some “fundamental
value” V*, conditional on information /; available at time ¢. Then we have

P[ ] E[V* I If] = E[V*. (1.5,1)
The same equation holds one period ahead, so

P = E[V* | L1] = Esa V™. (1.5.2)
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But then the expectation of the change in the price over the next period is
E([Py1 — Pl = E(E [V —EJ[V*]] = 0, (1.5.3)

because I; C Ii41, 50 E;[E1 [V*]] = E,[V*] by the Law of Iterated Expecta-
tions. Thus realized changes in prices are unforecastable given information
in the set [;.

1.5.2 Is Market Efficiency Testable?

Although the empirical methodology summarized here is well-established,
there are some serious difficulties in interpreting its results. First, any test of
efficiency must assume an equilibrium model that defines normal security
returns. If efficiency is rejected, this could be because the market is truly
inefficient or because an incorrect equilibrium model has been assumed.
This joint hypothesis problem means that market efficiency as such can never
be rejected.

Second, perfect efficiency is an unrealistic benchmark that is unlikely
to hold in practice. Even in theory, as Grossman and Stiglitz (1980) have
shown, abnormal returns will exist if there are costs of gathering and pro-
cessing information. These returns are necessary to compensate investors
for their information-gathering and information-processing expenses, and
are no longer abnormal when these expenses are properly accounted for.
In a large and liquid market, information costs are likely to justify only small
abnormal returns, but it is difficult to say how small, even if such costs could
be measured precisely.

The notion of relative efficiency—the efficiency of one market measured
against another, e.g., the New York Stock Exchange vs. the Paris Bourse, fu-
tures markets vs. spot markets, or auction vs. dealer markets—may be a more
useful concept than the all-or-nothing view taken by much of the traditional
market-efficiency literature. The advantages of relative efficiency over ab-
solute efficiency are easy to see by way of an analogy. Physical systems are
often given an efficiency rating based on the relative proportion of energy
or fuel converted to useful work. Therefore, a piston engine may be rated
at 60% efficiency, meaning that on average 60% of the energy contained in
the engine’s fuel is used to turn the crankshaft, with the remaining 40% lost
to other forms of work such as heat, light, or noise.

Few engineers would ever consider performing a statistical test to deter-
mine whether or not a given engine is perfectly efficient—such an engine
exists only in the idealized frictionless world of the imagination. But measur-
ing relative efficiency—relative to the frictionless ideal—is commonplace.
Indeed, we have come to expect such measurements for many household
products: air conditioners, hot water heaters, refrigerators, etc. Similarly,
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market efficiency is an idealization that is economically unrealizable, but
that serves as a useful benchmark for measuring relative efficiency.

For these reasons, in this book we do not take a stand on market effi-
ciency itself, but focus instead on the statistical methods that can be used
to test the joint hypothesis of market efficiency and market equilibrium.
Although many of the techniques covered in these pages are central to the
market-efficiency debate—tests of variance bounds, Euler equations, the
CAPM and the APT—we feel that they can be more profitably applied to
measuring efficiency rather than to testing it. And if some markets turn
out to be particularly inefficient, the diligent reader of this text will be well-
prepared to take advantage of the opportunity.
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